Properties

Label 169.2.g.a.27.6
Level $169$
Weight $2$
Character 169.27
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 27.6
Character \(\chi\) \(=\) 169.27
Dual form 169.2.g.a.144.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.168406 - 0.444051i) q^{2} +(0.0744765 - 0.107898i) q^{3} +(1.32820 - 1.17668i) q^{4} +(-0.265542 - 2.18694i) q^{5} +(-0.0604545 - 0.0149007i) q^{6} +(-3.17143 - 1.66450i) q^{7} +(-1.58721 - 0.833034i) q^{8} +(1.05772 + 2.78898i) q^{9} +O(q^{10})\) \(q+(-0.168406 - 0.444051i) q^{2} +(0.0744765 - 0.107898i) q^{3} +(1.32820 - 1.17668i) q^{4} +(-0.265542 - 2.18694i) q^{5} +(-0.0604545 - 0.0149007i) q^{6} +(-3.17143 - 1.66450i) q^{7} +(-1.58721 - 0.833034i) q^{8} +(1.05772 + 2.78898i) q^{9} +(-0.926393 + 0.486209i) q^{10} +(-0.381234 + 1.00523i) q^{11} +(-0.0280418 - 0.230945i) q^{12} +(3.25777 - 1.54497i) q^{13} +(-0.205032 + 1.68859i) q^{14} +(-0.255743 - 0.134224i) q^{15} +(0.325162 - 2.67795i) q^{16} +(1.74024 + 0.913350i) q^{17} +(1.06032 - 0.939363i) q^{18} +1.98577 q^{19} +(-2.92603 - 2.59223i) q^{20} +(-0.415793 + 0.218225i) q^{21} +0.510576 q^{22} -0.763058 q^{23} +(-0.208093 + 0.109215i) q^{24} +(0.142520 - 0.0351280i) q^{25} +(-1.23468 - 1.18643i) q^{26} +(0.761588 + 0.187715i) q^{27} +(-6.17088 + 1.52099i) q^{28} +(2.65960 + 7.01279i) q^{29} +(-0.0165337 + 0.136167i) q^{30} +(2.41733 + 0.595818i) q^{31} +(-4.72480 + 1.16456i) q^{32} +(0.0800692 + 0.116000i) q^{33} +(0.112506 - 0.926570i) q^{34} +(-2.79800 + 7.37772i) q^{35} +(4.68661 + 2.45972i) q^{36} +(6.15828 + 1.51788i) q^{37} +(-0.334416 - 0.881784i) q^{38} +(0.0759280 - 0.466570i) q^{39} +(-1.40032 + 3.69234i) q^{40} +(-3.55018 + 5.14332i) q^{41} +(0.166925 + 0.147883i) q^{42} +(-1.25241 + 0.308691i) q^{43} +(0.676483 + 1.78374i) q^{44} +(5.81845 - 3.05376i) q^{45} +(0.128504 + 0.338836i) q^{46} +(-2.85457 - 2.52893i) q^{47} +(-0.264728 - 0.234529i) q^{48} +(3.31098 + 4.79679i) q^{49} +(-0.0395999 - 0.0573703i) q^{50} +(0.228156 - 0.119745i) q^{51} +(2.50903 - 5.88540i) q^{52} +(-10.5639 - 5.54436i) q^{53} +(-0.0449014 - 0.369796i) q^{54} +(2.29961 + 0.566803i) q^{55} +(3.64716 + 5.28382i) q^{56} +(0.147893 - 0.214260i) q^{57} +(2.66614 - 2.36200i) q^{58} +(0.511731 + 4.21448i) q^{59} +(-0.497617 + 0.122652i) q^{60} +(-1.97010 + 1.03399i) q^{61} +(-0.142520 - 1.17376i) q^{62} +(1.28776 - 10.6056i) q^{63} +(-1.75203 - 2.53826i) q^{64} +(-4.24384 - 6.71429i) q^{65} +(0.0380259 - 0.0550900i) q^{66} +(6.26593 + 5.55113i) q^{67} +(3.38612 - 0.834602i) q^{68} +(-0.0568299 + 0.0823323i) q^{69} +3.74729 q^{70} +(-1.38696 + 2.00935i) q^{71} +(0.644486 - 5.30782i) q^{72} +(-3.31646 + 8.74480i) q^{73} +(-0.363077 - 2.99021i) q^{74} +(0.00682415 - 0.0179938i) q^{75} +(2.63750 - 2.33662i) q^{76} +(2.88226 - 2.55346i) q^{77} +(-0.219968 + 0.0448575i) q^{78} +(-10.7698 - 9.54119i) q^{79} -5.94285 q^{80} +(-6.62102 + 5.86572i) q^{81} +(2.88177 + 0.710292i) q^{82} +(-3.50606 - 5.07941i) q^{83} +(-0.295475 + 0.779103i) q^{84} +(1.53533 - 4.04834i) q^{85} +(0.347989 + 0.504148i) q^{86} +(0.954743 + 0.235323i) q^{87} +(1.44249 - 1.27793i) q^{88} +8.43464 q^{89} +(-2.33589 - 2.06942i) q^{90} +(-12.9034 - 0.522768i) q^{91} +(-1.01349 + 0.897877i) q^{92} +(0.244322 - 0.216450i) q^{93} +(-0.642247 + 1.69347i) q^{94} +(-0.527307 - 4.34276i) q^{95} +(-0.226233 + 0.596529i) q^{96} +(2.01704 - 16.6118i) q^{97} +(1.57243 - 2.27805i) q^{98} -3.20680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.168406 0.444051i −0.119081 0.313991i 0.862201 0.506566i \(-0.169085\pi\)
−0.981282 + 0.192575i \(0.938316\pi\)
\(3\) 0.0744765 0.107898i 0.0429990 0.0622948i −0.800895 0.598805i \(-0.795642\pi\)
0.843894 + 0.536510i \(0.180258\pi\)
\(4\) 1.32820 1.17668i 0.664100 0.588342i
\(5\) −0.265542 2.18694i −0.118754 0.978029i −0.923284 0.384117i \(-0.874506\pi\)
0.804530 0.593912i \(-0.202417\pi\)
\(6\) −0.0604545 0.0149007i −0.0246804 0.00608318i
\(7\) −3.17143 1.66450i −1.19869 0.629120i −0.257263 0.966341i \(-0.582821\pi\)
−0.941426 + 0.337221i \(0.890513\pi\)
\(8\) −1.58721 0.833034i −0.561165 0.294522i
\(9\) 1.05772 + 2.78898i 0.352573 + 0.929659i
\(10\) −0.926393 + 0.486209i −0.292951 + 0.153753i
\(11\) −0.381234 + 1.00523i −0.114946 + 0.303088i −0.980127 0.198372i \(-0.936435\pi\)
0.865181 + 0.501461i \(0.167204\pi\)
\(12\) −0.0280418 0.230945i −0.00809498 0.0666682i
\(13\) 3.25777 1.54497i 0.903543 0.428498i
\(14\) −0.205032 + 1.68859i −0.0547971 + 0.451294i
\(15\) −0.255743 0.134224i −0.0660325 0.0346565i
\(16\) 0.325162 2.67795i 0.0812905 0.669487i
\(17\) 1.74024 + 0.913350i 0.422071 + 0.221520i 0.662367 0.749180i \(-0.269552\pi\)
−0.240296 + 0.970700i \(0.577244\pi\)
\(18\) 1.06032 0.939363i 0.249920 0.221410i
\(19\) 1.98577 0.455567 0.227784 0.973712i \(-0.426852\pi\)
0.227784 + 0.973712i \(0.426852\pi\)
\(20\) −2.92603 2.59223i −0.654280 0.579641i
\(21\) −0.415793 + 0.218225i −0.0907334 + 0.0476206i
\(22\) 0.510576 0.108855
\(23\) −0.763058 −0.159109 −0.0795543 0.996831i \(-0.525350\pi\)
−0.0795543 + 0.996831i \(0.525350\pi\)
\(24\) −0.208093 + 0.109215i −0.0424767 + 0.0222935i
\(25\) 0.142520 0.0351280i 0.0285040 0.00702560i
\(26\) −1.23468 1.18643i −0.242140 0.232679i
\(27\) 0.761588 + 0.187715i 0.146568 + 0.0361257i
\(28\) −6.17088 + 1.52099i −1.16619 + 0.287439i
\(29\) 2.65960 + 7.01279i 0.493876 + 1.30224i 0.917979 + 0.396629i \(0.129820\pi\)
−0.424103 + 0.905614i \(0.639411\pi\)
\(30\) −0.0165337 + 0.136167i −0.00301862 + 0.0248606i
\(31\) 2.41733 + 0.595818i 0.434165 + 0.107012i 0.450340 0.892857i \(-0.351303\pi\)
−0.0161750 + 0.999869i \(0.505149\pi\)
\(32\) −4.72480 + 1.16456i −0.835235 + 0.205867i
\(33\) 0.0800692 + 0.116000i 0.0139383 + 0.0201931i
\(34\) 0.112506 0.926570i 0.0192946 0.158905i
\(35\) −2.79800 + 7.37772i −0.472949 + 1.24706i
\(36\) 4.68661 + 2.45972i 0.781101 + 0.409953i
\(37\) 6.15828 + 1.51788i 1.01242 + 0.249538i 0.710425 0.703773i \(-0.248503\pi\)
0.301990 + 0.953311i \(0.402349\pi\)
\(38\) −0.334416 0.881784i −0.0542495 0.143044i
\(39\) 0.0759280 0.466570i 0.0121582 0.0747111i
\(40\) −1.40032 + 3.69234i −0.221410 + 0.583811i
\(41\) −3.55018 + 5.14332i −0.554444 + 0.803251i −0.995553 0.0942025i \(-0.969970\pi\)
0.441109 + 0.897454i \(0.354585\pi\)
\(42\) 0.166925 + 0.147883i 0.0257571 + 0.0228188i
\(43\) −1.25241 + 0.308691i −0.190991 + 0.0470750i −0.333651 0.942697i \(-0.608281\pi\)
0.142660 + 0.989772i \(0.454434\pi\)
\(44\) 0.676483 + 1.78374i 0.101984 + 0.268909i
\(45\) 5.81845 3.05376i 0.867364 0.455228i
\(46\) 0.128504 + 0.338836i 0.0189468 + 0.0499587i
\(47\) −2.85457 2.52893i −0.416383 0.368883i 0.428765 0.903416i \(-0.358949\pi\)
−0.845147 + 0.534533i \(0.820487\pi\)
\(48\) −0.264728 0.234529i −0.0382102 0.0338513i
\(49\) 3.31098 + 4.79679i 0.472997 + 0.685255i
\(50\) −0.0395999 0.0573703i −0.00560027 0.00811339i
\(51\) 0.228156 0.119745i 0.0319482 0.0167677i
\(52\) 2.50903 5.88540i 0.347940 0.816158i
\(53\) −10.5639 5.54436i −1.45106 0.761576i −0.459132 0.888368i \(-0.651840\pi\)
−0.991929 + 0.126792i \(0.959532\pi\)
\(54\) −0.0449014 0.369796i −0.00611030 0.0503229i
\(55\) 2.29961 + 0.566803i 0.310080 + 0.0764277i
\(56\) 3.64716 + 5.28382i 0.487372 + 0.706080i
\(57\) 0.147893 0.214260i 0.0195889 0.0283795i
\(58\) 2.66614 2.36200i 0.350082 0.310145i
\(59\) 0.511731 + 4.21448i 0.0666216 + 0.548679i 0.987359 + 0.158497i \(0.0506648\pi\)
−0.920738 + 0.390182i \(0.872412\pi\)
\(60\) −0.497617 + 0.122652i −0.0642421 + 0.0158342i
\(61\) −1.97010 + 1.03399i −0.252246 + 0.132389i −0.586108 0.810233i \(-0.699340\pi\)
0.333862 + 0.942622i \(0.391648\pi\)
\(62\) −0.142520 1.17376i −0.0181000 0.149067i
\(63\) 1.28776 10.6056i 0.162242 1.33618i
\(64\) −1.75203 2.53826i −0.219004 0.317282i
\(65\) −4.24384 6.71429i −0.526383 0.832805i
\(66\) 0.0380259 0.0550900i 0.00468066 0.00678111i
\(67\) 6.26593 + 5.55113i 0.765506 + 0.678179i 0.952621 0.304159i \(-0.0983754\pi\)
−0.187116 + 0.982338i \(0.559914\pi\)
\(68\) 3.38612 0.834602i 0.410627 0.101210i
\(69\) −0.0568299 + 0.0823323i −0.00684151 + 0.00991164i
\(70\) 3.74729 0.447886
\(71\) −1.38696 + 2.00935i −0.164602 + 0.238466i −0.896602 0.442838i \(-0.853972\pi\)
0.732000 + 0.681305i \(0.238587\pi\)
\(72\) 0.644486 5.30782i 0.0759534 0.625532i
\(73\) −3.31646 + 8.74480i −0.388163 + 1.02350i 0.588457 + 0.808528i \(0.299735\pi\)
−0.976620 + 0.214973i \(0.931034\pi\)
\(74\) −0.363077 2.99021i −0.0422069 0.347605i
\(75\) 0.00682415 0.0179938i 0.000787985 0.00207775i
\(76\) 2.63750 2.33662i 0.302542 0.268029i
\(77\) 2.88226 2.55346i 0.328464 0.290994i
\(78\) −0.219968 + 0.0448575i −0.0249064 + 0.00507911i
\(79\) −10.7698 9.54119i −1.21169 1.07347i −0.995268 0.0971687i \(-0.969021\pi\)
−0.216426 0.976299i \(-0.569440\pi\)
\(80\) −5.94285 −0.664431
\(81\) −6.62102 + 5.86572i −0.735669 + 0.651746i
\(82\) 2.88177 + 0.710292i 0.318238 + 0.0784386i
\(83\) −3.50606 5.07941i −0.384840 0.557537i 0.581912 0.813252i \(-0.302305\pi\)
−0.966752 + 0.255714i \(0.917689\pi\)
\(84\) −0.295475 + 0.779103i −0.0322389 + 0.0850071i
\(85\) 1.53533 4.04834i 0.166530 0.439104i
\(86\) 0.347989 + 0.504148i 0.0375246 + 0.0543637i
\(87\) 0.954743 + 0.235323i 0.102359 + 0.0252293i
\(88\) 1.44249 1.27793i 0.153770 0.136228i
\(89\) 8.43464 0.894070 0.447035 0.894517i \(-0.352480\pi\)
0.447035 + 0.894517i \(0.352480\pi\)
\(90\) −2.33589 2.06942i −0.246224 0.218136i
\(91\) −12.9034 0.522768i −1.35264 0.0548009i
\(92\) −1.01349 + 0.897877i −0.105664 + 0.0936102i
\(93\) 0.244322 0.216450i 0.0253350 0.0224448i
\(94\) −0.642247 + 1.69347i −0.0662427 + 0.174668i
\(95\) −0.527307 4.34276i −0.0541005 0.445558i
\(96\) −0.226233 + 0.596529i −0.0230899 + 0.0608829i
\(97\) 2.01704 16.6118i 0.204799 1.68667i −0.421293 0.906924i \(-0.638424\pi\)
0.626093 0.779749i \(-0.284653\pi\)
\(98\) 1.57243 2.27805i 0.158839 0.230118i
\(99\) −3.20680 −0.322296
\(100\) 0.147961 0.214358i 0.0147961 0.0214358i
\(101\) 11.5124 2.83755i 1.14553 0.282347i 0.379522 0.925183i \(-0.376088\pi\)
0.766004 + 0.642836i \(0.222242\pi\)
\(102\) −0.0915959 0.0811469i −0.00906934 0.00803474i
\(103\) 7.78492 11.2784i 0.767071 1.11129i −0.223555 0.974691i \(-0.571766\pi\)
0.990626 0.136603i \(-0.0436183\pi\)
\(104\) −6.45779 0.261631i −0.633238 0.0256550i
\(105\) 0.587655 + 0.851365i 0.0573493 + 0.0830847i
\(106\) −0.682951 + 5.62461i −0.0663341 + 0.546310i
\(107\) 2.27277 + 18.7179i 0.219717 + 1.80953i 0.518357 + 0.855165i \(0.326544\pi\)
−0.298640 + 0.954366i \(0.596533\pi\)
\(108\) 1.23242 0.646825i 0.118590 0.0622408i
\(109\) 3.08436 0.760227i 0.295428 0.0728165i −0.0888159 0.996048i \(-0.528308\pi\)
0.384244 + 0.923232i \(0.374462\pi\)
\(110\) −0.135580 1.11660i −0.0129270 0.106463i
\(111\) 0.622423 0.551419i 0.0590778 0.0523384i
\(112\) −5.48866 + 7.95170i −0.518630 + 0.751365i
\(113\) 0.742292 + 1.07540i 0.0698290 + 0.101165i 0.856342 0.516408i \(-0.172731\pi\)
−0.786513 + 0.617573i \(0.788116\pi\)
\(114\) −0.120049 0.0295894i −0.0112436 0.00277130i
\(115\) 0.202624 + 1.66876i 0.0188948 + 0.155613i
\(116\) 11.7843 + 6.18489i 1.09415 + 0.574253i
\(117\) 7.75470 + 7.45170i 0.716922 + 0.688909i
\(118\) 1.78527 0.936980i 0.164347 0.0862560i
\(119\) −3.99879 5.79325i −0.366569 0.531067i
\(120\) 0.294105 + 0.426085i 0.0268480 + 0.0388960i
\(121\) 7.36847 + 6.52789i 0.669861 + 0.593445i
\(122\) 0.790923 + 0.700696i 0.0716068 + 0.0634381i
\(123\) 0.290548 + 0.766112i 0.0261978 + 0.0690780i
\(124\) 3.91179 2.05306i 0.351289 0.184371i
\(125\) −4.02064 10.6016i −0.359617 0.948233i
\(126\) −4.92630 + 1.21422i −0.438870 + 0.108172i
\(127\) −4.68137 4.14733i −0.415404 0.368016i 0.429379 0.903124i \(-0.358732\pi\)
−0.844783 + 0.535108i \(0.820271\pi\)
\(128\) −6.36070 + 9.21507i −0.562212 + 0.814505i
\(129\) −0.0599680 + 0.158123i −0.00527989 + 0.0139219i
\(130\) −2.26680 + 3.01521i −0.198811 + 0.264451i
\(131\) −6.03292 15.9075i −0.527099 1.38984i −0.889120 0.457675i \(-0.848682\pi\)
0.362021 0.932170i \(-0.382087\pi\)
\(132\) 0.242844 + 0.0598556i 0.0211368 + 0.00520976i
\(133\) −6.29774 3.30531i −0.546083 0.286607i
\(134\) 1.40976 3.71724i 0.121785 0.321121i
\(135\) 0.208286 1.71539i 0.0179264 0.147637i
\(136\) −2.00128 2.89936i −0.171609 0.248618i
\(137\) −7.59396 + 1.87174i −0.648796 + 0.159914i −0.549961 0.835190i \(-0.685358\pi\)
−0.0988344 + 0.995104i \(0.531511\pi\)
\(138\) 0.0461302 + 0.0113701i 0.00392687 + 0.000967885i
\(139\) −1.88273 + 15.5057i −0.159691 + 1.31517i 0.663828 + 0.747885i \(0.268931\pi\)
−0.823519 + 0.567288i \(0.807993\pi\)
\(140\) 4.96494 + 13.0915i 0.419614 + 1.10643i
\(141\) −0.485465 + 0.119656i −0.0408835 + 0.0100769i
\(142\) 1.12583 + 0.277492i 0.0944774 + 0.0232866i
\(143\) 0.311082 + 3.86380i 0.0260140 + 0.323108i
\(144\) 7.81267 1.92565i 0.651056 0.160471i
\(145\) 14.6303 7.67858i 1.21498 0.637672i
\(146\) 4.44165 0.367593
\(147\) 0.764153 0.0630263
\(148\) 9.96550 5.23030i 0.819159 0.429928i
\(149\) −11.0631 9.80103i −0.906323 0.802932i 0.0746234 0.997212i \(-0.476225\pi\)
−0.980946 + 0.194280i \(0.937763\pi\)
\(150\) −0.00913940 −0.000746229
\(151\) −17.2525 + 15.2844i −1.40399 + 1.24383i −0.471873 + 0.881667i \(0.656422\pi\)
−0.932116 + 0.362159i \(0.882040\pi\)
\(152\) −3.15184 1.65421i −0.255648 0.134175i
\(153\) −0.706623 + 5.81956i −0.0571271 + 0.470484i
\(154\) −1.61926 0.849851i −0.130483 0.0684830i
\(155\) 0.661114 5.44477i 0.0531020 0.437334i
\(156\) −0.448158 0.709043i −0.0358814 0.0567688i
\(157\) 2.46587 + 20.3083i 0.196798 + 1.62078i 0.671758 + 0.740770i \(0.265539\pi\)
−0.474960 + 0.880007i \(0.657538\pi\)
\(158\) −2.42308 + 6.38913i −0.192770 + 0.508292i
\(159\) −1.38499 + 0.726896i −0.109836 + 0.0576466i
\(160\) 3.80146 + 10.0236i 0.300532 + 0.792437i
\(161\) 2.41999 + 1.27011i 0.190722 + 0.100098i
\(162\) 3.71970 + 1.95225i 0.292247 + 0.153383i
\(163\) −17.0162 4.19411i −1.33281 0.328508i −0.492357 0.870394i \(-0.663864\pi\)
−0.840452 + 0.541886i \(0.817711\pi\)
\(164\) 1.33671 + 11.0088i 0.104379 + 0.859642i
\(165\) 0.232424 0.205910i 0.0180942 0.0160300i
\(166\) −1.66507 + 2.41227i −0.129235 + 0.187229i
\(167\) 8.04047 + 21.2010i 0.622190 + 1.64058i 0.759848 + 0.650101i \(0.225273\pi\)
−0.137658 + 0.990480i \(0.543957\pi\)
\(168\) 0.841740 0.0649417
\(169\) 8.22612 10.0663i 0.632778 0.774333i
\(170\) −2.05623 −0.157705
\(171\) 2.10039 + 5.53827i 0.160621 + 0.423522i
\(172\) −1.30022 + 1.88369i −0.0991409 + 0.143630i
\(173\) 11.8345 10.4845i 0.899763 0.797120i −0.0801011 0.996787i \(-0.525524\pi\)
0.979864 + 0.199666i \(0.0639858\pi\)
\(174\) −0.0562894 0.463585i −0.00426728 0.0351443i
\(175\) −0.510463 0.125818i −0.0385874 0.00951093i
\(176\) 2.56799 + 1.34779i 0.193570 + 0.101593i
\(177\) 0.492845 + 0.258665i 0.0370445 + 0.0194425i
\(178\) −1.42045 3.74541i −0.106467 0.280730i
\(179\) −15.6409 + 8.20898i −1.16906 + 0.613568i −0.933600 0.358317i \(-0.883351\pi\)
−0.235457 + 0.971885i \(0.575659\pi\)
\(180\) 4.13477 10.9025i 0.308187 0.812623i
\(181\) 1.14135 + 9.39987i 0.0848360 + 0.698687i 0.971627 + 0.236517i \(0.0760059\pi\)
−0.886791 + 0.462170i \(0.847071\pi\)
\(182\) 1.94088 + 5.81780i 0.143867 + 0.431244i
\(183\) −0.0351611 + 0.289578i −0.00259919 + 0.0214062i
\(184\) 1.21114 + 0.635653i 0.0892861 + 0.0468609i
\(185\) 1.68423 13.8708i 0.123827 1.01980i
\(186\) −0.137260 0.0720397i −0.0100644 0.00528221i
\(187\) −1.58157 + 1.40115i −0.115656 + 0.102462i
\(188\) −6.76720 −0.493549
\(189\) −2.10287 1.86298i −0.152962 0.135512i
\(190\) −1.83961 + 0.965499i −0.133459 + 0.0700447i
\(191\) 11.2892 0.816856 0.408428 0.912790i \(-0.366077\pi\)
0.408428 + 0.912790i \(0.366077\pi\)
\(192\) −0.404358 −0.0291820
\(193\) −2.56411 + 1.34575i −0.184569 + 0.0968691i −0.554477 0.832199i \(-0.687082\pi\)
0.369908 + 0.929068i \(0.379389\pi\)
\(194\) −7.71617 + 1.90186i −0.553989 + 0.136546i
\(195\) −1.04052 0.0421557i −0.0745134 0.00301883i
\(196\) 10.0419 + 2.47512i 0.717282 + 0.176794i
\(197\) −17.8861 + 4.40853i −1.27433 + 0.314095i −0.817743 0.575583i \(-0.804775\pi\)
−0.456589 + 0.889678i \(0.650929\pi\)
\(198\) 0.540046 + 1.42398i 0.0383794 + 0.101198i
\(199\) 0.887649 7.31045i 0.0629238 0.518224i −0.926834 0.375470i \(-0.877481\pi\)
0.989758 0.142754i \(-0.0455957\pi\)
\(200\) −0.255472 0.0629683i −0.0180646 0.00445253i
\(201\) 1.06562 0.262652i 0.0751631 0.0185260i
\(202\) −3.19878 4.63423i −0.225065 0.326063i
\(203\) 3.23802 26.6675i 0.227265 1.87169i
\(204\) 0.162134 0.427513i 0.0113517 0.0299319i
\(205\) 12.1908 + 6.39825i 0.851445 + 0.446873i
\(206\) −6.31921 1.55755i −0.440280 0.108519i
\(207\) −0.807101 2.12815i −0.0560974 0.147917i
\(208\) −3.07806 9.22651i −0.213425 0.639743i
\(209\) −0.757043 + 1.99616i −0.0523657 + 0.138077i
\(210\) 0.279085 0.404324i 0.0192587 0.0279010i
\(211\) −10.9868 9.73349i −0.756365 0.670081i 0.194075 0.980987i \(-0.437829\pi\)
−0.950441 + 0.310905i \(0.899368\pi\)
\(212\) −20.5549 + 5.06633i −1.41172 + 0.347957i
\(213\) 0.113509 + 0.299299i 0.00777753 + 0.0205077i
\(214\) 7.92897 4.16144i 0.542013 0.284470i
\(215\) 1.00766 + 2.65697i 0.0687217 + 0.181204i
\(216\) −1.05243 0.932371i −0.0716088 0.0634398i
\(217\) −6.67466 5.91323i −0.453105 0.401416i
\(218\) −0.857005 1.24159i −0.0580437 0.0840908i
\(219\) 0.696546 + 1.00912i 0.0470682 + 0.0681901i
\(220\) 3.72129 1.95309i 0.250890 0.131677i
\(221\) 7.08041 + 0.286855i 0.476280 + 0.0192960i
\(222\) −0.349678 0.183525i −0.0234689 0.0123174i
\(223\) −1.02238 8.42006i −0.0684637 0.563849i −0.986067 0.166351i \(-0.946802\pi\)
0.917603 0.397498i \(-0.130122\pi\)
\(224\) 16.9228 + 4.17110i 1.13070 + 0.278693i
\(225\) 0.248717 + 0.360329i 0.0165812 + 0.0240220i
\(226\) 0.352524 0.510719i 0.0234495 0.0339725i
\(227\) −8.43418 + 7.47203i −0.559796 + 0.495936i −0.894913 0.446240i \(-0.852763\pi\)
0.335117 + 0.942177i \(0.391224\pi\)
\(228\) −0.0556847 0.458605i −0.00368781 0.0303718i
\(229\) 22.2808 5.49172i 1.47236 0.362903i 0.580142 0.814515i \(-0.302997\pi\)
0.892215 + 0.451612i \(0.149151\pi\)
\(230\) 0.706891 0.371005i 0.0466110 0.0244634i
\(231\) −0.0608521 0.501162i −0.00400377 0.0329740i
\(232\) 1.62054 13.3463i 0.106394 0.876230i
\(233\) −6.81623 9.87501i −0.446546 0.646934i 0.533478 0.845814i \(-0.320885\pi\)
−0.980024 + 0.198880i \(0.936269\pi\)
\(234\) 2.00299 4.69839i 0.130940 0.307144i
\(235\) −4.77261 + 6.91432i −0.311331 + 0.451041i
\(236\) 5.63879 + 4.99553i 0.367054 + 0.325181i
\(237\) −1.83157 + 0.451441i −0.118973 + 0.0293243i
\(238\) −1.89908 + 2.75129i −0.123099 + 0.178340i
\(239\) 23.9254 1.54760 0.773802 0.633427i \(-0.218352\pi\)
0.773802 + 0.633427i \(0.218352\pi\)
\(240\) −0.442603 + 0.641221i −0.0285699 + 0.0413907i
\(241\) −2.53988 + 20.9178i −0.163608 + 1.34743i 0.647290 + 0.762244i \(0.275902\pi\)
−0.810898 + 0.585188i \(0.801021\pi\)
\(242\) 1.65782 4.37131i 0.106569 0.280999i
\(243\) 0.423427 + 3.48724i 0.0271629 + 0.223706i
\(244\) −1.40002 + 3.69154i −0.0896268 + 0.236326i
\(245\) 9.61107 8.51467i 0.614029 0.543982i
\(246\) 0.291263 0.258036i 0.0185702 0.0164518i
\(247\) 6.46918 3.06796i 0.411624 0.195210i
\(248\) −3.34048 2.95941i −0.212121 0.187923i
\(249\) −0.809176 −0.0512795
\(250\) −4.03053 + 3.57074i −0.254913 + 0.225833i
\(251\) 14.2221 + 3.50544i 0.897692 + 0.221261i 0.661055 0.750337i \(-0.270109\pi\)
0.236636 + 0.971598i \(0.423955\pi\)
\(252\) −10.7691 15.6017i −0.678387 0.982813i
\(253\) 0.290903 0.767049i 0.0182889 0.0482239i
\(254\) −1.05325 + 2.77720i −0.0660870 + 0.174257i
\(255\) −0.322461 0.467165i −0.0201933 0.0292550i
\(256\) −0.826037 0.203600i −0.0516273 0.0127250i
\(257\) 15.4079 13.6502i 0.961118 0.851476i −0.0278490 0.999612i \(-0.508866\pi\)
0.988967 + 0.148136i \(0.0473273\pi\)
\(258\) 0.0803135 0.00500010
\(259\) −17.0041 15.0643i −1.05658 0.936049i
\(260\) −13.5373 3.92427i −0.839545 0.243373i
\(261\) −16.7454 + 14.8351i −1.03651 + 0.918272i
\(262\) −6.04776 + 5.35785i −0.373632 + 0.331009i
\(263\) 4.88935 12.8922i 0.301490 0.794965i −0.695578 0.718451i \(-0.744852\pi\)
0.997068 0.0765144i \(-0.0243791\pi\)
\(264\) −0.0304548 0.250818i −0.00187436 0.0154368i
\(265\) −9.32001 + 24.5748i −0.572524 + 1.50962i
\(266\) −0.407146 + 3.35315i −0.0249637 + 0.205595i
\(267\) 0.628182 0.910079i 0.0384441 0.0556959i
\(268\) 14.8543 0.907374
\(269\) 2.11288 3.06104i 0.128825 0.186635i −0.753264 0.657718i \(-0.771522\pi\)
0.882088 + 0.471084i \(0.156137\pi\)
\(270\) −0.796798 + 0.196393i −0.0484916 + 0.0119521i
\(271\) −3.29939 2.92301i −0.200424 0.177560i 0.556941 0.830552i \(-0.311975\pi\)
−0.757365 + 0.652992i \(0.773513\pi\)
\(272\) 3.01176 4.36329i 0.182615 0.264564i
\(273\) −1.01741 + 1.35331i −0.0615762 + 0.0819063i
\(274\) 2.11002 + 3.05689i 0.127471 + 0.184674i
\(275\) −0.0190216 + 0.156657i −0.00114705 + 0.00944679i
\(276\) 0.0213975 + 0.176225i 0.00128798 + 0.0106075i
\(277\) −13.1041 + 6.87757i −0.787350 + 0.413233i −0.809941 0.586512i \(-0.800501\pi\)
0.0225910 + 0.999745i \(0.492808\pi\)
\(278\) 7.20237 1.77522i 0.431969 0.106471i
\(279\) 0.895133 + 7.37208i 0.0535902 + 0.441355i
\(280\) 10.5869 9.37919i 0.632689 0.560514i
\(281\) 10.4366 15.1201i 0.622598 0.901989i −0.377110 0.926169i \(-0.623082\pi\)
0.999708 + 0.0241796i \(0.00769737\pi\)
\(282\) 0.134889 + 0.195420i 0.00803252 + 0.0116371i
\(283\) −28.1777 6.94518i −1.67499 0.412848i −0.716413 0.697677i \(-0.754217\pi\)
−0.958579 + 0.284828i \(0.908063\pi\)
\(284\) 0.522216 + 4.30084i 0.0309878 + 0.255208i
\(285\) −0.507846 0.266538i −0.0300822 0.0157884i
\(286\) 1.66334 0.788825i 0.0983552 0.0466442i
\(287\) 19.8202 10.4024i 1.16995 0.614036i
\(288\) −8.24545 11.9456i −0.485868 0.703901i
\(289\) −7.46286 10.8118i −0.438992 0.635990i
\(290\) −5.87352 5.20348i −0.344905 0.305559i
\(291\) −1.64216 1.45482i −0.0962649 0.0852832i
\(292\) 5.88493 + 15.5173i 0.344389 + 0.908080i
\(293\) 4.66967 2.45083i 0.272805 0.143179i −0.322774 0.946476i \(-0.604615\pi\)
0.595578 + 0.803297i \(0.296923\pi\)
\(294\) −0.128688 0.339323i −0.00750525 0.0197897i
\(295\) 9.08093 2.23825i 0.528712 0.130316i
\(296\) −8.51006 7.53925i −0.494637 0.438210i
\(297\) −0.479039 + 0.694008i −0.0277967 + 0.0402704i
\(298\) −2.48907 + 6.56313i −0.144188 + 0.380192i
\(299\) −2.48587 + 1.17890i −0.143761 + 0.0681777i
\(300\) −0.0121092 0.0319293i −0.000699123 0.00184344i
\(301\) 4.48575 + 1.10564i 0.258554 + 0.0637279i
\(302\) 9.69248 + 5.08700i 0.557739 + 0.292724i
\(303\) 0.551237 1.45349i 0.0316677 0.0835010i
\(304\) 0.645697 5.31779i 0.0370333 0.304996i
\(305\) 2.78442 + 4.03393i 0.159435 + 0.230982i
\(306\) 2.70318 0.666275i 0.154531 0.0380884i
\(307\) 10.4194 + 2.56815i 0.594666 + 0.146572i 0.525151 0.851009i \(-0.324009\pi\)
0.0695148 + 0.997581i \(0.477855\pi\)
\(308\) 0.823607 6.78301i 0.0469293 0.386498i
\(309\) −0.637122 1.67995i −0.0362446 0.0955691i
\(310\) −2.52909 + 0.623365i −0.143643 + 0.0354047i
\(311\) 10.0792 + 2.48431i 0.571541 + 0.140872i 0.514486 0.857499i \(-0.327983\pi\)
0.0570552 + 0.998371i \(0.481829\pi\)
\(312\) −0.509183 + 0.677296i −0.0288268 + 0.0383443i
\(313\) 0.457832 0.112845i 0.0258782 0.00637840i −0.226355 0.974045i \(-0.572681\pi\)
0.252234 + 0.967666i \(0.418835\pi\)
\(314\) 8.60265 4.51502i 0.485475 0.254797i
\(315\) −23.5358 −1.32609
\(316\) −25.5314 −1.43625
\(317\) −19.7338 + 10.3571i −1.10836 + 0.581713i −0.916631 0.399734i \(-0.869102\pi\)
−0.191731 + 0.981447i \(0.561410\pi\)
\(318\) 0.556019 + 0.492590i 0.0311800 + 0.0276231i
\(319\) −8.06340 −0.451464
\(320\) −5.08577 + 4.50560i −0.284303 + 0.251871i
\(321\) 2.18889 + 1.14882i 0.122172 + 0.0641208i
\(322\) 0.156451 1.28849i 0.00871868 0.0718048i
\(323\) 3.45572 + 1.81370i 0.192282 + 0.100917i
\(324\) −1.89196 + 15.5817i −0.105109 + 0.865650i
\(325\) 0.410025 0.334628i 0.0227441 0.0185618i
\(326\) 1.00323 + 8.26236i 0.0555639 + 0.457610i
\(327\) 0.147686 0.389415i 0.00816703 0.0215347i
\(328\) 9.91944 5.20612i 0.547710 0.287460i
\(329\) 4.84369 + 12.7718i 0.267041 + 0.704130i
\(330\) −0.130576 0.0685316i −0.00718797 0.00377254i
\(331\) 18.3363 + 9.62364i 1.00785 + 0.528963i 0.886049 0.463591i \(-0.153439\pi\)
0.121805 + 0.992554i \(0.461132\pi\)
\(332\) −10.6336 2.62095i −0.583595 0.143843i
\(333\) 2.28040 + 18.7808i 0.124965 + 1.02918i
\(334\) 8.06025 7.14076i 0.441037 0.390725i
\(335\) 10.4761 15.1773i 0.572371 0.829223i
\(336\) 0.449195 + 1.18443i 0.0245056 + 0.0646160i
\(337\) 0.342026 0.0186313 0.00931566 0.999957i \(-0.497035\pi\)
0.00931566 + 0.999957i \(0.497035\pi\)
\(338\) −5.85529 1.95758i −0.318486 0.106478i
\(339\) 0.171316 0.00930462
\(340\) −2.72438 7.18360i −0.147750 0.389586i
\(341\) −1.52050 + 2.20283i −0.0823398 + 0.119290i
\(342\) 2.10556 1.86536i 0.113855 0.100867i
\(343\) 0.505753 + 4.16525i 0.0273081 + 0.224903i
\(344\) 2.24499 + 0.553341i 0.121042 + 0.0298341i
\(345\) 0.195146 + 0.102421i 0.0105063 + 0.00551415i
\(346\) −6.64865 3.48948i −0.357434 0.187596i
\(347\) 1.67648 + 4.42052i 0.0899983 + 0.237306i 0.972456 0.233085i \(-0.0748821\pi\)
−0.882458 + 0.470391i \(0.844113\pi\)
\(348\) 1.54499 0.810874i 0.0828202 0.0434674i
\(349\) −12.3411 + 32.5408i −0.660604 + 1.74187i 0.00988677 + 0.999951i \(0.496853\pi\)
−0.670491 + 0.741918i \(0.733916\pi\)
\(350\) 0.0300957 + 0.247860i 0.00160868 + 0.0132487i
\(351\) 2.77109 0.565102i 0.147910 0.0301629i
\(352\) 0.630603 5.19349i 0.0336113 0.276814i
\(353\) −4.23494 2.22267i −0.225403 0.118301i 0.348242 0.937405i \(-0.386779\pi\)
−0.573645 + 0.819104i \(0.694471\pi\)
\(354\) 0.0318623 0.262409i 0.00169346 0.0139469i
\(355\) 4.76263 + 2.49962i 0.252774 + 0.132666i
\(356\) 11.2029 9.92490i 0.593752 0.526019i
\(357\) −0.922896 −0.0488448
\(358\) 6.27924 + 5.56292i 0.331868 + 0.294009i
\(359\) 7.07405 3.71275i 0.373354 0.195951i −0.267601 0.963530i \(-0.586231\pi\)
0.640955 + 0.767579i \(0.278539\pi\)
\(360\) −11.7790 −0.620808
\(361\) −15.0567 −0.792459
\(362\) 3.98181 2.08982i 0.209279 0.109838i
\(363\) 1.25312 0.308867i 0.0657719 0.0162113i
\(364\) −17.7534 + 14.4889i −0.930533 + 0.759423i
\(365\) 20.0050 + 4.93079i 1.04711 + 0.258089i
\(366\) 0.134509 0.0331534i 0.00703089 0.00173296i
\(367\) 8.39723 + 22.1417i 0.438332 + 1.15579i 0.954213 + 0.299127i \(0.0966953\pi\)
−0.515881 + 0.856660i \(0.672535\pi\)
\(368\) −0.248117 + 2.04343i −0.0129340 + 0.106521i
\(369\) −18.0997 4.46117i −0.942232 0.232239i
\(370\) −6.44300 + 1.58806i −0.334955 + 0.0825591i
\(371\) 24.2741 + 35.1671i 1.26025 + 1.82578i
\(372\) 0.0698150 0.574979i 0.00361974 0.0298112i
\(373\) −2.53068 + 6.67286i −0.131034 + 0.345508i −0.984436 0.175746i \(-0.943766\pi\)
0.853402 + 0.521254i \(0.174535\pi\)
\(374\) 0.888525 + 0.466334i 0.0459446 + 0.0241136i
\(375\) −1.44333 0.355749i −0.0745332 0.0183708i
\(376\) 2.42413 + 6.39191i 0.125015 + 0.329638i
\(377\) 19.4989 + 18.7371i 1.00425 + 0.965007i
\(378\) −0.473122 + 1.24752i −0.0243348 + 0.0641656i
\(379\) 9.73075 14.0974i 0.499835 0.724136i −0.489142 0.872204i \(-0.662690\pi\)
0.988977 + 0.148068i \(0.0473054\pi\)
\(380\) −5.81042 5.14759i −0.298068 0.264066i
\(381\) −0.796140 + 0.196231i −0.0407875 + 0.0100532i
\(382\) −1.90117 5.01297i −0.0972723 0.256486i
\(383\) 5.55285 2.91436i 0.283737 0.148917i −0.316851 0.948475i \(-0.602625\pi\)
0.600588 + 0.799559i \(0.294933\pi\)
\(384\) 0.520563 + 1.37261i 0.0265649 + 0.0700458i
\(385\) −6.34962 5.62527i −0.323607 0.286690i
\(386\) 1.02939 + 0.911962i 0.0523947 + 0.0464177i
\(387\) −2.18563 3.16643i −0.111102 0.160959i
\(388\) −16.8678 24.4372i −0.856333 1.24061i
\(389\) −26.7170 + 14.0222i −1.35461 + 0.710953i −0.976643 0.214867i \(-0.931068\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(390\) 0.156511 + 0.469145i 0.00792526 + 0.0237561i
\(391\) −1.32791 0.696938i −0.0671551 0.0352457i
\(392\) −1.25935 10.3717i −0.0636068 0.523849i
\(393\) −2.16570 0.533796i −0.109245 0.0269265i
\(394\) 4.96974 + 7.19992i 0.250372 + 0.362727i
\(395\) −18.0062 + 26.0864i −0.905988 + 1.31255i
\(396\) −4.25928 + 3.77339i −0.214037 + 0.189620i
\(397\) 0.928650 + 7.64812i 0.0466076 + 0.383848i 0.997283 + 0.0736616i \(0.0234685\pi\)
−0.950676 + 0.310187i \(0.899608\pi\)
\(398\) −3.39570 + 0.836964i −0.170211 + 0.0419532i
\(399\) −0.825669 + 0.433345i −0.0413352 + 0.0216944i
\(400\) −0.0477290 0.393083i −0.00238645 0.0196542i
\(401\) −0.112268 + 0.924611i −0.00560640 + 0.0461729i −0.995244 0.0974177i \(-0.968942\pi\)
0.989637 + 0.143591i \(0.0458648\pi\)
\(402\) −0.296088 0.428957i −0.0147675 0.0213945i
\(403\) 8.79562 1.79367i 0.438141 0.0893490i
\(404\) 11.9519 17.3153i 0.594628 0.861467i
\(405\) 14.5861 + 12.9222i 0.724790 + 0.642108i
\(406\) −12.3870 + 3.05313i −0.614758 + 0.151524i
\(407\) −3.87356 + 5.61182i −0.192005 + 0.278168i
\(408\) −0.461884 −0.0228666
\(409\) −1.74827 + 2.53281i −0.0864464 + 0.125239i −0.863821 0.503798i \(-0.831935\pi\)
0.777375 + 0.629038i \(0.216551\pi\)
\(410\) 0.788133 6.49086i 0.0389231 0.320561i
\(411\) −0.363615 + 0.958773i −0.0179358 + 0.0472928i
\(412\) −2.93117 24.1404i −0.144408 1.18931i
\(413\) 5.39207 14.2177i 0.265326 0.699608i
\(414\) −0.809086 + 0.716788i −0.0397644 + 0.0352282i
\(415\) −10.1773 + 9.01634i −0.499586 + 0.442595i
\(416\) −13.5931 + 11.0936i −0.666457 + 0.543907i
\(417\) 1.53281 + 1.35795i 0.0750620 + 0.0664991i
\(418\) 1.01389 0.0495908
\(419\) 11.8447 10.4935i 0.578650 0.512639i −0.322257 0.946652i \(-0.604441\pi\)
0.900906 + 0.434013i \(0.142903\pi\)
\(420\) 1.78231 + 0.439300i 0.0869679 + 0.0214357i
\(421\) −12.8711 18.6470i −0.627298 0.908798i 0.372517 0.928025i \(-0.378495\pi\)
−0.999815 + 0.0192271i \(0.993879\pi\)
\(422\) −2.47191 + 6.51790i −0.120331 + 0.317286i
\(423\) 4.03380 10.6362i 0.196130 0.517152i
\(424\) 12.1485 + 17.6002i 0.589984 + 0.854739i
\(425\) 0.280103 + 0.0690393i 0.0135870 + 0.00334890i
\(426\) 0.113788 0.100808i 0.00551307 0.00488415i
\(427\) 7.96913 0.385653
\(428\) 25.0438 + 22.1868i 1.21054 + 1.07244i
\(429\) 0.440064 + 0.254197i 0.0212465 + 0.0122728i
\(430\) 1.01014 0.894903i 0.0487131 0.0431560i
\(431\) 23.9389 21.2080i 1.15310 1.02156i 0.153657 0.988124i \(-0.450895\pi\)
0.999441 0.0334313i \(-0.0106435\pi\)
\(432\) 0.750329 1.97846i 0.0361002 0.0951885i
\(433\) −4.69774 38.6893i −0.225759 1.85929i −0.461061 0.887368i \(-0.652531\pi\)
0.235302 0.971922i \(-0.424392\pi\)
\(434\) −1.50172 + 3.95971i −0.0720849 + 0.190072i
\(435\) 0.261112 2.15045i 0.0125194 0.103106i
\(436\) 3.20210 4.63905i 0.153353 0.222170i
\(437\) −1.51526 −0.0724846
\(438\) 0.330798 0.479244i 0.0158062 0.0228992i
\(439\) −10.5973 + 2.61201i −0.505784 + 0.124664i −0.483947 0.875097i \(-0.660797\pi\)
−0.0218362 + 0.999762i \(0.506951\pi\)
\(440\) −3.17781 2.81529i −0.151496 0.134214i
\(441\) −9.87604 + 14.3079i −0.470287 + 0.681329i
\(442\) −1.06501 3.19237i −0.0506572 0.151846i
\(443\) 14.3398 + 20.7748i 0.681303 + 0.987038i 0.999242 + 0.0389270i \(0.0123940\pi\)
−0.317939 + 0.948111i \(0.602991\pi\)
\(444\) 0.177858 1.46479i 0.00844075 0.0695158i
\(445\) −2.23975 18.4460i −0.106175 0.874426i
\(446\) −3.56676 + 1.87198i −0.168891 + 0.0886409i
\(447\) −1.88145 + 0.463736i −0.0889895 + 0.0219339i
\(448\) 1.33153 + 10.9662i 0.0629090 + 0.518102i
\(449\) 14.6220 12.9540i 0.690056 0.611336i −0.243444 0.969915i \(-0.578277\pi\)
0.933499 + 0.358579i \(0.116739\pi\)
\(450\) 0.118119 0.171125i 0.00556818 0.00806690i
\(451\) −3.81677 5.52955i −0.179725 0.260376i
\(452\) 2.25131 + 0.554899i 0.105893 + 0.0261003i
\(453\) 0.364246 + 2.99984i 0.0171138 + 0.140945i
\(454\) 4.73833 + 2.48687i 0.222381 + 0.116715i
\(455\) 2.28314 + 28.3578i 0.107035 + 1.32943i
\(456\) −0.413224 + 0.216877i −0.0193510 + 0.0101562i
\(457\) 4.05160 + 5.86976i 0.189526 + 0.274576i 0.906215 0.422817i \(-0.138959\pi\)
−0.716689 + 0.697393i \(0.754343\pi\)
\(458\) −6.19083 8.96897i −0.289279 0.419092i
\(459\) 1.15390 + 1.02226i 0.0538594 + 0.0477152i
\(460\) 2.23273 + 1.97802i 0.104101 + 0.0922259i
\(461\) −11.5511 30.4578i −0.537990 1.41856i −0.878237 0.478226i \(-0.841280\pi\)
0.340247 0.940336i \(-0.389489\pi\)
\(462\) −0.212294 + 0.111420i −0.00987679 + 0.00518374i
\(463\) 11.4714 + 30.2476i 0.533121 + 1.40572i 0.883197 + 0.469002i \(0.155386\pi\)
−0.350077 + 0.936721i \(0.613844\pi\)
\(464\) 19.6447 4.84199i 0.911983 0.224784i
\(465\) −0.538241 0.476840i −0.0249603 0.0221129i
\(466\) −3.23711 + 4.68977i −0.149956 + 0.217249i
\(467\) 3.33066 8.78224i 0.154125 0.406394i −0.835608 0.549327i \(-0.814884\pi\)
0.989732 + 0.142933i \(0.0456534\pi\)
\(468\) 19.0681 + 0.772524i 0.881423 + 0.0357099i
\(469\) −10.6321 28.0347i −0.490947 1.29452i
\(470\) 3.87405 + 0.954867i 0.178697 + 0.0440447i
\(471\) 2.37487 + 1.24643i 0.109428 + 0.0574324i
\(472\) 2.69858 7.11557i 0.124212 0.327521i
\(473\) 0.167155 1.37664i 0.00768579 0.0632982i
\(474\) 0.508911 + 0.737284i 0.0233750 + 0.0338646i
\(475\) 0.283012 0.0697562i 0.0129855 0.00320063i
\(476\) −12.1280 2.98929i −0.555887 0.137014i
\(477\) 4.28945 35.3268i 0.196401 1.61750i
\(478\) −4.02919 10.6241i −0.184291 0.485935i
\(479\) −25.9926 + 6.40660i −1.18763 + 0.292725i −0.783157 0.621824i \(-0.786392\pi\)
−0.404475 + 0.914549i \(0.632546\pi\)
\(480\) 1.36465 + 0.336355i 0.0622873 + 0.0153524i
\(481\) 22.4073 4.56947i 1.02169 0.208350i
\(482\) 9.71628 2.39485i 0.442565 0.109082i
\(483\) 0.317274 0.166518i 0.0144365 0.00757684i
\(484\) 17.4681 0.794003
\(485\) −36.8646 −1.67394
\(486\) 1.47720 0.775296i 0.0670073 0.0351681i
\(487\) 2.38643 + 2.11419i 0.108139 + 0.0958032i 0.715460 0.698654i \(-0.246217\pi\)
−0.607321 + 0.794457i \(0.707756\pi\)
\(488\) 3.98833 0.180543
\(489\) −1.71984 + 1.52365i −0.0777738 + 0.0689016i
\(490\) −5.39951 2.83388i −0.243925 0.128022i
\(491\) 1.73226 14.2665i 0.0781759 0.643836i −0.899975 0.435941i \(-0.856416\pi\)
0.978151 0.207895i \(-0.0666613\pi\)
\(492\) 1.28738 + 0.675668i 0.0580395 + 0.0304615i
\(493\) −1.77678 + 14.6331i −0.0800222 + 0.659042i
\(494\) −2.45178 2.35598i −0.110311 0.106001i
\(495\) 0.851542 + 7.01308i 0.0382740 + 0.315215i
\(496\) 2.38159 6.27975i 0.106937 0.281969i
\(497\) 7.74320 4.06395i 0.347330 0.182293i
\(498\) 0.136270 + 0.359316i 0.00610642 + 0.0161013i
\(499\) −20.0313 10.5132i −0.896723 0.470636i −0.0476207 0.998865i \(-0.515164\pi\)
−0.849102 + 0.528229i \(0.822856\pi\)
\(500\) −17.8149 9.34998i −0.796707 0.418144i
\(501\) 2.88637 + 0.711425i 0.128953 + 0.0317841i
\(502\) −0.838501 6.90568i −0.0374241 0.308216i
\(503\) −13.6612 + 12.1027i −0.609121 + 0.539634i −0.910308 0.413931i \(-0.864156\pi\)
0.301187 + 0.953565i \(0.402617\pi\)
\(504\) −10.8788 + 15.7606i −0.484580 + 0.702035i
\(505\) −9.26258 24.4234i −0.412179 1.08683i
\(506\) −0.389599 −0.0173198
\(507\) −0.473483 1.63729i −0.0210281 0.0727144i
\(508\) −11.0979 −0.492389
\(509\) −0.158371 0.417590i −0.00701967 0.0185094i 0.931461 0.363842i \(-0.118535\pi\)
−0.938480 + 0.345333i \(0.887766\pi\)
\(510\) −0.153141 + 0.221863i −0.00678118 + 0.00982424i
\(511\) 25.0736 22.2133i 1.10919 0.982658i
\(512\) 2.74803 + 22.6321i 0.121447 + 1.00021i
\(513\) 1.51234 + 0.372758i 0.0667714 + 0.0164577i
\(514\) −8.65617 4.54311i −0.381807 0.200388i
\(515\) −26.7324 14.0302i −1.17797 0.618246i
\(516\) 0.106411 + 0.280582i 0.00468447 + 0.0123519i
\(517\) 3.63042 1.90539i 0.159666 0.0837990i
\(518\) −3.82572 + 10.0876i −0.168092 + 0.443223i
\(519\) −0.249858 2.05777i −0.0109676 0.0903260i
\(520\) 1.14265 + 14.1923i 0.0501084 + 0.622372i
\(521\) 3.26178 26.8632i 0.142901 1.17690i −0.728049 0.685526i \(-0.759572\pi\)
0.870950 0.491372i \(-0.163504\pi\)
\(522\) 9.40759 + 4.93748i 0.411759 + 0.216108i
\(523\) 0.895016 7.37112i 0.0391363 0.322316i −0.959972 0.280096i \(-0.909634\pi\)
0.999108 0.0422205i \(-0.0134432\pi\)
\(524\) −26.7310 14.0295i −1.16775 0.612883i
\(525\) −0.0515929 + 0.0457074i −0.00225170 + 0.00199483i
\(526\) −6.54818 −0.285514
\(527\) 3.66255 + 3.24473i 0.159543 + 0.141343i
\(528\) 0.336678 0.176702i 0.0146520 0.00768999i
\(529\) −22.4177 −0.974684
\(530\) 12.4820 0.542185
\(531\) −11.2128 + 5.88494i −0.486595 + 0.255385i
\(532\) −12.2540 + 3.02033i −0.531277 + 0.130948i
\(533\) −3.61937 + 22.2407i −0.156772 + 0.963350i
\(534\) −0.509911 0.125682i −0.0220660 0.00543879i
\(535\) 40.3315 9.94081i 1.74368 0.429779i
\(536\) −5.32109 14.0306i −0.229836 0.606028i
\(537\) −0.279149 + 2.29900i −0.0120462 + 0.0992091i
\(538\) −1.71508 0.422729i −0.0739423 0.0182251i
\(539\) −6.08413 + 1.49960i −0.262062 + 0.0645925i
\(540\) −1.74183 2.52347i −0.0749563 0.108593i
\(541\) 3.54016 29.1559i 0.152204 1.25351i −0.693736 0.720230i \(-0.744036\pi\)
0.845939 0.533279i \(-0.179040\pi\)
\(542\) −0.742325 + 1.95735i −0.0318856 + 0.0840754i
\(543\) 1.09923 + 0.576920i 0.0471725 + 0.0247580i
\(544\) −9.28596 2.28878i −0.398132 0.0981307i
\(545\) −2.48160 6.54344i −0.106300 0.280290i
\(546\) 0.772278 + 0.223873i 0.0330505 + 0.00958088i
\(547\) −2.02231 + 5.33239i −0.0864676 + 0.227996i −0.971275 0.237961i \(-0.923521\pi\)
0.884807 + 0.465958i \(0.154290\pi\)
\(548\) −7.88386 + 11.4217i −0.336782 + 0.487912i
\(549\) −4.96759 4.40090i −0.212012 0.187826i
\(550\) 0.0727672 0.0179355i 0.00310280 0.000764773i
\(551\) 5.28136 + 13.9258i 0.224994 + 0.593259i
\(552\) 0.158787 0.0833377i 0.00675841 0.00354709i
\(553\) 18.2743 + 48.1855i 0.777104 + 2.04906i
\(554\) 5.26081 + 4.66067i 0.223510 + 0.198013i
\(555\) −1.37120 1.21478i −0.0582042 0.0515644i
\(556\) 15.7446 + 22.8100i 0.667720 + 0.967360i
\(557\) −1.34919 1.95464i −0.0571669 0.0828206i 0.793358 0.608755i \(-0.208331\pi\)
−0.850525 + 0.525935i \(0.823716\pi\)
\(558\) 3.12283 1.63899i 0.132200 0.0693840i
\(559\) −3.60314 + 2.94059i −0.152397 + 0.124374i
\(560\) 18.8474 + 9.89186i 0.796446 + 0.418007i
\(561\) 0.0333910 + 0.275000i 0.00140977 + 0.0116105i
\(562\) −8.47169 2.08808i −0.357357 0.0880805i
\(563\) −19.8515 28.7599i −0.836642 1.21209i −0.975111 0.221718i \(-0.928833\pi\)
0.138469 0.990367i \(-0.455782\pi\)
\(564\) −0.503998 + 0.730166i −0.0212221 + 0.0307456i
\(565\) 2.15472 1.90891i 0.0906495 0.0803085i
\(566\) 1.66129 + 13.6820i 0.0698292 + 0.575095i
\(567\) 30.7616 7.58205i 1.29187 0.318416i
\(568\) 3.87526 2.03389i 0.162602 0.0853402i
\(569\) −1.13999 9.38867i −0.0477909 0.393594i −0.996902 0.0786525i \(-0.974938\pi\)
0.949111 0.314941i \(-0.101985\pi\)
\(570\) −0.0328321 + 0.270396i −0.00137518 + 0.0113257i
\(571\) 10.8434 + 15.7094i 0.453782 + 0.657417i 0.981380 0.192077i \(-0.0615224\pi\)
−0.527597 + 0.849495i \(0.676907\pi\)
\(572\) 4.95965 + 4.76586i 0.207374 + 0.199271i
\(573\) 0.840779 1.21808i 0.0351240 0.0508859i
\(574\) −7.95705 7.04933i −0.332121 0.294233i
\(575\) −0.108751 + 0.0268047i −0.00453523 + 0.00111783i
\(576\) 5.22598 7.57114i 0.217749 0.315464i
\(577\) 16.8185 0.700164 0.350082 0.936719i \(-0.386154\pi\)
0.350082 + 0.936719i \(0.386154\pi\)
\(578\) −3.54421 + 5.13467i −0.147420 + 0.213574i
\(579\) −0.0457625 + 0.376888i −0.00190183 + 0.0156629i
\(580\) 10.3967 27.4139i 0.431701 1.13830i
\(581\) 2.66458 + 21.9448i 0.110546 + 0.910425i
\(582\) −0.369466 + 0.974202i −0.0153149 + 0.0403820i
\(583\) 9.60066 8.50545i 0.397619 0.352260i
\(584\) 12.5486 11.1171i 0.519267 0.460030i
\(585\) 14.2372 18.9378i 0.588636 0.782981i
\(586\) −1.87469 1.66083i −0.0774429 0.0686084i
\(587\) −18.0236 −0.743913 −0.371957 0.928250i \(-0.621313\pi\)
−0.371957 + 0.928250i \(0.621313\pi\)
\(588\) 1.01495 0.899166i 0.0418558 0.0370810i
\(589\) 4.80026 + 1.18316i 0.197791 + 0.0487512i
\(590\) −2.52318 3.65546i −0.103878 0.150493i
\(591\) −0.856424 + 2.25820i −0.0352286 + 0.0928901i
\(592\) 6.06724 15.9980i 0.249362 0.657514i
\(593\) −1.91823 2.77903i −0.0787722 0.114121i 0.781617 0.623758i \(-0.214395\pi\)
−0.860389 + 0.509637i \(0.829780\pi\)
\(594\) 0.388848 + 0.0958425i 0.0159546 + 0.00393246i
\(595\) −11.6076 + 10.2835i −0.475867 + 0.421581i
\(596\) −26.2267 −1.07429
\(597\) −0.722673 0.640232i −0.0295770 0.0262030i
\(598\) 0.942128 + 0.905316i 0.0385265 + 0.0370211i
\(599\) 21.4409 18.9950i 0.876052 0.776115i −0.0996943 0.995018i \(-0.531786\pi\)
0.975746 + 0.218904i \(0.0702480\pi\)
\(600\) −0.0258208 + 0.0228753i −0.00105413 + 0.000933878i
\(601\) 2.28098 6.01445i 0.0930431 0.245334i −0.880413 0.474207i \(-0.842735\pi\)
0.973456 + 0.228873i \(0.0735040\pi\)
\(602\) −0.264469 2.17810i −0.0107790 0.0887727i
\(603\) −8.85438 + 23.3471i −0.360578 + 0.950767i
\(604\) −4.92991 + 40.6015i −0.200595 + 1.65205i
\(605\) 12.3195 17.8478i 0.500857 0.725617i
\(606\) −0.738257 −0.0299896
\(607\) 20.2630 29.3561i 0.822451 1.19153i −0.156550 0.987670i \(-0.550037\pi\)
0.979001 0.203856i \(-0.0653474\pi\)
\(608\) −9.38238 + 2.31255i −0.380506 + 0.0937863i
\(609\) −2.63621 2.33548i −0.106825 0.0946383i
\(610\) 1.32236 1.91576i 0.0535407 0.0775670i
\(611\) −13.2067 3.82844i −0.534285 0.154882i
\(612\) 5.90925 + 8.56102i 0.238867 + 0.346059i
\(613\) −2.74393 + 22.5983i −0.110826 + 0.912736i 0.826176 + 0.563412i \(0.190512\pi\)
−0.937002 + 0.349324i \(0.886411\pi\)
\(614\) −0.614302 5.05923i −0.0247912 0.204174i
\(615\) 1.59829 0.838846i 0.0644492 0.0338256i
\(616\) −6.70188 + 1.65186i −0.270026 + 0.0665555i
\(617\) 0.0316395 + 0.260575i 0.00127376 + 0.0104904i 0.993332 0.115290i \(-0.0367797\pi\)
−0.992058 + 0.125780i \(0.959857\pi\)
\(618\) −0.638689 + 0.565829i −0.0256918 + 0.0227610i
\(619\) −7.07610 + 10.2515i −0.284413 + 0.412043i −0.938986 0.343956i \(-0.888233\pi\)
0.654573 + 0.755999i \(0.272848\pi\)
\(620\) −5.52867 8.00967i −0.222037 0.321676i
\(621\) −0.581135 0.143237i −0.0233202 0.00574790i
\(622\) −0.594248 4.89407i −0.0238272 0.196234i
\(623\) −26.7499 14.0394i −1.07171 0.562478i
\(624\) −1.22476 0.355042i −0.0490298 0.0142131i
\(625\) −21.4675 + 11.2670i −0.858699 + 0.450680i
\(626\) −0.127211 0.184297i −0.00508437 0.00736599i
\(627\) 0.158999 + 0.230350i 0.00634982 + 0.00919930i
\(628\) 27.1716 + 24.0719i 1.08426 + 0.960575i
\(629\) 9.33055 + 8.26614i 0.372033 + 0.329593i
\(630\) 3.96358 + 10.4511i 0.157913 + 0.416382i
\(631\) 16.9435 8.89265i 0.674511 0.354011i −0.0924382 0.995718i \(-0.529466\pi\)
0.766949 + 0.641708i \(0.221774\pi\)
\(632\) 9.14580 + 24.1155i 0.363800 + 0.959263i
\(633\) −1.86848 + 0.460540i −0.0742656 + 0.0183048i
\(634\) 7.92239 + 7.01862i 0.314638 + 0.278745i
\(635\) −7.82685 + 11.3392i −0.310599 + 0.449981i
\(636\) −0.984212 + 2.59515i −0.0390265 + 0.102905i
\(637\) 18.1973 + 10.5114i 0.721004 + 0.416479i
\(638\) 1.35793 + 3.58056i 0.0537609 + 0.141756i
\(639\) −7.07105 1.74286i −0.279727 0.0689464i
\(640\) 21.8418 + 11.4635i 0.863374 + 0.453134i
\(641\) −7.87524 + 20.7653i −0.311053 + 0.820180i 0.684760 + 0.728769i \(0.259907\pi\)
−0.995813 + 0.0914113i \(0.970862\pi\)
\(642\) 0.141511 1.16545i 0.00558499 0.0459966i
\(643\) 23.7721 + 34.4398i 0.937480 + 1.35817i 0.933652 + 0.358182i \(0.116603\pi\)
0.00382807 + 0.999993i \(0.498781\pi\)
\(644\) 4.70874 1.16060i 0.185550 0.0457341i
\(645\) 0.361729 + 0.0891581i 0.0142430 + 0.00351060i
\(646\) 0.223411 1.83996i 0.00879000 0.0723921i
\(647\) −7.77228 20.4938i −0.305560 0.805695i −0.996563 0.0828432i \(-0.973600\pi\)
0.691003 0.722852i \(-0.257169\pi\)
\(648\) 15.3953 3.79460i 0.604785 0.149066i
\(649\) −4.43161 1.09229i −0.173956 0.0428763i
\(650\) −0.217643 0.125719i −0.00853666 0.00493109i
\(651\) −1.13513 + 0.279784i −0.0444893 + 0.0109656i
\(652\) −27.5360 + 14.4520i −1.07839 + 0.565985i
\(653\) −37.2733 −1.45862 −0.729308 0.684185i \(-0.760158\pi\)
−0.729308 + 0.684185i \(0.760158\pi\)
\(654\) −0.197791 −0.00773425
\(655\) −33.1867 + 17.4177i −1.29671 + 0.680568i
\(656\) 12.6192 + 11.1796i 0.492695 + 0.436490i
\(657\) −27.8969 −1.08836
\(658\) 4.85561 4.30169i 0.189291 0.167697i
\(659\) 35.8365 + 18.8085i 1.39599 + 0.732674i 0.983942 0.178487i \(-0.0571203\pi\)
0.412051 + 0.911161i \(0.364813\pi\)
\(660\) 0.0664152 0.546979i 0.00258521 0.0212911i
\(661\) −1.84221 0.966866i −0.0716537 0.0376067i 0.428516 0.903534i \(-0.359037\pi\)
−0.500169 + 0.865928i \(0.666729\pi\)
\(662\) 1.18544 9.76294i 0.0460732 0.379447i
\(663\) 0.558275 0.742597i 0.0216816 0.0288401i
\(664\) 1.33355 + 10.9828i 0.0517518 + 0.426214i
\(665\) −5.55619 + 14.6505i −0.215460 + 0.568121i
\(666\) 7.95560 4.17542i 0.308273 0.161794i
\(667\) −2.02943 5.35117i −0.0785798 0.207198i
\(668\) 35.6262 + 18.6981i 1.37842 + 0.723450i
\(669\) −0.984650 0.516784i −0.0380688 0.0199800i
\(670\) −8.50373 2.09598i −0.328528 0.0809748i
\(671\) −0.288329 2.37460i −0.0111308 0.0916705i
\(672\) 1.71040 1.51529i 0.0659802 0.0584534i
\(673\) −1.83046 + 2.65188i −0.0705590 + 0.102222i −0.856675 0.515857i \(-0.827474\pi\)
0.786116 + 0.618079i \(0.212089\pi\)
\(674\) −0.0575993 0.151877i −0.00221864 0.00585007i
\(675\) 0.115135 0.00443157
\(676\) −0.918942 23.0496i −0.0353439 0.886525i
\(677\) −36.1864 −1.39076 −0.695379 0.718643i \(-0.744764\pi\)
−0.695379 + 0.718643i \(0.744764\pi\)
\(678\) −0.0288507 0.0760731i −0.00110801 0.00292157i
\(679\) −34.0472 + 49.3259i −1.30661 + 1.89295i
\(680\) −5.80930 + 5.14659i −0.222777 + 0.197363i
\(681\) 0.178068 + 1.46652i 0.00682358 + 0.0561972i
\(682\) 1.23423 + 0.304210i 0.0472611 + 0.0116488i
\(683\) 0.762649 + 0.400269i 0.0291819 + 0.0153159i 0.479251 0.877678i \(-0.340908\pi\)
−0.450069 + 0.892994i \(0.648601\pi\)
\(684\) 9.30653 + 4.88444i 0.355844 + 0.186761i
\(685\) 6.10991 + 16.1105i 0.233448 + 0.615551i
\(686\) 1.76441 0.926036i 0.0673656 0.0353562i
\(687\) 1.06685 2.81305i 0.0407029 0.107325i
\(688\) 0.419424 + 3.45427i 0.0159904 + 0.131693i
\(689\) −42.9806 1.74131i −1.63743 0.0663388i
\(690\) 0.0126161 0.103903i 0.000480288 0.00395553i
\(691\) 10.6293 + 5.57869i 0.404358 + 0.212223i 0.654626 0.755953i \(-0.272826\pi\)
−0.250268 + 0.968177i \(0.580519\pi\)
\(692\) 3.38172 27.8510i 0.128554 1.05874i
\(693\) 10.1702 + 5.33771i 0.386332 + 0.202763i
\(694\) 1.68061 1.48889i 0.0637949 0.0565174i
\(695\) 34.4099 1.30524
\(696\) −1.31935 1.16884i −0.0500098 0.0443048i
\(697\) −10.8758 + 5.70807i −0.411951 + 0.216208i
\(698\) 16.5281 0.625598
\(699\) −1.57314 −0.0595017
\(700\) −0.826045 + 0.433542i −0.0312216 + 0.0163863i
\(701\) 3.77510 0.930479i 0.142584 0.0351437i −0.167378 0.985893i \(-0.553530\pi\)
0.309961 + 0.950749i \(0.399684\pi\)
\(702\) −0.717603 1.13534i −0.0270842 0.0428506i
\(703\) 12.2289 + 3.01416i 0.461223 + 0.113681i
\(704\) 3.21947 0.793527i 0.121338 0.0299072i
\(705\) 0.390593 + 1.02991i 0.0147106 + 0.0387886i
\(706\) −0.273787 + 2.25484i −0.0103041 + 0.0848621i
\(707\) −41.2339 10.1632i −1.55076 0.382228i
\(708\) 0.958964 0.236364i 0.0360401 0.00888309i
\(709\) −1.27398 1.84568i −0.0478455 0.0693161i 0.798331 0.602219i \(-0.205717\pi\)
−0.846177 + 0.532903i \(0.821101\pi\)
\(710\) 0.307902 2.53580i 0.0115554 0.0951670i
\(711\) 15.2188 40.1286i 0.570748 1.50494i
\(712\) −13.3876 7.02634i −0.501720 0.263323i
\(713\) −1.84456 0.454644i −0.0690794 0.0170265i
\(714\) 0.155421 + 0.409813i 0.00581650 + 0.0153369i
\(715\) 8.36730 1.70632i 0.312919 0.0638128i
\(716\) −11.1149 + 29.3076i −0.415383 + 1.09528i
\(717\) 1.78188 2.58150i 0.0665455 0.0964078i
\(718\) −2.83996 2.51599i −0.105986 0.0938958i
\(719\) 12.0544 2.97115i 0.449554 0.110805i −0.00803714 0.999968i \(-0.502558\pi\)
0.457592 + 0.889162i \(0.348712\pi\)
\(720\) −6.28587 16.5745i −0.234261 0.617695i
\(721\) −43.4622 + 22.8107i −1.61862 + 0.849516i
\(722\) 2.53565 + 6.68595i 0.0943670 + 0.248825i
\(723\) 2.06782 + 1.83193i 0.0769031 + 0.0681302i
\(724\) 12.5766 + 11.1419i 0.467406 + 0.414086i
\(725\) 0.625392 + 0.906037i 0.0232265 + 0.0336494i
\(726\) −0.348187 0.504436i −0.0129224 0.0187214i
\(727\) 2.92844 1.53696i 0.108610 0.0570028i −0.409543 0.912291i \(-0.634312\pi\)
0.518153 + 0.855288i \(0.326620\pi\)
\(728\) 20.0450 + 11.5787i 0.742915 + 0.429135i
\(729\) −23.0894 12.1182i −0.855162 0.448823i
\(730\) −1.17945 9.71361i −0.0436533 0.359517i
\(731\) −2.46144 0.606691i −0.0910397 0.0224393i
\(732\) 0.294041 + 0.425991i 0.0108681 + 0.0157451i
\(733\) 3.23227 4.68275i 0.119387 0.172961i −0.758734 0.651400i \(-0.774182\pi\)
0.878121 + 0.478439i \(0.158797\pi\)
\(734\) 8.41789 7.45760i 0.310710 0.275265i
\(735\) −0.202915 1.67116i −0.00748464 0.0616415i
\(736\) 3.60530 0.888626i 0.132893 0.0327552i
\(737\) −7.96895 + 4.18243i −0.293540 + 0.154062i
\(738\) 1.06711 + 8.78847i 0.0392810 + 0.323508i
\(739\) −0.388749 + 3.20164i −0.0143004 + 0.117774i −0.998111 0.0614374i \(-0.980432\pi\)
0.983811 + 0.179211i \(0.0573546\pi\)
\(740\) −14.0846 20.4051i −0.517760 0.750105i
\(741\) 0.150776 0.926502i 0.00553888 0.0340359i
\(742\) 11.5281 16.7013i 0.423209 0.613124i
\(743\) −28.9437 25.6418i −1.06184 0.940708i −0.0634812 0.997983i \(-0.520220\pi\)
−0.998358 + 0.0572752i \(0.981759\pi\)
\(744\) −0.568101 + 0.140024i −0.0208276 + 0.00513354i
\(745\) −18.4965 + 26.7969i −0.677661 + 0.981761i
\(746\) 3.38927 0.124090
\(747\) 10.4579 15.1509i 0.382635 0.554343i
\(748\) −0.451933 + 3.72200i −0.0165243 + 0.136090i
\(749\) 23.9480 63.1457i 0.875040 2.30729i
\(750\) 0.0850952 + 0.700822i 0.00310724 + 0.0255904i
\(751\) 17.8804 47.1468i 0.652466 1.72041i −0.0402376 0.999190i \(-0.512811\pi\)
0.692704 0.721222i \(-0.256419\pi\)
\(752\) −7.70055 + 6.82209i −0.280810 + 0.248776i
\(753\) 1.43744 1.27346i 0.0523833 0.0464076i
\(754\) 5.03646 11.8140i 0.183417 0.430239i
\(755\) 38.0073 + 33.6715i 1.38323 + 1.22543i
\(756\) −4.98518 −0.181309
\(757\) 8.98475 7.95980i 0.326556 0.289304i −0.483875 0.875137i \(-0.660771\pi\)
0.810432 + 0.585833i \(0.199233\pi\)
\(758\) −7.89870 1.94685i −0.286894 0.0707129i
\(759\) −0.0610974 0.0885149i −0.00221770 0.00321289i
\(760\) −2.78072 + 7.33215i −0.100867 + 0.265965i
\(761\) −0.232988 + 0.614338i −0.00844580 + 0.0222697i −0.939173 0.343445i \(-0.888406\pi\)
0.930727 + 0.365715i \(0.119175\pi\)
\(762\) 0.221211 + 0.320480i 0.00801364 + 0.0116098i
\(763\) −11.0472 2.72290i −0.399937 0.0985756i
\(764\) 14.9943 13.2838i 0.542475 0.480591i
\(765\) 12.9147 0.466931
\(766\) −2.22926 1.97495i −0.0805464 0.0713579i
\(767\)