# Properties

 Label 169.2.g.a.27.7 Level $169$ Weight $2$ Character 169.27 Analytic conductor $1.349$ Analytic rank $0$ Dimension $156$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [169,2,Mod(14,169)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(169, base_ring=CyclotomicField(26))

chi = DirichletCharacter(H, H._module([18]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("169.14");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$169 = 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 169.g (of order $$13$$, degree $$12$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.34947179416$$ Analytic rank: $$0$$ Dimension: $$156$$ Relative dimension: $$13$$ over $$\Q(\zeta_{13})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

## Embedding invariants

 Embedding label 27.7 Character $$\chi$$ $$=$$ 169.27 Dual form 169.2.g.a.144.7

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.000492135 - 0.00129765i) q^{2} +(-1.38011 + 1.99943i) q^{3} +(1.49702 - 1.32624i) q^{4} +(-0.444348 - 3.65953i) q^{5} +(0.00327377 + 0.000806912i) q^{6} +(3.94802 + 2.07208i) q^{7} +(-0.00491548 - 0.00257984i) q^{8} +(-1.02922 - 2.71382i) q^{9} +O(q^{10})$$ $$q+(-0.000492135 - 0.00129765i) q^{2} +(-1.38011 + 1.99943i) q^{3} +(1.49702 - 1.32624i) q^{4} +(-0.444348 - 3.65953i) q^{5} +(0.00327377 + 0.000806912i) q^{6} +(3.94802 + 2.07208i) q^{7} +(-0.00491548 - 0.00257984i) q^{8} +(-1.02922 - 2.71382i) q^{9} +(-0.00453012 + 0.00237759i) q^{10} +(0.542210 - 1.42969i) q^{11} +(0.585685 + 4.82355i) q^{12} +(-1.24348 + 3.38434i) q^{13} +(0.000745884 - 0.00614291i) q^{14} +(7.93023 + 4.16211i) q^{15} +(0.482145 - 3.97082i) q^{16} +(1.41220 + 0.741181i) q^{17} +(-0.00301508 + 0.00267113i) q^{18} +4.73261 q^{19} +(-5.51863 - 4.88908i) q^{20} +(-9.59168 + 5.03410i) q^{21} -0.00212208 q^{22} -1.66155 q^{23} +(0.0119421 - 0.00626771i) q^{24} +(-8.34001 + 2.05563i) q^{25} +(0.00500366 - 5.19534e-5i) q^{26} +(-0.230156 - 0.0567285i) q^{27} +(8.65835 - 2.13409i) q^{28} +(-1.03007 - 2.71607i) q^{29} +(0.00149823 - 0.0123390i) q^{30} +(-7.97254 - 1.96505i) q^{31} +(-0.0161701 + 0.00398558i) q^{32} +(2.11026 + 3.05724i) q^{33} +(0.000266802 - 0.00219731i) q^{34} +(5.82855 - 15.3686i) q^{35} +(-5.13994 - 2.69765i) q^{36} +(-2.29530 - 0.565741i) q^{37} +(-0.00232909 - 0.00614129i) q^{38} +(-5.05063 - 7.15700i) q^{39} +(-0.00725684 + 0.0191347i) q^{40} +(-3.00968 + 4.36027i) q^{41} +(0.0112529 + 0.00996922i) q^{42} +(-4.53725 + 1.11833i) q^{43} +(-1.08442 - 2.85938i) q^{44} +(-9.47398 + 4.97233i) q^{45} +(0.000817706 + 0.00215611i) q^{46} +(9.37370 + 8.30437i) q^{47} +(7.27398 + 6.44419i) q^{48} +(7.31689 + 10.6004i) q^{49} +(0.00677191 + 0.00981080i) q^{50} +(-3.43093 + 1.80069i) q^{51} +(2.62696 + 6.71558i) q^{52} +(-8.08089 - 4.24118i) q^{53} +(3.96541e-5 + 0.000326581i) q^{54} +(-5.47292 - 1.34895i) q^{55} +(-0.0140608 - 0.0203706i) q^{56} +(-6.53152 + 9.46254i) q^{57} +(-0.00301759 + 0.00267335i) q^{58} +(1.58040 + 13.0158i) q^{59} +(17.3917 - 4.28667i) q^{60} +(0.874957 - 0.459213i) q^{61} +(0.00137361 + 0.0113127i) q^{62} +(1.55989 - 12.8468i) q^{63} +(-4.54449 - 6.58383i) q^{64} +(12.9376 + 3.04671i) q^{65} +(0.00292870 - 0.00424296i) q^{66} +(-5.03597 - 4.46148i) q^{67} +(3.09708 - 0.763362i) q^{68} +(2.29312 - 3.32216i) q^{69} -0.0228116 q^{70} +(0.462710 - 0.670351i) q^{71} +(-0.00194214 + 0.0159950i) q^{72} +(-0.658755 + 1.73699i) q^{73} +(0.000395463 + 0.00325693i) q^{74} +(7.40003 - 19.5123i) q^{75} +(7.08482 - 6.27660i) q^{76} +(5.10309 - 4.52094i) q^{77} +(-0.00680172 + 0.0100762i) q^{78} +(5.95782 + 5.27817i) q^{79} -14.7456 q^{80} +(6.94857 - 6.15589i) q^{81} +(0.00713929 + 0.00175968i) q^{82} +(-0.307363 - 0.445293i) q^{83} +(-7.68249 + 20.2571i) q^{84} +(2.08487 - 5.49734i) q^{85} +(0.00368414 + 0.00533740i) q^{86} +(6.85221 + 1.68892i) q^{87} +(-0.00635360 + 0.00562880i) q^{88} -14.2838 q^{89} +(0.0111148 + 0.00984688i) q^{90} +(-11.9219 + 10.7849i) q^{91} +(-2.48737 + 2.20362i) q^{92} +(14.9320 - 13.2286i) q^{93} +(0.00616307 - 0.0162507i) q^{94} +(-2.10293 - 17.3192i) q^{95} +(0.0143476 - 0.0378316i) q^{96} +(-0.263819 + 2.17274i) q^{97} +(0.0101547 - 0.0147116i) q^{98} -4.43797 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10})$$ 156 * q - 10 * q^2 - 9 * q^3 - 20 * q^4 - 7 * q^5 - q^6 - 5 * q^7 + 2 * q^8 - 14 * q^9 $$156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100})$$ 156 * q - 10 * q^2 - 9 * q^3 - 20 * q^4 - 7 * q^5 - q^6 - 5 * q^7 + 2 * q^8 - 14 * q^9 + q^10 - q^11 + 11 * q^12 - 65 * q^13 + 9 * q^14 - 41 * q^15 + 3 * q^17 - 13 * q^18 - 6 * q^19 + 29 * q^20 + 19 * q^21 - 22 * q^22 - 82 * q^23 - 31 * q^24 + 2 * q^25 + 26 * q^26 + 21 * q^27 + 43 * q^28 + 13 * q^29 - 81 * q^30 - 33 * q^31 - 93 * q^32 + 35 * q^33 - 24 * q^34 + 27 * q^35 + 54 * q^36 + 25 * q^37 - 56 * q^38 - 13 * q^39 - 52 * q^40 + 29 * q^41 - 63 * q^42 + 21 * q^43 + 45 * q^44 + 33 * q^46 - 69 * q^47 + 54 * q^48 - 54 * q^49 + 80 * q^50 - 16 * q^51 + 13 * q^52 - 45 * q^53 + 29 * q^54 - 83 * q^55 + 91 * q^56 - 11 * q^57 + 25 * q^58 - 57 * q^59 + 51 * q^60 + 39 * q^61 + 4 * q^62 + 26 * q^63 + 86 * q^64 + 65 * q^65 - 138 * q^66 - 101 * q^67 + 36 * q^68 + 32 * q^69 - 90 * q^70 + 20 * q^71 + 13 * q^72 + 61 * q^73 - 4 * q^74 - 67 * q^75 - 107 * q^76 + 67 * q^77 + 13 * q^78 + 57 * q^79 + 160 * q^80 + 78 * q^81 - 31 * q^82 - 59 * q^83 - 36 * q^84 - 61 * q^85 + 41 * q^86 - 9 * q^87 - 45 * q^88 - 66 * q^89 + 191 * q^90 + 39 * q^91 + 79 * q^92 - 80 * q^93 - 21 * q^94 - 28 * q^95 + 70 * q^96 + 7 * q^97 + 158 * q^98 + 130 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/169\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{5}{13}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.000492135 0.00129765i −0.000347992 0.000917579i 0.934842 0.355064i $$-0.115541\pi$$
−0.935190 + 0.354146i $$0.884772\pi$$
$$3$$ −1.38011 + 1.99943i −0.796806 + 1.15437i 0.188247 + 0.982122i $$0.439719\pi$$
−0.985053 + 0.172251i $$0.944896\pi$$
$$4$$ 1.49702 1.32624i 0.748510 0.663122i
$$5$$ −0.444348 3.65953i −0.198718 1.63659i −0.661376 0.750055i $$-0.730027\pi$$
0.462657 0.886537i $$-0.346896\pi$$
$$6$$ 0.00327377 0.000806912i 0.00133651 0.000329420i
$$7$$ 3.94802 + 2.07208i 1.49221 + 0.783173i 0.996361 0.0852348i $$-0.0271640\pi$$
0.495851 + 0.868408i $$0.334856\pi$$
$$8$$ −0.00491548 0.00257984i −0.00173789 0.000912113i
$$9$$ −1.02922 2.71382i −0.343072 0.904607i
$$10$$ −0.00453012 + 0.00237759i −0.00143255 + 0.000751861i
$$11$$ 0.542210 1.42969i 0.163482 0.431068i −0.828094 0.560589i $$-0.810575\pi$$
0.991577 + 0.129521i $$0.0413440\pi$$
$$12$$ 0.585685 + 4.82355i 0.169073 + 1.39244i
$$13$$ −1.24348 + 3.38434i −0.344878 + 0.938648i
$$14$$ 0.000745884 0.00614291i 0.000199346 0.00164176i
$$15$$ 7.93023 + 4.16211i 2.04758 + 1.07465i
$$16$$ 0.482145 3.97082i 0.120536 0.992706i
$$17$$ 1.41220 + 0.741181i 0.342509 + 0.179763i 0.627203 0.778856i $$-0.284200\pi$$
−0.284694 + 0.958619i $$0.591892\pi$$
$$18$$ −0.00301508 + 0.00267113i −0.000710662 + 0.000629592i
$$19$$ 4.73261 1.08574 0.542868 0.839818i $$-0.317338\pi$$
0.542868 + 0.839818i $$0.317338\pi$$
$$20$$ −5.51863 4.88908i −1.23400 1.09323i
$$21$$ −9.59168 + 5.03410i −2.09308 + 1.09853i
$$22$$ −0.00212208 −0.000452429
$$23$$ −1.66155 −0.346457 −0.173228 0.984882i $$-0.555420\pi$$
−0.173228 + 0.984882i $$0.555420\pi$$
$$24$$ 0.0119421 0.00626771i 0.00243768 0.00127939i
$$25$$ −8.34001 + 2.05563i −1.66800 + 0.411126i
$$26$$ 0.00500366 5.19534e-5i 0.000981298 1.01889e-5i
$$27$$ −0.230156 0.0567285i −0.0442936 0.0109174i
$$28$$ 8.65835 2.13409i 1.63627 0.403305i
$$29$$ −1.03007 2.71607i −0.191279 0.504362i 0.804727 0.593645i $$-0.202312\pi$$
−0.996006 + 0.0892831i $$0.971542\pi$$
$$30$$ 0.00149823 0.0123390i 0.000273538 0.00225278i
$$31$$ −7.97254 1.96505i −1.43191 0.352934i −0.554303 0.832315i $$-0.687015\pi$$
−0.877607 + 0.479381i $$0.840861\pi$$
$$32$$ −0.0161701 + 0.00398558i −0.00285850 + 0.000704557i
$$33$$ 2.11026 + 3.05724i 0.367349 + 0.532197i
$$34$$ 0.000266802 0.00219731i 4.57561e−5 0.000376835i
$$35$$ 5.82855 15.3686i 0.985205 2.59777i
$$36$$ −5.13994 2.69765i −0.856657 0.449608i
$$37$$ −2.29530 0.565741i −0.377345 0.0930073i 0.0460812 0.998938i $$-0.485327\pi$$
−0.423427 + 0.905930i $$0.639173\pi$$
$$38$$ −0.00232909 0.00614129i −0.000377827 0.000996249i
$$39$$ −5.05063 7.15700i −0.808748 1.14604i
$$40$$ −0.00725684 + 0.0191347i −0.00114741 + 0.00302546i
$$41$$ −3.00968 + 4.36027i −0.470033 + 0.680960i −0.984267 0.176690i $$-0.943461\pi$$
0.514234 + 0.857650i $$0.328076\pi$$
$$42$$ 0.0112529 + 0.00996922i 0.00173636 + 0.00153828i
$$43$$ −4.53725 + 1.11833i −0.691923 + 0.170544i −0.569570 0.821943i $$-0.692890\pi$$
−0.122353 + 0.992487i $$0.539044\pi$$
$$44$$ −1.08442 2.85938i −0.163482 0.431067i
$$45$$ −9.47398 + 4.97233i −1.41230 + 0.741231i
$$46$$ 0.000817706 0.00215611i 0.000120564 0.000317902i
$$47$$ 9.37370 + 8.30437i 1.36729 + 1.21132i 0.953665 + 0.300872i $$0.0972776\pi$$
0.413630 + 0.910445i $$0.364261\pi$$
$$48$$ 7.27398 + 6.44419i 1.04991 + 0.930138i
$$49$$ 7.31689 + 10.6004i 1.04527 + 1.51434i
$$50$$ 0.00677191 + 0.00981080i 0.000957692 + 0.00138746i
$$51$$ −3.43093 + 1.80069i −0.480427 + 0.252147i
$$52$$ 2.62696 + 6.71558i 0.364293 + 0.931283i
$$53$$ −8.08089 4.24118i −1.11000 0.582570i −0.192892 0.981220i $$-0.561787\pi$$
−0.917103 + 0.398650i $$0.869479\pi$$
$$54$$ 3.96541e−5 0 0.000326581i 5.39625e−6 0 4.44421e-5i
$$55$$ −5.47292 1.34895i −0.737969 0.181893i
$$56$$ −0.0140608 0.0203706i −0.00187895 0.00272213i
$$57$$ −6.53152 + 9.46254i −0.865121 + 1.25334i
$$58$$ −0.00301759 + 0.00267335i −0.000396228 + 0.000351028i
$$59$$ 1.58040 + 13.0158i 0.205751 + 1.69451i 0.620206 + 0.784439i $$0.287049\pi$$
−0.414456 + 0.910069i $$0.636028\pi$$
$$60$$ 17.3917 4.28667i 2.24526 0.553406i
$$61$$ 0.874957 0.459213i 0.112027 0.0587962i −0.407779 0.913081i $$-0.633697\pi$$
0.519806 + 0.854284i $$0.326004\pi$$
$$62$$ 0.00137361 + 0.0113127i 0.000174448 + 0.00143671i
$$63$$ 1.55989 12.8468i 0.196527 1.61855i
$$64$$ −4.54449 6.58383i −0.568061 0.822979i
$$65$$ 12.9376 + 3.04671i 1.60472 + 0.377898i
$$66$$ 0.00292870 0.00424296i 0.000360498 0.000522272i
$$67$$ −5.03597 4.46148i −0.615242 0.545057i 0.296912 0.954905i $$-0.404043\pi$$
−0.912154 + 0.409848i $$0.865582\pi$$
$$68$$ 3.09708 0.763362i 0.375576 0.0925712i
$$69$$ 2.29312 3.32216i 0.276059 0.399941i
$$70$$ −0.0228116 −0.00272651
$$71$$ 0.462710 0.670351i 0.0549136 0.0795560i −0.794565 0.607179i $$-0.792301\pi$$
0.849479 + 0.527623i $$0.176917\pi$$
$$72$$ −0.00194214 + 0.0159950i −0.000228883 + 0.00188502i
$$73$$ −0.658755 + 1.73699i −0.0771015 + 0.203300i −0.968025 0.250853i $$-0.919289\pi$$
0.890924 + 0.454153i $$0.150058\pi$$
$$74$$ 0.000395463 0.00325693i 4.59716e−5 0.000378610i
$$75$$ 7.40003 19.5123i 0.854482 2.25308i
$$76$$ 7.08482 6.27660i 0.812685 0.719976i
$$77$$ 5.10309 4.52094i 0.581551 0.515209i
$$78$$ −0.00680172 + 0.0100762i −0.000770143 + 0.00114090i
$$79$$ 5.95782 + 5.27817i 0.670307 + 0.593841i 0.928087 0.372363i $$-0.121452\pi$$
−0.257780 + 0.966204i $$0.582991\pi$$
$$80$$ −14.7456 −1.64861
$$81$$ 6.94857 6.15589i 0.772063 0.683988i
$$82$$ 0.00713929 + 0.00175968i 0.000788402 + 0.000194324i
$$83$$ −0.307363 0.445293i −0.0337375 0.0488772i 0.805752 0.592253i $$-0.201761\pi$$
−0.839490 + 0.543376i $$0.817146\pi$$
$$84$$ −7.68249 + 20.2571i −0.838229 + 2.21023i
$$85$$ 2.08487 5.49734i 0.226135 0.596270i
$$86$$ 0.00368414 + 0.00533740i 0.000397271 + 0.000575547i
$$87$$ 6.85221 + 1.68892i 0.734634 + 0.181071i
$$88$$ −0.00635360 + 0.00562880i −0.000677296 + 0.000600032i
$$89$$ −14.2838 −1.51408 −0.757042 0.653366i $$-0.773356\pi$$
−0.757042 + 0.653366i $$0.773356\pi$$
$$90$$ 0.0111148 + 0.00984688i 0.00117161 + 0.00103795i
$$91$$ −11.9219 + 10.7849i −1.24975 + 1.13056i
$$92$$ −2.48737 + 2.20362i −0.259327 + 0.229743i
$$93$$ 14.9320 13.2286i 1.54837 1.37174i
$$94$$ 0.00616307 0.0162507i 0.000635672 0.00167613i
$$95$$ −2.10293 17.3192i −0.215756 1.77691i
$$96$$ 0.0143476 0.0378316i 0.00146435 0.00386117i
$$97$$ −0.263819 + 2.17274i −0.0267867 + 0.220609i −0.999955 0.00948600i $$-0.996980\pi$$
0.973168 + 0.230095i $$0.0739035\pi$$
$$98$$ 0.0101547 0.0147116i 0.00102578 0.00148610i
$$99$$ −4.43797 −0.446033
$$100$$ −9.75890 + 14.1382i −0.975890 + 1.41382i
$$101$$ −9.90116 + 2.44042i −0.985203 + 0.242831i −0.698830 0.715288i $$-0.746296\pi$$
−0.286373 + 0.958118i $$0.592449\pi$$
$$102$$ 0.00402516 + 0.00356598i 0.000398550 + 0.000353084i
$$103$$ 0.511941 0.741674i 0.0504430 0.0730793i −0.796951 0.604044i $$-0.793555\pi$$
0.847394 + 0.530965i $$0.178170\pi$$
$$104$$ 0.0148434 0.0134277i 0.00145551 0.00131669i
$$105$$ 22.6845 + 32.8642i 2.21378 + 3.20722i
$$106$$ −0.00152669 + 0.0125734i −0.000148285 + 0.00122124i
$$107$$ −1.46910 12.0991i −0.142023 1.16966i −0.873160 0.487434i $$-0.837933\pi$$
0.731137 0.682231i $$-0.238990\pi$$
$$108$$ −0.419785 + 0.220320i −0.0403938 + 0.0212003i
$$109$$ 10.2574 2.52823i 0.982483 0.242160i 0.284816 0.958582i $$-0.408068\pi$$
0.697667 + 0.716422i $$0.254221\pi$$
$$110$$ 0.000942942 0.00776582i 8.99060e−5 0.000740442i
$$111$$ 4.29893 3.80852i 0.408036 0.361489i
$$112$$ 10.1314 14.6779i 0.957326 1.38693i
$$113$$ 4.08945 + 5.92459i 0.384703 + 0.557339i 0.966720 0.255838i $$-0.0823514\pi$$
−0.582016 + 0.813177i $$0.697736\pi$$
$$114$$ 0.0154935 + 0.00381880i 0.00145110 + 0.000357664i
$$115$$ 0.738305 + 6.08049i 0.0688473 + 0.567009i
$$116$$ −5.14421 2.69989i −0.477628 0.250678i
$$117$$ 10.4643 0.108652i 0.967425 0.0100449i
$$118$$ 0.0161122 0.00845632i 0.00148325 0.000778468i
$$119$$ 4.03962 + 5.85239i 0.370311 + 0.536488i
$$120$$ −0.0282433 0.0409175i −0.00257825 0.00373524i
$$121$$ 6.48360 + 5.74397i 0.589418 + 0.522179i
$$122$$ −0.00102650 0.000909396i −9.29345e−5 8.23328e-5i
$$123$$ −4.56439 12.0353i −0.411557 1.08519i
$$124$$ −14.5412 + 7.63181i −1.30584 + 0.685357i
$$125$$ 4.69241 + 12.3729i 0.419702 + 1.10666i
$$126$$ −0.0174384 + 0.00429818i −0.00155354 + 0.000382913i
$$127$$ 1.76888 + 1.56709i 0.156963 + 0.139057i 0.737949 0.674856i $$-0.235794\pi$$
−0.580986 + 0.813913i $$0.697333\pi$$
$$128$$ −0.0252282 + 0.0365494i −0.00222988 + 0.00323054i
$$129$$ 4.02587 10.6153i 0.354458 0.934628i
$$130$$ −0.00241349 0.0182880i −0.000211677 0.00160396i
$$131$$ −2.87299 7.57544i −0.251014 0.661869i 0.748986 0.662586i $$-0.230541\pi$$
−1.00000 0.000716780i $$0.999772\pi$$
$$132$$ 7.21375 + 1.77803i 0.627876 + 0.154758i
$$133$$ 18.6845 + 9.80636i 1.62015 + 0.850319i
$$134$$ −0.00331108 + 0.00873060i −0.000286034 + 0.000754209i
$$135$$ −0.105330 + 0.867472i −0.00906537 + 0.0746601i
$$136$$ −0.00502953 0.00728652i −0.000431278 0.000624814i
$$137$$ −5.27928 + 1.30123i −0.451039 + 0.111171i −0.458290 0.888803i $$-0.651538\pi$$
0.00725119 + 0.999974i $$0.497692\pi$$
$$138$$ −0.00543953 0.00134072i −0.000463043 0.000114130i
$$139$$ 0.0383126 0.315533i 0.00324964 0.0267632i −0.990994 0.133907i $$-0.957248\pi$$
0.994243 + 0.107144i $$0.0341706\pi$$
$$140$$ −11.6571 30.7372i −0.985204 2.59777i
$$141$$ −29.5407 + 7.28114i −2.48778 + 0.613183i
$$142$$ −0.00109760 0.000270534i −9.21085e−5 2.27027e-5i
$$143$$ 4.16433 + 3.61281i 0.348239 + 0.302118i
$$144$$ −11.2723 + 2.77838i −0.939361 + 0.231532i
$$145$$ −9.48184 + 4.97645i −0.787424 + 0.413272i
$$146$$ 0.00257821 0.000213374
$$147$$ −31.2928 −2.58099
$$148$$ −4.18642 + 2.19721i −0.344122 + 0.180609i
$$149$$ −2.27250 2.01326i −0.186170 0.164932i 0.564890 0.825166i $$-0.308919\pi$$
−0.751060 + 0.660234i $$0.770457\pi$$
$$150$$ −0.0289620 −0.00236474
$$151$$ 11.8624 10.5092i 0.965347 0.855223i −0.0241597 0.999708i $$-0.507691\pi$$
0.989507 + 0.144485i $$0.0461526\pi$$
$$152$$ −0.0232631 0.0122094i −0.00188689 0.000990314i
$$153$$ 0.557970 4.59530i 0.0451092 0.371508i
$$154$$ −0.00837802 0.00439713i −0.000675120 0.000354330i
$$155$$ −3.64860 + 30.0489i −0.293063 + 2.41359i
$$156$$ −17.0528 4.01581i −1.36532 0.321522i
$$157$$ −0.418361 3.44551i −0.0333888 0.274982i −0.999836 0.0181158i $$-0.994233\pi$$
0.966447 0.256866i $$-0.0826898\pi$$
$$158$$ 0.00391718 0.0103288i 0.000311634 0.000821712i
$$159$$ 19.6324 10.3039i 1.55695 0.817153i
$$160$$ 0.0217705 + 0.0574041i 0.00172111 + 0.00453819i
$$161$$ −6.55983 3.44286i −0.516987 0.271336i
$$162$$ −0.0114078 0.00598730i −0.000896285 0.000470407i
$$163$$ 12.1872 + 3.00386i 0.954571 + 0.235281i 0.685691 0.727893i $$-0.259500\pi$$
0.268881 + 0.963174i $$0.413346\pi$$
$$164$$ 1.27724 + 10.5190i 0.0997353 + 0.821394i
$$165$$ 10.2504 9.08104i 0.797990 0.706958i
$$166$$ −0.000426571 0 0.000617995i −3.31083e−5 0 4.79657e-5i
$$167$$ 4.10366 + 10.8205i 0.317550 + 0.837312i 0.994827 + 0.101583i $$0.0323908\pi$$
−0.677277 + 0.735729i $$0.736840\pi$$
$$168$$ 0.0601350 0.00463951
$$169$$ −9.90754 8.41669i −0.762118 0.647438i
$$170$$ −0.00815968 −0.000625819
$$171$$ −4.87088 12.8435i −0.372486 0.982164i
$$172$$ −5.30917 + 7.69166i −0.404820 + 0.586483i
$$173$$ 13.7356 12.1687i 1.04430 0.925170i 0.0470221 0.998894i $$-0.485027\pi$$
0.997279 + 0.0737241i $$0.0234884\pi$$
$$174$$ −0.00118058 0.00972297i −8.94997e−5 0.000737096i
$$175$$ −37.1860 9.16552i −2.81100 0.692848i
$$176$$ −5.41562 2.84234i −0.408218 0.214249i
$$177$$ −28.2053 14.8033i −2.12004 1.11268i
$$178$$ 0.00702957 + 0.0185355i 0.000526889 + 0.00138929i
$$179$$ 0.343774 0.180427i 0.0256949 0.0134857i −0.451827 0.892106i $$-0.649228\pi$$
0.477522 + 0.878620i $$0.341535\pi$$
$$180$$ −7.58822 + 20.0085i −0.565592 + 1.49134i
$$181$$ −0.896157 7.38052i −0.0666109 0.548590i −0.987367 0.158451i $$-0.949350\pi$$
0.920756 0.390139i $$-0.127573\pi$$
$$182$$ 0.0198622 + 0.0101629i 0.00147228 + 0.000753322i
$$183$$ −0.289370 + 2.38318i −0.0213909 + 0.176170i
$$184$$ 0.00816732 + 0.00428654i 0.000602103 + 0.000316008i
$$185$$ −1.05044 + 8.65112i −0.0772296 + 0.636043i
$$186$$ −0.0245146 0.0128663i −0.00179750 0.000943401i
$$187$$ 1.82537 1.61714i 0.133484 0.118257i
$$188$$ 25.0462 1.82668
$$189$$ −0.791116 0.700868i −0.0575452 0.0509806i
$$190$$ −0.0214393 + 0.0112522i −0.00155537 + 0.000816322i
$$191$$ −6.84984 −0.495637 −0.247819 0.968806i $$-0.579714\pi$$
−0.247819 + 0.968806i $$0.579714\pi$$
$$192$$ 19.4358 1.40266
$$193$$ 9.32249 4.89282i 0.671048 0.352193i −0.0945432 0.995521i $$-0.530139\pi$$
0.765591 + 0.643328i $$0.222447\pi$$
$$194$$ 0.00294930 0.000726937i 0.000211747 5.21910e-5i
$$195$$ −23.9470 + 21.6631i −1.71488 + 1.55133i
$$196$$ 25.0122 + 6.16495i 1.78658 + 0.440354i
$$197$$ 3.42220 0.843497i 0.243822 0.0600967i −0.115511 0.993306i $$-0.536850\pi$$
0.359333 + 0.933210i $$0.383004\pi$$
$$198$$ 0.00218408 + 0.00575895i 0.000155216 + 0.000409271i
$$199$$ 2.78127 22.9058i 0.197159 1.62375i −0.472672 0.881238i $$-0.656711\pi$$
0.669831 0.742513i $$-0.266366\pi$$
$$200$$ 0.0462984 + 0.0114115i 0.00327379 + 0.000806917i
$$201$$ 15.8706 3.91176i 1.11943 0.275914i
$$202$$ 0.00803952 + 0.0116473i 0.000565659 + 0.000819498i
$$203$$ 1.56118 12.8575i 0.109574 0.902419i
$$204$$ −2.74802 + 7.24593i −0.192400 + 0.507316i
$$205$$ 17.2939 + 9.07653i 1.20786 + 0.633933i
$$206$$ −0.00121438 0.000299318i −8.46099e−5 2.08545e-5i
$$207$$ 1.71009 + 4.50914i 0.118860 + 0.313407i
$$208$$ 12.8391 + 6.56937i 0.890231 + 0.455504i
$$209$$ 2.56607 6.76617i 0.177499 0.468026i
$$210$$ 0.0314825 0.0456102i 0.00217250 0.00314740i
$$211$$ 11.8143 + 10.4666i 0.813333 + 0.720550i 0.963383 0.268128i $$-0.0864051\pi$$
−0.150050 + 0.988678i $$0.547944\pi$$
$$212$$ −17.7221 + 4.36810i −1.21716 + 0.300002i
$$213$$ 0.701732 + 1.85031i 0.0480819 + 0.126781i
$$214$$ −0.0149774 + 0.00786077i −0.00102384 + 0.000537351i
$$215$$ 6.10868 + 16.1073i 0.416608 + 1.09851i
$$216$$ 0.000984979 0 0.000872616i 6.70194e−5 0 5.93740e-5i
$$217$$ −27.4040 24.2778i −1.86030 1.64809i
$$218$$ −0.00832880 0.0120664i −0.000564098 0.000817236i
$$219$$ −2.56385 3.71438i −0.173249 0.250994i
$$220$$ −9.98212 + 5.23902i −0.672994 + 0.353215i
$$221$$ −4.26445 + 3.85773i −0.286858 + 0.259499i
$$222$$ −0.00705779 0.00370421i −0.000473688 0.000248611i
$$223$$ −0.419907 3.45825i −0.0281191 0.231581i 0.971873 0.235505i $$-0.0756743\pi$$
−0.999992 + 0.00392323i $$0.998751\pi$$
$$224$$ −0.0720984 0.0177707i −0.00481728 0.00118735i
$$225$$ 14.1623 + 20.5176i 0.944152 + 1.36784i
$$226$$ 0.00567550 0.00822239i 0.000377529 0.000546945i
$$227$$ −4.87514 + 4.31899i −0.323574 + 0.286662i −0.809234 0.587486i $$-0.800118\pi$$
0.485660 + 0.874148i $$0.338579\pi$$
$$228$$ 2.77182 + 22.8280i 0.183568 + 1.51182i
$$229$$ −1.47629 + 0.363872i −0.0975558 + 0.0240453i −0.287791 0.957693i $$-0.592921\pi$$
0.190236 + 0.981738i $$0.439075\pi$$
$$230$$ 0.00752702 0.00395049i 0.000496317 0.000260487i
$$231$$ 1.99650 + 16.4427i 0.131360 + 1.08185i
$$232$$ −0.00194375 + 0.0160082i −0.000127613 + 0.00105099i
$$233$$ −7.86460 11.3938i −0.515227 0.746435i 0.475879 0.879511i $$-0.342130\pi$$
−0.991106 + 0.133076i $$0.957515\pi$$
$$234$$ −0.00529084 0.0135256i −0.000345873 0.000884193i
$$235$$ 26.2249 37.9934i 1.71073 2.47841i
$$236$$ 19.6280 + 17.3889i 1.27767 + 1.13192i
$$237$$ −18.7758 + 4.62782i −1.21962 + 0.300609i
$$238$$ 0.00560634 0.00812219i 0.000363405 0.000526483i
$$239$$ 26.0080 1.68232 0.841159 0.540788i $$-0.181874\pi$$
0.841159 + 0.540788i $$0.181874\pi$$
$$240$$ 20.3505 29.4828i 1.31362 1.90311i
$$241$$ −2.16732 + 17.8495i −0.139610 + 1.14979i 0.739496 + 0.673161i $$0.235064\pi$$
−0.879106 + 0.476627i $$0.841859\pi$$
$$242$$ 0.00426287 0.0112403i 0.000274028 0.000722552i
$$243$$ 2.63280 + 21.6830i 0.168894 + 1.39097i
$$244$$ 0.700800 1.84786i 0.0448641 0.118297i
$$245$$ 35.5411 31.4866i 2.27064 2.01161i
$$246$$ −0.0133713 + 0.0118460i −0.000852526 + 0.000755272i
$$247$$ −5.88489 + 16.0168i −0.374447 + 1.01912i
$$248$$ 0.0341194 + 0.0302271i 0.00216658 + 0.00191942i
$$249$$ 1.31453 0.0833048
$$250$$ 0.0137464 0.0121782i 0.000869398 0.000770219i
$$251$$ −8.73968 2.15414i −0.551643 0.135968i −0.0463655 0.998925i $$-0.514764\pi$$
−0.505278 + 0.862957i $$0.668610\pi$$
$$252$$ −14.7029 21.3008i −0.926193 1.34182i
$$253$$ −0.900908 + 2.37550i −0.0566396 + 0.149346i
$$254$$ 0.00116301 0.00306662i 7.29740e−5 0.000192417i
$$255$$ 8.11422 + 11.7555i 0.508132 + 0.736156i
$$256$$ −15.5349 3.82901i −0.970932 0.239313i
$$257$$ 0.358033 0.317189i 0.0223335 0.0197857i −0.651882 0.758320i $$-0.726020\pi$$
0.674216 + 0.738535i $$0.264482\pi$$
$$258$$ −0.0157563 −0.000980944
$$259$$ −7.88964 6.98961i −0.490238 0.434313i
$$260$$ 23.4086 12.5975i 1.45174 0.781262i
$$261$$ −6.31076 + 5.59085i −0.390626 + 0.346065i
$$262$$ −0.00841640 + 0.00745628i −0.000519967 + 0.000460650i
$$263$$ −1.98464 + 5.23308i −0.122378 + 0.322685i −0.982180 0.187943i $$-0.939818\pi$$
0.859802 + 0.510628i $$0.170587\pi$$
$$264$$ −0.00248574 0.0204720i −0.000152987 0.00125996i
$$265$$ −11.9300 + 31.4568i −0.732854 + 1.93238i
$$266$$ 0.00352998 0.0290720i 0.000216437 0.00178252i
$$267$$ 19.7132 28.5596i 1.20643 1.74782i
$$268$$ −13.4560 −0.821954
$$269$$ 4.27575 6.19450i 0.260697 0.377685i −0.670676 0.741750i $$-0.733996\pi$$
0.931374 + 0.364065i $$0.118611\pi$$
$$270$$ 0.00117751 0.000290231i 7.16612e−5 1.76629e-5i
$$271$$ −6.92775 6.13745i −0.420831 0.372823i 0.425967 0.904739i $$-0.359934\pi$$
−0.846798 + 0.531915i $$0.821472\pi$$
$$272$$ 3.62399 5.25025i 0.219736 0.318343i
$$273$$ −5.11011 38.7213i −0.309278 2.34352i
$$274$$ 0.00428666 + 0.00621029i 0.000258966 + 0.000375178i
$$275$$ −1.58313 + 13.0382i −0.0954661 + 0.786234i
$$276$$ −0.973145 8.01457i −0.0585764 0.482420i
$$277$$ −16.6019 + 8.71333i −0.997510 + 0.523534i −0.882742 0.469859i $$-0.844305\pi$$
−0.114768 + 0.993392i $$0.536613\pi$$
$$278$$ −0.000428307 0 0.000105568i −2.56882e−5 0 6.33156e-6i
$$279$$ 2.87266 + 23.6585i 0.171982 + 1.41640i
$$280$$ −0.0682988 + 0.0605075i −0.00408164 + 0.00361601i
$$281$$ −16.3908 + 23.7462i −0.977793 + 1.41658i −0.0698149 + 0.997560i $$0.522241\pi$$
−0.907978 + 0.419018i $$0.862375\pi$$
$$282$$ 0.0239864 + 0.0347503i 0.00142837 + 0.00206935i
$$283$$ −27.5003 6.77821i −1.63472 0.402923i −0.688190 0.725530i $$-0.741595\pi$$
−0.946533 + 0.322607i $$0.895441\pi$$
$$284$$ −0.196363 1.61720i −0.0116520 0.0959629i
$$285$$ 37.5307 + 19.6977i 2.22313 + 1.16679i
$$286$$ 0.00263876 0.00718185i 0.000156033 0.000424672i
$$287$$ −20.9171 + 10.9781i −1.23470 + 0.648019i
$$288$$ 0.0274587 + 0.0397808i 0.00161802 + 0.00234410i
$$289$$ −8.21213 11.8973i −0.483067 0.699843i
$$290$$ 0.0111241 + 0.00985505i 0.000653227 + 0.000578709i
$$291$$ −3.98015 3.52611i −0.233321 0.206704i
$$292$$ 1.31751 + 3.47399i 0.0771014 + 0.203300i
$$293$$ 7.10061 3.72669i 0.414822 0.217715i −0.244383 0.969679i $$-0.578585\pi$$
0.659205 + 0.751963i $$0.270893\pi$$
$$294$$ 0.0154003 + 0.0406072i 0.000898162 + 0.00236826i
$$295$$ 46.9293 11.5670i 2.73233 0.673459i
$$296$$ 0.00982300 + 0.00870242i 0.000570950 + 0.000505818i
$$297$$ −0.205897 + 0.298294i −0.0119474 + 0.0173087i
$$298$$ −0.00149413 + 0.00393971i −8.65528e−5 + 0.000228221i
$$299$$ 2.06610 5.62325i 0.119485 0.325201i
$$300$$ −14.8001 39.0245i −0.854482 2.25308i
$$301$$ −20.2304 4.98635i −1.16606 0.287408i
$$302$$ −0.0194751 0.0102213i −0.00112067 0.000588172i
$$303$$ 8.78523 23.1648i 0.504698 1.33078i
$$304$$ 2.28181 18.7924i 0.130871 1.07782i
$$305$$ −2.06929 2.99788i −0.118487 0.171658i
$$306$$ −0.00623770 + 0.00153745i −0.000356585 + 8.78904e-5i
$$307$$ 29.4307 + 7.25401i 1.67970 + 0.414008i 0.959937 0.280215i $$-0.0904057\pi$$
0.719760 + 0.694223i $$0.244252\pi$$
$$308$$ 1.64355 13.5359i 0.0936502 0.771278i
$$309$$ 0.776394 + 2.04718i 0.0441675 + 0.116460i
$$310$$ 0.0407887 0.0100535i 0.00231664 0.000571001i
$$311$$ 28.2867 + 6.97206i 1.60399 + 0.395349i 0.936892 0.349618i $$-0.113689\pi$$
0.667102 + 0.744967i $$0.267535\pi$$
$$312$$ 0.00636234 + 0.0482100i 0.000360197 + 0.00272935i
$$313$$ −29.9396 + 7.37946i −1.69229 + 0.417112i −0.963517 0.267646i $$-0.913754\pi$$
−0.728771 + 0.684758i $$0.759908\pi$$
$$314$$ −0.00426519 + 0.00223854i −0.000240698 + 0.000126328i
$$315$$ −47.7065 −2.68796
$$316$$ 15.9191 0.895521
$$317$$ 1.94214 1.01931i 0.109081 0.0572504i −0.409300 0.912400i $$-0.634227\pi$$
0.518381 + 0.855149i $$0.326535\pi$$
$$318$$ −0.0230327 0.0204052i −0.00129161 0.00114427i
$$319$$ −4.44165 −0.248685
$$320$$ −22.0744 + 19.5562i −1.23400 + 1.09323i
$$321$$ 26.2189 + 13.7607i 1.46339 + 0.768048i
$$322$$ −0.00123932 + 0.0102067i −6.90647e−5 + 0.000568799i
$$323$$ 6.68341 + 3.50772i 0.371875 + 0.195175i
$$324$$ 2.23793 18.4310i 0.124329 1.02394i
$$325$$ 3.41365 30.7816i 0.189355 1.70745i
$$326$$ −0.00209975 0.0172930i −0.000116294 0.000957771i
$$327$$ −9.10134 + 23.9983i −0.503305 + 1.32711i
$$328$$ 0.0260428 0.0136683i 0.00143798 0.000754708i
$$329$$ 19.8002 + 52.2089i 1.09162 + 2.87837i
$$330$$ −0.0168286 0.00883233i −0.000926384 0.000486204i
$$331$$ 22.5026 + 11.8103i 1.23685 + 0.649150i 0.951020 0.309129i $$-0.100038\pi$$
0.285833 + 0.958280i $$0.407730\pi$$
$$332$$ −1.05070 0.258973i −0.0576644 0.0142130i
$$333$$ 0.827042 + 6.81131i 0.0453216 + 0.373257i
$$334$$ 0.0120216 0.0106502i 0.000657795 0.000582756i
$$335$$ −14.0892 + 20.4118i −0.769776 + 1.11521i
$$336$$ 15.3650 + 40.5141i 0.838227 + 2.21022i
$$337$$ −4.88186 −0.265932 −0.132966 0.991121i $$-0.542450\pi$$
−0.132966 + 0.991121i $$0.542450\pi$$
$$338$$ −0.00604610 + 0.0169987i −0.000328864 + 0.000924607i
$$339$$ −17.4897 −0.949911
$$340$$ −4.16973 10.9947i −0.226135 0.596270i
$$341$$ −7.13221 + 10.3328i −0.386231 + 0.559552i
$$342$$ −0.0142692 + 0.0126414i −0.000771592 + 0.000683570i
$$343$$ 3.16037 + 26.0280i 0.170644 + 1.40538i
$$344$$ 0.0251879 + 0.00620825i 0.00135804 + 0.000334727i
$$345$$ −13.1765 6.91555i −0.709397 0.372321i
$$346$$ −0.0225505 0.0118354i −0.00121232 0.000636277i
$$347$$ −7.01378 18.4938i −0.376520 0.992801i −0.980625 0.195896i $$-0.937238\pi$$
0.604105 0.796905i $$-0.293531\pi$$
$$348$$ 12.4978 6.55936i 0.669953 0.351619i
$$349$$ 8.85512 23.3490i 0.474004 1.24984i −0.458503 0.888693i $$-0.651614\pi$$
0.932507 0.361152i $$-0.117616\pi$$
$$350$$ 0.00640685 + 0.0527652i 0.000342461 + 0.00282042i
$$351$$ 0.478182 0.708388i 0.0255235 0.0378109i
$$352$$ −0.00306946 + 0.0252793i −0.000163603 + 0.00134739i
$$353$$ 9.23401 + 4.84638i 0.491477 + 0.257947i 0.692206 0.721700i $$-0.256639\pi$$
−0.200729 + 0.979647i $$0.564331\pi$$
$$354$$ −0.00532871 + 0.0438859i −0.000283218 + 0.00233251i
$$355$$ −2.65877 1.39543i −0.141113 0.0740619i
$$356$$ −21.3832 + 18.9439i −1.13331 + 1.00402i
$$357$$ −17.2766 −0.914373
$$358$$ −0.000403314 0 0.000357305i −2.13158e−5 0 1.88842e-5i
$$359$$ −4.13758 + 2.17157i −0.218373 + 0.114611i −0.570363 0.821393i $$-0.693197\pi$$
0.351990 + 0.936004i $$0.385505\pi$$
$$360$$ 0.0593970 0.00313050
$$361$$ 3.39764 0.178823
$$362$$ −0.00913633 + 0.00479511i −0.000480195 + 0.000252026i
$$363$$ −20.4327 + 5.03622i −1.07244 + 0.264333i
$$364$$ −3.54395 + 31.9565i −0.185753 + 1.67498i
$$365$$ 6.64930 + 1.63891i 0.348040 + 0.0857843i
$$366$$ 0.00323495 0.000797344i 0.000169094 4.16778e-5i
$$367$$ −1.74183 4.59282i −0.0909226 0.239743i 0.881839 0.471550i $$-0.156305\pi$$
−0.972762 + 0.231807i $$0.925536\pi$$
$$368$$ −0.801108 + 6.59772i −0.0417607 + 0.343930i
$$369$$ 14.9306 + 3.68006i 0.777256 + 0.191576i
$$370$$ 0.0117431 0.00289442i 0.000610495 0.000150473i
$$371$$ −23.1154 33.4885i −1.20009 1.73864i
$$372$$ 4.80914 39.6069i 0.249342 2.05352i
$$373$$ −6.61976 + 17.4549i −0.342758 + 0.903779i 0.647187 + 0.762331i $$0.275945\pi$$
−0.989946 + 0.141448i $$0.954824\pi$$
$$374$$ −0.00299681 0.00157285i −0.000154961 8.13300e-5i
$$375$$ −31.2147 7.69374i −1.61192 0.397303i
$$376$$ −0.0246523 0.0650027i −0.00127134 0.00335226i
$$377$$ 10.4730 0.108742i 0.539386 0.00560049i
$$378$$ −0.000520147 0.00137152i −2.67535e−5 7.05432e-5i
$$379$$ 16.0510 23.2538i 0.824483 1.19447i −0.153985 0.988073i $$-0.549211\pi$$
0.978468 0.206397i $$-0.0661738\pi$$
$$380$$ −26.1175 23.1381i −1.33980 1.18696i
$$381$$ −5.57455 + 1.37400i −0.285593 + 0.0703923i
$$382$$ 0.00337105 + 0.00888872i 0.000172478 + 0.000454787i
$$383$$ −15.1506 + 7.95163i −0.774157 + 0.406309i −0.805045 0.593214i $$-0.797859\pi$$
0.0308876 + 0.999523i $$0.490167\pi$$
$$384$$ −0.0382603 0.100884i −0.00195246 0.00514822i
$$385$$ −18.8121 16.6660i −0.958752 0.849380i
$$386$$ −0.0109371 0.00968943i −0.000556684 0.000493179i
$$387$$ 7.70475 + 11.1623i 0.391655 + 0.567410i
$$388$$ 2.48664 + 3.60253i 0.126240 + 0.182891i
$$389$$ −1.24873 + 0.655385i −0.0633132 + 0.0332294i −0.496083 0.868275i $$-0.665229\pi$$
0.432769 + 0.901505i $$0.357536\pi$$
$$390$$ 0.0398964 + 0.0204138i 0.00202023 + 0.00103369i
$$391$$ −2.34644 1.23151i −0.118665 0.0622801i
$$392$$ −0.00861881 0.0709823i −0.000435316 0.00358515i
$$393$$ 19.1116 + 4.71059i 0.964053 + 0.237618i
$$394$$ −0.00277875 0.00402572i −0.000139992 0.000202813i
$$395$$ 16.6683 24.1482i 0.838672 1.21503i
$$396$$ −6.64373 + 5.88583i −0.333860 + 0.295774i
$$397$$ −2.93542 24.1753i −0.147324 1.21332i −0.859430 0.511253i $$-0.829182\pi$$
0.712106 0.702072i $$-0.247742\pi$$
$$398$$ −0.0310926 + 0.00766363i −0.00155853 + 0.000384143i
$$399$$ −45.3937 + 23.8245i −2.27253 + 1.19272i
$$400$$ 4.14144 + 34.1078i 0.207072 + 1.70539i
$$401$$ 2.85134 23.4829i 0.142389 1.17268i −0.729853 0.683605i $$-0.760411\pi$$
0.872242 0.489075i $$-0.162666\pi$$
$$402$$ −0.0128866 0.0186695i −0.000642725 0.000931148i
$$403$$ 16.5641 24.5383i 0.825115 1.22234i
$$404$$ −11.5857 + 16.7847i −0.576408 + 0.835071i
$$405$$ −25.6153 22.6931i −1.27283 1.12763i
$$406$$ −0.0174529 + 0.00430175i −0.000866172 + 0.000213492i
$$407$$ −2.05337 + 2.97482i −0.101782 + 0.147456i
$$408$$ 0.0215102 0.00106491
$$409$$ 3.74228 5.42163i 0.185044 0.268082i −0.719473 0.694521i $$-0.755617\pi$$
0.904517 + 0.426438i $$0.140232\pi$$
$$410$$ 0.00326727 0.0269083i 0.000161359 0.00132891i
$$411$$ 4.68427 12.3514i 0.231058 0.609249i
$$412$$ −0.217255 1.78926i −0.0107034 0.0881505i
$$413$$ −20.7303 + 54.6612i −1.02007 + 2.68970i
$$414$$ 0.00500971 0.00443822i 0.000246214 0.000218126i
$$415$$ −1.49299 + 1.32267i −0.0732878 + 0.0649273i
$$416$$ 0.00661859 0.0596812i 0.000324503 0.00292611i
$$417$$ 0.578011 + 0.512073i 0.0283053 + 0.0250763i
$$418$$ −0.0100430 −0.000491219
$$419$$ 15.7151 13.9224i 0.767733 0.680152i −0.185414 0.982661i $$-0.559363\pi$$
0.953147 + 0.302509i $$0.0978241\pi$$
$$420$$ 77.5451 + 19.1131i 3.78381 + 0.932626i
$$421$$ −14.5090 21.0199i −0.707124 1.02445i −0.997713 0.0675983i $$-0.978466\pi$$
0.290588 0.956848i $$-0.406149\pi$$
$$422$$ 0.00776776 0.0204819i 0.000378129 0.000997043i
$$423$$ 12.8890 33.9855i 0.626685 1.65243i
$$424$$ 0.0287799 + 0.0416949i 0.00139767 + 0.00202488i
$$425$$ −13.3014 3.27850i −0.645212 0.159030i
$$426$$ 0.00205572 0.00182121i 9.96000e−5 8.82379e-5i
$$427$$ 4.40587 0.213215
$$428$$ −18.2456 16.1642i −0.881936 0.781327i
$$429$$ −12.9708 + 3.34024i −0.626236 + 0.161268i
$$430$$ 0.0178953 0.0158539i 0.000862990 0.000764543i
$$431$$ −8.74005 + 7.74301i −0.420994 + 0.372968i −0.846858 0.531819i $$-0.821509\pi$$
0.425864 + 0.904787i $$0.359970\pi$$
$$432$$ −0.336228 + 0.886559i −0.0161768 + 0.0426546i
$$433$$ 0.859716 + 7.08040i 0.0413153 + 0.340262i 0.998679 + 0.0513777i $$0.0163612\pi$$
−0.957364 + 0.288884i $$0.906716\pi$$
$$434$$ −0.0180177 + 0.0475089i −0.000864879 + 0.00228050i
$$435$$ 3.13589 25.8263i 0.150354 1.23828i
$$436$$ 12.0025 17.3887i 0.574817 0.832766i
$$437$$ −7.86347 −0.376161
$$438$$ −0.00355821 + 0.00515496i −0.000170018 + 0.000246314i
$$439$$ −14.2016 + 3.50037i −0.677803 + 0.167064i −0.563166 0.826344i $$-0.690417\pi$$
−0.114637 + 0.993407i $$0.536571\pi$$
$$440$$ 0.0234220 + 0.0207501i 0.00111660 + 0.000989220i
$$441$$ 21.2368 30.7668i 1.01128 1.46508i
$$442$$ 0.00710469 + 0.00363525i 0.000337935 + 0.000172911i
$$443$$ 21.2588 + 30.7988i 1.01004 + 1.46329i 0.881842 + 0.471544i $$0.156303\pi$$
0.128196 + 0.991749i $$0.459081\pi$$
$$444$$ 1.38456 11.4029i 0.0657082 0.541156i
$$445$$ 6.34699 + 52.2721i 0.300876 + 2.47794i
$$446$$ −0.00428095 + 0.00224682i −0.000202709 + 0.000106390i
$$447$$ 7.16166 1.76519i 0.338735 0.0834907i
$$448$$ −4.29951 35.4097i −0.203133 1.67295i
$$449$$ 21.7092 19.2327i 1.02452 0.907648i 0.0287580 0.999586i $$-0.490845\pi$$
0.995765 + 0.0919385i $$0.0293063\pi$$
$$450$$ 0.0196550 0.0284752i 0.000926545 0.00134233i
$$451$$ 4.60196 + 6.66709i 0.216698 + 0.313941i
$$452$$ 13.9794 + 3.44562i 0.657538 + 0.162069i
$$453$$ 4.64097 + 38.2218i 0.218052 + 1.79582i
$$454$$ 0.00800378 + 0.00420071i 0.000375636 + 0.000197149i
$$455$$ 44.7650 + 38.8363i 2.09862 + 1.82067i
$$456$$ 0.0565175 0.0296627i 0.00264667 0.00138908i
$$457$$ 5.28366 + 7.65470i 0.247159 + 0.358072i 0.926853 0.375424i $$-0.122503\pi$$
−0.679694 + 0.733496i $$0.737888\pi$$
$$458$$ 0.00119871 + 0.00173663i 5.60121e−5 + 8.11476e-5i
$$459$$ −0.282981 0.250700i −0.0132084 0.0117017i
$$460$$ 9.16947 + 8.12344i 0.427529 + 0.378758i
$$461$$ 14.2389 + 37.5450i 0.663173 + 1.74864i 0.662972 + 0.748644i $$0.269295\pi$$
0.000201327 1.00000i $$0.499936\pi$$
$$462$$ 0.0203543 0.0106828i 0.000946969 0.000497008i
$$463$$ −3.33342 8.78950i −0.154917 0.408483i 0.834978 0.550283i $$-0.185480\pi$$
−0.989895 + 0.141800i $$0.954711\pi$$
$$464$$ −11.2817 + 2.78069i −0.523739 + 0.129090i
$$465$$ −55.0453 48.7659i −2.55267 2.26146i
$$466$$ −0.0109148 + 0.0158128i −0.000505619 + 0.000732515i
$$467$$ −13.5318 + 35.6804i −0.626177 + 1.65109i 0.125921 + 0.992040i $$0.459811\pi$$
−0.752098 + 0.659052i $$0.770958\pi$$
$$468$$ 15.5212 14.0409i 0.717466 0.649039i
$$469$$ −10.6376 28.0490i −0.491198 1.29518i
$$470$$ −0.0622084 0.0153330i −0.00286946 0.000707258i
$$471$$ 7.46645 + 3.91869i 0.344036 + 0.180564i
$$472$$ 0.0258102 0.0680560i 0.00118801 0.00313253i
$$473$$ −0.861273 + 7.09322i −0.0396014 + 0.326147i
$$474$$ 0.0152455 + 0.0220870i 0.000700250 + 0.00101449i
$$475$$ −39.4701 + 9.72850i −1.81101 + 0.446374i
$$476$$ 13.8091 + 3.40364i 0.632939 + 0.156005i
$$477$$ −3.19281 + 26.2952i −0.146189 + 1.20397i
$$478$$ −0.0127994 0.0337494i −0.000585433 0.00154366i
$$479$$ 16.1690 3.98529i 0.738779 0.182093i 0.148069 0.988977i $$-0.452694\pi$$
0.590709 + 0.806884i $$0.298848\pi$$
$$480$$ −0.144821 0.0356952i −0.00661016 0.00162926i
$$481$$ 4.76881 7.06460i 0.217439 0.322118i
$$482$$ 0.0242291 0.00597193i 0.00110360 0.000272014i
$$483$$ 15.9371 8.36441i 0.725161 0.380594i
$$484$$ 17.3240 0.787453
$$485$$ 8.06844 0.366369
$$486$$ 0.0268414 0.0140874i 0.00121755 0.000639019i
$$487$$ −0.976539 0.865138i −0.0442512 0.0392032i 0.640707 0.767785i $$-0.278641\pi$$
−0.684958 + 0.728582i $$0.740180\pi$$
$$488$$ −0.00548553 −0.000248318
$$489$$ −22.8256 + 20.2217i −1.03221 + 0.914458i
$$490$$ −0.0583497 0.0306243i −0.00263597 0.00138347i
$$491$$ −3.00281 + 24.7304i −0.135515 + 1.11607i 0.753260 + 0.657723i $$0.228480\pi$$
−0.888775 + 0.458343i $$0.848443\pi$$
$$492$$ −22.7947 11.9636i −1.02767 0.539360i
$$493$$ 0.558433 4.59911i 0.0251506 0.207134i
$$494$$ 0.0236804 0.000245876i 0.00106543 1.10625e-5i
$$495$$ 1.97200 + 16.2409i 0.0886349 + 0.729974i
$$496$$ −11.6468 + 30.7101i −0.522957 + 1.37892i
$$497$$ 3.21581 1.68779i 0.144249 0.0757076i
$$498$$ −0.000646925 0.00170580i −2.89894e−5 7.64388e-5i
$$499$$ 20.8059 + 10.9198i 0.931402 + 0.488837i 0.860957 0.508678i $$-0.169866\pi$$
0.0704452 + 0.997516i $$0.477558\pi$$
$$500$$ 23.4341 + 12.2991i 1.04800 + 0.550035i
$$501$$ −27.2983 6.72842i −1.21960 0.300603i
$$502$$ 0.00150578 + 0.0124012i 6.72061e−5 + 0.000553492i
$$503$$ 15.8550 14.0463i 0.706938 0.626293i −0.231057 0.972940i $$-0.574218\pi$$
0.937995 + 0.346648i $$0.112680\pi$$
$$504$$ −0.0408104 + 0.0591241i −0.00181784 + 0.00263360i
$$505$$ 13.3303 + 35.1492i 0.593192 + 1.56412i
$$506$$ 0.00352594 0.000156747
$$507$$ 30.5021 8.19351i 1.35465 0.363887i
$$508$$ 4.72640 0.209700
$$509$$ −4.27859 11.2817i −0.189645 0.500054i 0.806145 0.591719i $$-0.201550\pi$$
−0.995790 + 0.0916649i $$0.970781\pi$$
$$510$$ 0.0112612 0.0163147i 0.000498656 0.000722428i
$$511$$ −6.19997 + 5.49270i −0.274271 + 0.242983i
$$512$$ 0.0133828 + 0.110217i 0.000591442 + 0.00487096i
$$513$$ −1.08924 0.268474i −0.0480912 0.0118534i
$$514$$ −0.000587802 0 0.000308502i −2.59268e−5 0 1.36075e-5i
$$515$$ −2.94166 1.54390i −0.129625 0.0680325i
$$516$$ −8.05172 21.2306i −0.354457 0.934627i
$$517$$ 16.9552 8.89877i 0.745688 0.391367i
$$518$$ −0.00518732 + 0.0136778i −0.000227918 + 0.000600970i
$$519$$ 5.37385 + 44.2576i 0.235886 + 1.94269i
$$520$$ −0.0557347 0.0483532i −0.00244413 0.00212043i
$$521$$ 3.27140 26.9424i 0.143323 1.18037i −0.726558 0.687105i $$-0.758881\pi$$
0.869880 0.493263i $$-0.164196\pi$$
$$522$$ 0.0103607 + 0.00543773i 0.000453477 + 0.000238003i
$$523$$ 2.09291 17.2367i 0.0915165 0.753707i −0.872638 0.488367i $$-0.837593\pi$$
0.964155 0.265340i $$-0.0854841\pi$$
$$524$$ −14.3478 7.53030i −0.626786 0.328963i
$$525$$ 69.6465 61.7014i 3.03962 2.69287i
$$526$$ 0.00776743 0.000338676
$$527$$ −9.80238 8.68415i −0.426998 0.378287i
$$528$$ 13.1572 6.90544i 0.572594 0.300521i
$$529$$ −20.2393 −0.879968
$$530$$ 0.0466912 0.00202814
$$531$$ 33.6959 17.6850i 1.46228 0.767462i
$$532$$ 40.9766 10.0998i 1.77656 0.437883i
$$533$$ −11.0142 15.6077i −0.477077 0.676043i
$$534$$ −0.0467620 0.0115258i −0.00202359 0.000498770i
$$535$$ −43.6243 + 10.7524i −1.88604 + 0.464867i
$$536$$ 0.0132443 + 0.0349224i 0.000572067 + 0.00150842i
$$537$$ −0.113695 + 0.936361i −0.00490630 + 0.0404070i
$$538$$ −0.0101426 0.00249991i −0.000437276 0.000107779i
$$539$$ 19.1225 4.71327i 0.823665 0.203015i
$$540$$ 0.992798 + 1.43832i 0.0427232 + 0.0618953i
$$541$$ 0.620950 5.11398i 0.0266967 0.219867i −0.973255 0.229729i $$-0.926216\pi$$
0.999951 + 0.00986170i $$0.00313913\pi$$
$$542$$ −0.00455489 + 0.0120103i −0.000195649 + 0.000515885i
$$543$$ 15.9936 + 8.39411i 0.686353 + 0.360226i
$$544$$ −0.0257895 0.00635655i −0.00110572 0.000272535i
$$545$$ −13.8100 36.4140i −0.591555 1.55980i
$$546$$ −0.0477320 + 0.0256873i −0.00204274 + 0.00109931i
$$547$$ −14.6331 + 38.5842i −0.625664 + 1.64974i 0.127445 + 0.991846i $$0.459323\pi$$
−0.753109 + 0.657896i $$0.771447\pi$$
$$548$$ −6.17744 + 8.94957i −0.263887 + 0.382307i
$$549$$ −2.14674 1.90185i −0.0916206 0.0811688i
$$550$$ 0.0176982 0.00436221i 0.000754653 0.000186005i
$$551$$ −4.87493 12.8541i −0.207679 0.547604i
$$552$$ −0.0198424 + 0.0104141i −0.000844550 + 0.000443254i
$$553$$ 12.5848 + 33.1834i 0.535161 + 1.41110i
$$554$$ 0.0194772 + 0.0172553i 0.000827509 + 0.000733109i
$$555$$ −15.8476 14.0398i −0.672694 0.595954i
$$556$$ −0.361119 0.523171i −0.0153149 0.0221874i
$$557$$ 14.7662 + 21.3926i 0.625666 + 0.906434i 0.999781 0.0209489i $$-0.00666874\pi$$
−0.374115 + 0.927382i $$0.622053\pi$$
$$558$$ 0.0292868 0.0153709i 0.00123981 0.000650702i
$$559$$ 1.85714 16.7462i 0.0785486 0.708289i
$$560$$ −58.2159 30.5541i −2.46007 1.29114i
$$561$$ 0.714146 + 5.88152i 0.0301513 + 0.248318i
$$562$$ 0.0388808 + 0.00958325i 0.00164009 + 0.000404245i
$$563$$ −14.5246 21.0424i −0.612137 0.886833i 0.387245 0.921977i $$-0.373427\pi$$
−0.999382 + 0.0351432i $$0.988811\pi$$
$$564$$ −34.5665 + 50.0783i −1.45551 + 2.10867i
$$565$$ 19.8641 17.5981i 0.835689 0.740356i
$$566$$ 0.00473809 + 0.0390216i 0.000199157 + 0.00164020i
$$567$$ 40.1886 9.90560i 1.68776 0.415996i
$$568$$ −0.00400385 + 0.00210138i −0.000167998 + 8.81720e-5i
$$569$$ −3.80603 31.3455i −0.159557 1.31407i −0.823939 0.566678i $$-0.808228\pi$$
0.664382 0.747393i $$-0.268695\pi$$
$$570$$ 0.00709053 0.0583958i 0.000296990 0.00244593i
$$571$$ 0.221253 + 0.320541i 0.00925917 + 0.0134142i 0.827586 0.561339i $$-0.189714\pi$$
−0.818327 + 0.574753i $$0.805098\pi$$
$$572$$ 11.0256 0.114479i 0.461002 0.00478662i
$$573$$ 9.45353 13.6958i 0.394927 0.572150i
$$574$$ 0.0245399 + 0.0217404i 0.00102427 + 0.000907428i
$$575$$ 13.8573 3.41553i 0.577891 0.142437i
$$576$$ −13.1901 + 19.1091i −0.549586 + 0.796213i
$$577$$ 34.4533 1.43431 0.717154 0.696914i $$-0.245444\pi$$
0.717154 + 0.696914i $$0.245444\pi$$
$$578$$ −0.0113971 + 0.0165116i −0.000474058 + 0.000686792i
$$579$$ −3.08319 + 25.3923i −0.128133 + 1.05527i
$$580$$ −7.59451 + 20.0251i −0.315345 + 0.831496i
$$581$$ −0.290794 2.39491i −0.0120642 0.0993575i
$$582$$ −0.00261689 + 0.00690018i −0.000108474 + 0.000286022i
$$583$$ −10.4451 + 9.25355i −0.432592 + 0.383243i
$$584$$ 0.00771928 0.00683868i 0.000319426 0.000282987i
$$585$$ −5.04740 38.2461i −0.208684 1.58128i
$$586$$ −0.00833041 0.00738010i −0.000344126 0.000304869i
$$587$$ −9.34500 −0.385709 −0.192855 0.981227i $$-0.561775\pi$$
−0.192855 + 0.981227i $$0.561775\pi$$
$$588$$ −46.8459 + 41.5019i −1.93189 + 1.71151i
$$589$$ −37.7310 9.29985i −1.55468 0.383193i
$$590$$ −0.0381056 0.0552055i −0.00156878 0.00227277i
$$591$$ −3.03650 + 8.00658i −0.124905 + 0.329347i
$$592$$ −3.35313 + 8.84147i −0.137813 + 0.363382i
$$593$$ −4.85486 7.03348i −0.199365 0.288830i 0.710531 0.703665i $$-0.248455\pi$$
−0.909897 + 0.414835i $$0.863839\pi$$
$$594$$ 0.000488411 0 0.000120382i 2.00397e−5 0 4.93935e-6i
$$595$$ 19.6220 17.3836i 0.804425 0.712658i
$$596$$ −6.07204 −0.248721
$$597$$ 41.9602 + 37.1735i 1.71732 + 1.52141i
$$598$$ −0.00831383 8.63232e-5i −0.000339978 3.53002e-6i
$$599$$ −0.521196 + 0.461739i −0.0212955 + 0.0188662i −0.673703 0.739002i $$-0.735297\pi$$
0.652408 + 0.757868i $$0.273759\pi$$
$$600$$ −0.0867134 + 0.0768214i −0.00354006 + 0.00313622i
$$601$$ −1.11082 + 2.92899i −0.0453113 + 0.119476i −0.955762 0.294142i $$-0.904966\pi$$
0.910450 + 0.413618i $$0.135735\pi$$
$$602$$ 0.00348554 + 0.0287060i 0.000142060 + 0.00116997i
$$603$$ −6.92456 + 18.2586i −0.281990 + 0.743546i
$$604$$ 3.82052 31.4648i 0.155455 1.28029i
$$605$$ 18.1393 26.2792i 0.737465 1.06840i
$$606$$ −0.0343833 −0.00139673
$$607$$ −10.8181 + 15.6727i −0.439092 + 0.636134i −0.978582 0.205858i $$-0.934002\pi$$
0.539490 + 0.841992i $$0.318617\pi$$
$$608$$ −0.0765270 + 0.0188622i −0.00310358 + 0.000764963i
$$609$$ 23.5531 + 20.8662i 0.954420 + 0.845542i
$$610$$ −0.00287184 + 0.00416058i −0.000116277 + 0.000168457i
$$611$$ −39.7608 + 21.3975i −1.60855 + 0.865651i
$$612$$ −5.25919 7.61926i −0.212590 0.307990i
$$613$$ −0.316339 + 2.60529i −0.0127768 + 0.105227i −0.997702 0.0677539i $$-0.978417\pi$$
0.984925 + 0.172981i $$0.0553398\pi$$
$$614$$ −0.00507067 0.0417608i −0.000204636 0.00168533i
$$615$$ −42.0154 + 22.0514i −1.69422 + 0.889197i
$$616$$ −0.0367475 + 0.00905744i −0.00148060 + 0.000364935i
$$617$$ −2.84915 23.4648i −0.114702 0.944659i −0.930492 0.366311i $$-0.880621\pi$$
0.815790 0.578348i $$-0.196302\pi$$
$$618$$ 0.00227444 0.00201498i 9.14915e−5 8.10544e-5i
$$619$$ −11.6160 + 16.8287i −0.466887 + 0.676403i −0.983725 0.179680i $$-0.942494\pi$$
0.516838 + 0.856083i $$0.327109\pi$$
$$620$$ 34.3902 + 49.8228i 1.38114 + 2.00093i
$$621$$ 0.382416 + 0.0942571i 0.0153458 + 0.00378241i
$$622$$ −0.00487358 0.0401376i −0.000195413 0.00160937i
$$623$$ −56.3929 29.5973i −2.25933 1.18579i
$$624$$ −30.8543 + 16.6045i −1.23516 + 0.664710i
$$625$$ 5.16521 2.71091i 0.206608 0.108436i
$$626$$ 0.0243103 + 0.0352196i 0.000971636 + 0.00140766i
$$627$$ 9.98705 + 14.4687i 0.398844 + 0.577826i
$$628$$ −5.19588 4.60315i −0.207338 0.183686i
$$629$$ −2.82211 2.50018i −0.112525 0.0996885i
$$630$$ 0.0234780 + 0.0619065i 0.000935388 + 0.00246641i
$$631$$ 13.3489 7.00603i 0.531410 0.278906i −0.177601 0.984103i $$-0.556834\pi$$
0.709011 + 0.705197i $$0.249141\pi$$
$$632$$ −0.0156687 0.0413150i −0.000623268 0.00164342i
$$633$$ −37.2323 + 9.17695i −1.47985 + 0.364751i
$$634$$ −0.00227851 0.00201858i −9.04912e−5 8.01682e-5i
$$635$$ 4.94883 7.16961i 0.196388 0.284517i
$$636$$ 15.7247 41.4626i 0.623524 1.64410i
$$637$$ −44.9736 + 11.5816i −1.78192 + 0.458880i
$$638$$ 0.00218589 + 0.00576373i 8.65403e−5 + 0.000228188i
$$639$$ −2.29544 0.565775i −0.0908062 0.0223817i
$$640$$ 0.144964 + 0.0760828i 0.00573019 + 0.00300744i
$$641$$ 2.51779 6.63885i 0.0994465 0.262219i −0.876055 0.482211i $$-0.839834\pi$$
0.975502 + 0.219992i $$0.0706031\pi$$
$$642$$ 0.00495342 0.0407951i 0.000195496 0.00161005i
$$643$$ −2.58066 3.73873i −0.101771 0.147441i 0.768790 0.639502i $$-0.220859\pi$$
−0.870561 + 0.492060i $$0.836244\pi$$
$$644$$ −14.3863 + 3.54590i −0.566899 + 0.139728i
$$645$$ −40.6360 10.0159i −1.60004 0.394375i
$$646$$ 0.00126267 0.0103990i 4.96791e−5 0.000409144i
$$647$$ 9.61896 + 25.3631i 0.378160 + 0.997127i 0.980086 + 0.198574i $$0.0636312\pi$$
−0.601926 + 0.798552i $$0.705600\pi$$
$$648$$ −0.0500368 + 0.0123330i −0.00196563 + 0.000484485i
$$649$$ 19.4654 + 4.79779i 0.764084 + 0.188330i
$$650$$ −0.0416238 + 0.0107190i −0.00163262 + 0.000420432i
$$651$$ 86.3624 21.2864i 3.38481 0.834280i
$$652$$ 22.2283 11.6663i 0.870526 0.456887i
$$653$$ −14.5463 −0.569239 −0.284620 0.958641i $$-0.591867\pi$$
−0.284620 + 0.958641i $$0.591867\pi$$
$$654$$ 0.0356205 0.00139287
$$655$$ −26.4460 + 13.8799i −1.03333 + 0.542333i
$$656$$ 15.8628 + 14.0532i 0.619337 + 0.548685i
$$657$$ 5.39189 0.210358
$$658$$ 0.0580046 0.0513876i 0.00226126 0.00200330i
$$659$$ −12.0419 6.32009i −0.469087 0.246196i 0.213580 0.976926i $$-0.431488\pi$$
−0.682667 + 0.730730i $$0.739180\pi$$
$$660$$ 3.30134 27.1890i 0.128505 1.05833i
$$661$$ −9.90960 5.20096i −0.385439 0.202294i 0.260863 0.965376i $$-0.415993\pi$$
−0.646302 + 0.763082i $$0.723685\pi$$
$$662$$ 0.00425132 0.0350128i 0.000165232 0.00136081i
$$663$$ −1.82788 13.8506i −0.0709890 0.537912i
$$664$$ 0.000362053 0.00298178i 1.40504e−5 0.000115715i
$$665$$ 27.5843 72.7338i 1.06967 2.82050i
$$666$$ 0.00843170 0.00442530i 0.000326722 0.000171477i
$$667$$ 1.71151 + 4.51289i 0.0662700 + 0.174740i
$$668$$ 20.4938 + 10.7560i 0.792930 + 0.416162i
$$669$$ 7.49405 + 3.93318i 0.289737 + 0.152066i
$$670$$ 0.0334212 + 0.00823758i 0.00129117 + 0.000318245i
$$671$$ −0.182122 1.49991i −0.00703072 0.0579032i
$$672$$ 0.135035 0.119630i 0.00520908 0.00461485i
$$673$$ 14.6070 21.1619i 0.563060 0.815733i −0.433276 0.901261i $$-0.642643\pi$$
0.996336 + 0.0855287i $$0.0272579\pi$$
$$674$$ 0.00240253 + 0.00633496i 9.25422e−5 + 0.000244014i
$$675$$ 2.03612 0.0783703
$$676$$ −25.9944 + 0.539862i −0.999783 + 0.0207639i
$$677$$ 35.8276 1.37697 0.688484 0.725251i $$-0.258276\pi$$
0.688484 + 0.725251i $$0.258276\pi$$
$$678$$ 0.00860730 + 0.0226956i 0.000330561 + 0.000871618i
$$679$$ −5.54366 + 8.03138i −0.212746 + 0.308216i
$$680$$ −0.0244304 + 0.0216435i −0.000936863 + 0.000829989i
$$681$$ −1.90732 15.7082i −0.0730886 0.601939i
$$682$$ 0.0169184 + 0.00417001i 0.000647838 + 0.000159678i
$$683$$ −0.0995596 0.0522529i −0.00380954 0.00199940i 0.462817 0.886454i $$-0.346839\pi$$
−0.466627 + 0.884454i $$0.654531\pi$$
$$684$$ −24.3254 12.7669i −0.930104 0.488156i
$$685$$ 7.10771 + 18.7415i 0.271572 + 0.716075i
$$686$$ 0.0322199 0.0169103i 0.00123016 0.000645640i
$$687$$ 1.30990 3.45392i 0.0499758 0.131775i
$$688$$ 2.25308 + 18.5558i 0.0858980 + 0.707433i
$$689$$ 24.4020 22.0747i 0.929641 0.840978i
$$690$$ −0.00248938 + 0.0205019i −9.47690e−5 + 0.000780493i
$$691$$ −21.5758 11.3238i −0.820782 0.430780i 0.00140377 0.999999i $$-0.499553\pi$$
−0.822186 + 0.569219i $$0.807245\pi$$
$$692$$ 4.42384 36.4336i 0.168169 1.38500i
$$693$$ −17.5212 9.19584i −0.665575 0.349321i
$$694$$ −0.0205468 + 0.0182029i −0.000779948 + 0.000690973i
$$695$$ −1.17173 −0.0444461
$$696$$ −0.0293248 0.0259795i −0.00111155 0.000984750i
$$697$$ −7.48202 + 3.92687i −0.283402 + 0.148741i
$$698$$ −0.0346568 −0.00131178
$$699$$ 33.6352 1.27220
$$700$$ −67.8239 + 35.5967i −2.56350 + 1.34543i
$$701$$ −22.7779 + 5.61424i −0.860308 + 0.212047i −0.644703 0.764434i $$-0.723019\pi$$
−0.215606 + 0.976480i $$0.569173\pi$$
$$702$$ −0.00115457 0.000271892i −4.35765e−5 1.02619e-5i
$$703$$ −10.8628 2.67744i −0.409698 0.100981i
$$704$$ −11.8769 + 2.92739i −0.447628 + 0.110330i
$$705$$ 39.7719 + 104.870i 1.49790 + 3.94963i
$$706$$ 0.00174454 0.0143676i 6.56568e−5 0.000540732i
$$707$$ −44.1467 10.8812i −1.66031 0.409229i
$$708$$ −61.8566 + 15.2463i −2.32471 + 0.572990i
$$709$$ 20.3217 + 29.4411i 0.763199 + 1.10569i 0.991245 + 0.132035i $$0.0421510\pi$$
−0.228046 + 0.973650i $$0.573234\pi$$
$$710$$ −0.000502312 0.00413691i −1.88514e−5 0.000155255i
$$711$$ 8.19212 21.6008i 0.307228 0.810095i
$$712$$ 0.0702120 + 0.0368501i 0.00263130 + 0.00138102i
$$713$$ 13.2468 + 3.26503i 0.496095 + 0.122277i
$$714$$ 0.00850241 + 0.0224190i 0.000318195 + 0.000839010i
$$715$$ 11.3708 16.8449i 0.425243 0.629962i
$$716$$ 0.275347 0.726031i 0.0102902 0.0271330i
$$717$$ −35.8939 + 52.0012i −1.34048 + 1.94202i
$$718$$ 0.00485419 + 0.00430044i 0.000181157 + 0.000160491i
$$719$$ 23.9950 5.91423i 0.894862 0.220564i 0.235040 0.971986i $$-0.424478\pi$$
0.659822 + 0.751422i $$0.270632\pi$$
$$720$$ 15.1764 + 40.0169i 0.565591 + 1.49134i
$$721$$ 3.55796 1.86736i 0.132505 0.0695442i
$$722$$ −0.00167210 0.00440896i −6.22291e−5 0.000164085i
$$723$$ −32.6977 28.9677i −1.21604 1.07732i
$$724$$ −11.1299 9.86026i −0.413641 0.366454i
$$725$$ 14.1740 + 20.5346i 0.526410 + 0.762637i
$$726$$ 0.0165909 + 0.0240361i 0.000615747 + 0.000892064i
$$727$$ 24.1489 12.6743i 0.895634 0.470065i 0.0469090 0.998899i $$-0.485063\pi$$
0.848725 + 0.528834i $$0.177371\pi$$
$$728$$ 0.0864252 0.0222562i 0.00320313 0.000824870i
$$729$$ −22.3278 11.7185i −0.826954 0.434019i
$$730$$ −0.00114562 0.00943505i −4.24014e−5 0.000349207i
$$731$$ −7.23639 1.78361i −0.267648 0.0659692i
$$732$$ 2.72748 + 3.95144i 0.100811 + 0.146050i
$$733$$ 6.07225 8.79717i 0.224284 0.324931i −0.694647 0.719351i $$-0.744439\pi$$
0.918930 + 0.394420i $$0.129055\pi$$
$$734$$ −0.00510267 + 0.00452057i −0.000188343 + 0.000166857i
$$735$$ 13.9049 + 114.517i 0.512889 + 4.22402i
$$736$$ 0.0268675 0.00662223i 0.000990348 0.000244099i
$$737$$ −9.10909 + 4.78082i −0.335538 + 0.176104i
$$738$$ −0.00257242 0.0211858i −9.46923e−5 0.000779861i
$$739$$ −1.73696 + 14.3051i −0.0638950 + 0.526223i 0.925258 + 0.379337i $$0.123848\pi$$
−0.989153 + 0.146886i $$0.953075\pi$$
$$740$$ 9.90097 + 14.3440i 0.363967 + 0.527297i
$$741$$ −23.9027 33.8713i −0.878088 1.24429i
$$742$$ −0.0320805 + 0.0464767i −0.00117771 + 0.00170621i
$$743$$ 28.5301 + 25.2754i 1.04667 + 0.927266i 0.997439 0.0715215i $$-0.0227854\pi$$
0.0492280 + 0.998788i $$0.484324\pi$$
$$744$$ −0.107525 + 0.0265027i −0.00394208 + 0.000971634i
$$745$$ −6.35779 + 9.21086i −0.232932 + 0.337460i
$$746$$ 0.0259082 0.000948566
$$747$$ −0.892101 + 1.29243i −0.0326403 + 0.0472876i
$$748$$ 0.587897 4.84177i 0.0214956 0.177033i
$$749$$ 19.2703 50.8116i 0.704121 1.85662i
$$750$$ 0.00537806 + 0.0442923i 0.000196379 + 0.00161733i
$$751$$ 7.03850 18.5590i 0.256839 0.677228i −0.743129 0.669148i $$-0.766659\pi$$
0.999967 0.00807934i $$-0.00257176\pi$$
$$752$$ 37.4947 33.2174i 1.36729 1.21131i
$$753$$ 16.3688 14.5014i 0.596510 0.528462i
$$754$$ −0.00529523 0.0135368i −0.000192841 0.000492981i
$$755$$ −43.7296 38.7411i −1.59148 1.40993i
$$756$$ −2.11384 −0.0768796
$$757$$ 9.64031 8.54057i 0.350383 0.310412i −0.469512 0.882926i $$-0.655570\pi$$
0.819895 + 0.572514i $$0.194032\pi$$
$$758$$ −0.0380747 0.00938456i −0.00138293 0.000340863i
$$759$$ −3.50630 5.07975i −0.127271 0.184383i
$$760$$ −0.0343438 + 0.0905572i −0.00124578 + 0.00328486i
$$761$$ 6.88989 18.1672i 0.249758 0.658559i −0.750238 0.661168i $$-0.770061\pi$$
0.999997 + 0.00260879i $$0.000830404\pi$$
$$762$$ 0.00452641 + 0.00655763i 0.000163974 + 0.000237558i
$$763$$ 45.7352 + 11.2727i 1.65573 + 0.408100i
$$764$$ −10.2544 + 9.08456i −0.370989 + 0.328668i
$$765$$ −17.0646 −0.616971