Properties

Label 169.2.g.a.27.5
Level $169$
Weight $2$
Character 169.27
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 27.5
Character \(\chi\) \(=\) 169.27
Dual form 169.2.g.a.144.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.235915 - 0.622057i) q^{2} +(1.17724 - 1.70553i) q^{3} +(1.16572 - 1.03274i) q^{4} +(0.100994 + 0.831764i) q^{5} +(-1.33867 - 0.329951i) q^{6} +(1.56980 + 0.823895i) q^{7} +(-2.09560 - 1.09986i) q^{8} +(-0.459118 - 1.21059i) q^{9} +O(q^{10})\) \(q+(-0.235915 - 0.622057i) q^{2} +(1.17724 - 1.70553i) q^{3} +(1.16572 - 1.03274i) q^{4} +(0.100994 + 0.831764i) q^{5} +(-1.33867 - 0.329951i) q^{6} +(1.56980 + 0.823895i) q^{7} +(-2.09560 - 1.09986i) q^{8} +(-0.459118 - 1.21059i) q^{9} +(0.493578 - 0.259050i) q^{10} +(-1.18451 + 3.12329i) q^{11} +(-0.389031 - 3.20396i) q^{12} +(-3.10393 + 1.83457i) q^{13} +(0.142170 - 1.17087i) q^{14} +(1.53749 + 0.806939i) q^{15} +(0.185655 - 1.52901i) q^{16} +(-2.49560 - 1.30979i) q^{17} +(-0.644745 + 0.571195i) q^{18} -0.972208 q^{19} +(0.976728 + 0.865305i) q^{20} +(3.25321 - 1.70742i) q^{21} +2.22231 q^{22} -4.18692 q^{23} +(-4.34287 + 2.27932i) q^{24} +(4.17308 - 1.02857i) q^{25} +(1.87347 + 1.49802i) q^{26} +(3.43127 + 0.845731i) q^{27} +(2.68082 - 0.660763i) q^{28} +(-0.356856 - 0.940952i) q^{29} +(0.139244 - 1.14678i) q^{30} +(4.99025 + 1.22999i) q^{31} +(-5.59078 + 1.37800i) q^{32} +(3.93241 + 5.69708i) q^{33} +(-0.226015 + 1.86140i) q^{34} +(-0.526745 + 1.38891i) q^{35} +(-1.78543 - 0.937067i) q^{36} +(-0.710919 - 0.175226i) q^{37} +(0.229358 + 0.604768i) q^{38} +(-0.525161 + 7.45357i) q^{39} +(0.703178 - 1.85413i) q^{40} +(-0.633254 + 0.917426i) q^{41} +(-1.82959 - 1.62088i) q^{42} +(-9.05816 + 2.23264i) q^{43} +(1.84474 + 4.86417i) q^{44} +(0.960560 - 0.504141i) q^{45} +(0.987757 + 2.60450i) q^{46} +(2.67405 + 2.36900i) q^{47} +(-2.38921 - 2.11666i) q^{48} +(-2.19098 - 3.17418i) q^{49} +(-1.62432 - 2.35324i) q^{50} +(-5.17181 + 2.71438i) q^{51} +(-1.72368 + 5.34415i) q^{52} +(7.65780 + 4.01912i) q^{53} +(-0.283394 - 2.33396i) q^{54} +(-2.71747 - 0.669795i) q^{55} +(-2.38351 - 3.45312i) q^{56} +(-1.14452 + 1.65813i) q^{57} +(-0.501138 + 0.443969i) q^{58} +(0.142756 + 1.17570i) q^{59} +(2.62565 - 0.647164i) q^{60} +(12.4958 - 6.55828i) q^{61} +(-0.412154 - 3.39439i) q^{62} +(0.276679 - 2.27866i) q^{63} +(0.426232 + 0.617504i) q^{64} +(-1.83941 - 2.39645i) q^{65} +(2.61619 - 3.79021i) q^{66} +(-1.97234 - 1.74734i) q^{67} +(-4.26185 + 1.05045i) q^{68} +(-4.92902 + 7.14091i) q^{69} +0.988250 q^{70} +(-0.244306 + 0.353939i) q^{71} +(-0.369352 + 3.04189i) q^{72} +(4.92621 - 12.9894i) q^{73} +(0.0587161 + 0.483570i) q^{74} +(3.15846 - 8.32818i) q^{75} +(-1.13332 + 1.00404i) q^{76} +(-4.43270 + 3.92703i) q^{77} +(4.76044 - 1.43173i) q^{78} +(0.723050 + 0.640566i) q^{79} +1.29053 q^{80} +(8.38921 - 7.43219i) q^{81} +(0.720085 + 0.177485i) q^{82} +(-10.1950 - 14.7700i) q^{83} +(2.02903 - 5.35010i) q^{84} +(0.837396 - 2.20803i) q^{85} +(3.52578 + 5.10798i) q^{86} +(-2.02493 - 0.499100i) q^{87} +(5.91743 - 5.24239i) q^{88} -0.552206 q^{89} +(-0.540215 - 0.478589i) q^{90} +(-6.38404 + 0.322598i) q^{91} +(-4.88079 + 4.32400i) q^{92} +(7.97251 - 7.06303i) q^{93} +(0.842804 - 2.22229i) q^{94} +(-0.0981876 - 0.808647i) q^{95} +(-4.23147 + 11.1575i) q^{96} +(-1.65086 + 13.5961i) q^{97} +(-1.45764 + 2.11175i) q^{98} +4.32486 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.235915 0.622057i −0.166817 0.439861i 0.825374 0.564586i \(-0.190964\pi\)
−0.992191 + 0.124726i \(0.960195\pi\)
\(3\) 1.17724 1.70553i 0.679681 0.984688i −0.319629 0.947543i \(-0.603558\pi\)
0.999310 0.0371451i \(-0.0118264\pi\)
\(4\) 1.16572 1.03274i 0.582861 0.516370i
\(5\) 0.100994 + 0.831764i 0.0451661 + 0.371976i 0.997713 + 0.0675858i \(0.0215296\pi\)
−0.952547 + 0.304390i \(0.901547\pi\)
\(6\) −1.33867 0.329951i −0.546508 0.134702i
\(7\) 1.56980 + 0.823895i 0.593329 + 0.311403i 0.734528 0.678578i \(-0.237404\pi\)
−0.141199 + 0.989981i \(0.545096\pi\)
\(8\) −2.09560 1.09986i −0.740908 0.388859i
\(9\) −0.459118 1.21059i −0.153039 0.403531i
\(10\) 0.493578 0.259050i 0.156083 0.0819188i
\(11\) −1.18451 + 3.12329i −0.357142 + 0.941707i 0.629236 + 0.777214i \(0.283368\pi\)
−0.986378 + 0.164492i \(0.947401\pi\)
\(12\) −0.389031 3.20396i −0.112304 0.924903i
\(13\) −3.10393 + 1.83457i −0.860874 + 0.508818i
\(14\) 0.142170 1.17087i 0.0379965 0.312929i
\(15\) 1.53749 + 0.806939i 0.396979 + 0.208351i
\(16\) 0.185655 1.52901i 0.0464139 0.382253i
\(17\) −2.49560 1.30979i −0.605272 0.317671i 0.134101 0.990968i \(-0.457185\pi\)
−0.739373 + 0.673297i \(0.764878\pi\)
\(18\) −0.644745 + 0.571195i −0.151968 + 0.134632i
\(19\) −0.972208 −0.223040 −0.111520 0.993762i \(-0.535572\pi\)
−0.111520 + 0.993762i \(0.535572\pi\)
\(20\) 0.976728 + 0.865305i 0.218403 + 0.193488i
\(21\) 3.25321 1.70742i 0.709909 0.372589i
\(22\) 2.22231 0.473797
\(23\) −4.18692 −0.873033 −0.436516 0.899696i \(-0.643788\pi\)
−0.436516 + 0.899696i \(0.643788\pi\)
\(24\) −4.34287 + 2.27932i −0.886486 + 0.465263i
\(25\) 4.17308 1.02857i 0.834616 0.205714i
\(26\) 1.87347 + 1.49802i 0.367418 + 0.293785i
\(27\) 3.43127 + 0.845731i 0.660347 + 0.162761i
\(28\) 2.68082 0.660763i 0.506628 0.124873i
\(29\) −0.356856 0.940952i −0.0662665 0.174730i 0.897792 0.440419i \(-0.145170\pi\)
−0.964059 + 0.265688i \(0.914401\pi\)
\(30\) 0.139244 1.14678i 0.0254224 0.209372i
\(31\) 4.99025 + 1.22999i 0.896275 + 0.220912i 0.660438 0.750881i \(-0.270371\pi\)
0.235837 + 0.971793i \(0.424217\pi\)
\(32\) −5.59078 + 1.37800i −0.988319 + 0.243599i
\(33\) 3.93241 + 5.69708i 0.684544 + 0.991734i
\(34\) −0.226015 + 1.86140i −0.0387613 + 0.319228i
\(35\) −0.526745 + 1.38891i −0.0890362 + 0.234769i
\(36\) −1.78543 0.937067i −0.297572 0.156178i
\(37\) −0.710919 0.175226i −0.116874 0.0288069i 0.180445 0.983585i \(-0.442246\pi\)
−0.297319 + 0.954778i \(0.596092\pi\)
\(38\) 0.229358 + 0.604768i 0.0372068 + 0.0981064i
\(39\) −0.525161 + 7.45357i −0.0840931 + 1.19353i
\(40\) 0.703178 1.85413i 0.111182 0.293163i
\(41\) −0.633254 + 0.917426i −0.0988976 + 0.143278i −0.869309 0.494269i \(-0.835436\pi\)
0.770411 + 0.637547i \(0.220051\pi\)
\(42\) −1.82959 1.62088i −0.282312 0.250107i
\(43\) −9.05816 + 2.23264i −1.38136 + 0.340474i −0.858879 0.512179i \(-0.828838\pi\)
−0.522478 + 0.852653i \(0.674992\pi\)
\(44\) 1.84474 + 4.86417i 0.278105 + 0.733302i
\(45\) 0.960560 0.504141i 0.143192 0.0751529i
\(46\) 0.987757 + 2.60450i 0.145637 + 0.384013i
\(47\) 2.67405 + 2.36900i 0.390050 + 0.345554i 0.835243 0.549880i \(-0.185327\pi\)
−0.445194 + 0.895434i \(0.646865\pi\)
\(48\) −2.38921 2.11666i −0.344853 0.305513i
\(49\) −2.19098 3.17418i −0.312997 0.453455i
\(50\) −1.62432 2.35324i −0.229714 0.332798i
\(51\) −5.17181 + 2.71438i −0.724199 + 0.380089i
\(52\) −1.72368 + 5.34415i −0.239032 + 0.741100i
\(53\) 7.65780 + 4.01912i 1.05188 + 0.552069i 0.899802 0.436299i \(-0.143711\pi\)
0.152078 + 0.988368i \(0.451403\pi\)
\(54\) −0.283394 2.33396i −0.0385651 0.317612i
\(55\) −2.71747 0.669795i −0.366423 0.0903152i
\(56\) −2.38351 3.45312i −0.318511 0.461442i
\(57\) −1.14452 + 1.65813i −0.151596 + 0.219625i
\(58\) −0.501138 + 0.443969i −0.0658026 + 0.0582960i
\(59\) 0.142756 + 1.17570i 0.0185852 + 0.153063i 0.999047 0.0436464i \(-0.0138975\pi\)
−0.980462 + 0.196710i \(0.936974\pi\)
\(60\) 2.62565 0.647164i 0.338970 0.0835485i
\(61\) 12.4958 6.55828i 1.59992 0.839702i 0.600729 0.799452i \(-0.294877\pi\)
0.999190 0.0402500i \(-0.0128154\pi\)
\(62\) −0.412154 3.39439i −0.0523436 0.431088i
\(63\) 0.276679 2.27866i 0.0348583 0.287084i
\(64\) 0.426232 + 0.617504i 0.0532790 + 0.0771880i
\(65\) −1.83941 2.39645i −0.228150 0.297243i
\(66\) 2.61619 3.79021i 0.322031 0.466542i
\(67\) −1.97234 1.74734i −0.240960 0.213472i 0.533996 0.845487i \(-0.320690\pi\)
−0.774956 + 0.632015i \(0.782228\pi\)
\(68\) −4.26185 + 1.05045i −0.516825 + 0.127386i
\(69\) −4.92902 + 7.14091i −0.593384 + 0.859665i
\(70\) 0.988250 0.118118
\(71\) −0.244306 + 0.353939i −0.0289938 + 0.0420048i −0.837213 0.546877i \(-0.815816\pi\)
0.808219 + 0.588882i \(0.200432\pi\)
\(72\) −0.369352 + 3.04189i −0.0435286 + 0.358490i
\(73\) 4.92621 12.9894i 0.576569 1.52029i −0.256175 0.966631i \(-0.582462\pi\)
0.832744 0.553658i \(-0.186769\pi\)
\(74\) 0.0587161 + 0.483570i 0.00682561 + 0.0562139i
\(75\) 3.15846 8.32818i 0.364708 0.961656i
\(76\) −1.13332 + 1.00404i −0.130001 + 0.115171i
\(77\) −4.43270 + 3.92703i −0.505153 + 0.447527i
\(78\) 4.76044 1.43173i 0.539013 0.162111i
\(79\) 0.723050 + 0.640566i 0.0813495 + 0.0720693i 0.702818 0.711370i \(-0.251925\pi\)
−0.621468 + 0.783439i \(0.713463\pi\)
\(80\) 1.29053 0.144285
\(81\) 8.38921 7.43219i 0.932134 0.825799i
\(82\) 0.720085 + 0.177485i 0.0795201 + 0.0196000i
\(83\) −10.1950 14.7700i −1.11904 1.62122i −0.701708 0.712465i \(-0.747579\pi\)
−0.417337 0.908752i \(-0.637037\pi\)
\(84\) 2.02903 5.35010i 0.221385 0.583744i
\(85\) 0.837396 2.20803i 0.0908284 0.239495i
\(86\) 3.52578 + 5.10798i 0.380195 + 0.550808i
\(87\) −2.02493 0.499100i −0.217095 0.0535091i
\(88\) 5.91743 5.24239i 0.630800 0.558840i
\(89\) −0.552206 −0.0585337 −0.0292668 0.999572i \(-0.509317\pi\)
−0.0292668 + 0.999572i \(0.509317\pi\)
\(90\) −0.540215 0.478589i −0.0569436 0.0504477i
\(91\) −6.38404 + 0.322598i −0.669229 + 0.0338175i
\(92\) −4.88079 + 4.32400i −0.508857 + 0.450808i
\(93\) 7.97251 7.06303i 0.826710 0.732402i
\(94\) 0.842804 2.22229i 0.0869286 0.229212i
\(95\) −0.0981876 0.808647i −0.0100738 0.0829655i
\(96\) −4.23147 + 11.1575i −0.431873 + 1.13876i
\(97\) −1.65086 + 13.5961i −0.167620 + 1.38047i 0.629664 + 0.776867i \(0.283192\pi\)
−0.797284 + 0.603604i \(0.793731\pi\)
\(98\) −1.45764 + 2.11175i −0.147244 + 0.213319i
\(99\) 4.32486 0.434665
\(100\) 3.80240 5.50873i 0.380240 0.550873i
\(101\) −9.35193 + 2.30504i −0.930552 + 0.229361i −0.675325 0.737521i \(-0.735997\pi\)
−0.255227 + 0.966881i \(0.582150\pi\)
\(102\) 2.90861 + 2.57680i 0.287995 + 0.255141i
\(103\) −1.16770 + 1.69170i −0.115057 + 0.166688i −0.876281 0.481800i \(-0.839983\pi\)
0.761224 + 0.648488i \(0.224599\pi\)
\(104\) 8.52237 0.430652i 0.835687 0.0422289i
\(105\) 1.74873 + 2.53347i 0.170658 + 0.247241i
\(106\) 0.693533 5.71176i 0.0673619 0.554775i
\(107\) −0.145390 1.19740i −0.0140554 0.115757i 0.983992 0.178210i \(-0.0570306\pi\)
−0.998048 + 0.0624533i \(0.980108\pi\)
\(108\) 4.87332 2.55772i 0.468936 0.246116i
\(109\) −8.32863 + 2.05282i −0.797738 + 0.196625i −0.617059 0.786917i \(-0.711676\pi\)
−0.180680 + 0.983542i \(0.557830\pi\)
\(110\) 0.224440 + 1.84843i 0.0213996 + 0.176241i
\(111\) −1.13578 + 1.00621i −0.107803 + 0.0955052i
\(112\) 1.55119 2.24728i 0.146573 0.212348i
\(113\) −10.9076 15.8024i −1.02610 1.48656i −0.866372 0.499399i \(-0.833554\pi\)
−0.159727 0.987161i \(-0.551061\pi\)
\(114\) 1.30146 + 0.320781i 0.121893 + 0.0300439i
\(115\) −0.422856 3.48253i −0.0394315 0.324747i
\(116\) −1.38775 0.728349i −0.128850 0.0676255i
\(117\) 3.64598 + 2.91531i 0.337071 + 0.269521i
\(118\) 0.697674 0.366168i 0.0642261 0.0337085i
\(119\) −2.83846 4.11223i −0.260202 0.376967i
\(120\) −2.33446 3.38205i −0.213106 0.308737i
\(121\) −0.118250 0.104761i −0.0107500 0.00952369i
\(122\) −7.02757 6.22588i −0.636246 0.563665i
\(123\) 0.819205 + 2.16007i 0.0738652 + 0.194767i
\(124\) 7.08750 3.71981i 0.636476 0.334049i
\(125\) 2.76256 + 7.28426i 0.247090 + 0.651524i
\(126\) −1.48273 + 0.365459i −0.132092 + 0.0325577i
\(127\) −3.97270 3.51951i −0.352521 0.312306i 0.468215 0.883615i \(-0.344897\pi\)
−0.820735 + 0.571309i \(0.806436\pi\)
\(128\) −6.25838 + 9.06682i −0.553167 + 0.801401i
\(129\) −6.85582 + 18.0773i −0.603621 + 1.59162i
\(130\) −1.05679 + 1.70958i −0.0926863 + 0.149940i
\(131\) 3.96956 + 10.4669i 0.346822 + 0.914495i 0.988997 + 0.147937i \(0.0472631\pi\)
−0.642175 + 0.766558i \(0.721968\pi\)
\(132\) 10.4677 + 2.58006i 0.911096 + 0.224565i
\(133\) −1.52617 0.800997i −0.132336 0.0694553i
\(134\) −0.621641 + 1.63913i −0.0537016 + 0.141599i
\(135\) −0.356910 + 2.93942i −0.0307179 + 0.252985i
\(136\) 3.78921 + 5.48961i 0.324922 + 0.470730i
\(137\) 9.08614 2.23953i 0.776281 0.191336i 0.168779 0.985654i \(-0.446018\pi\)
0.607502 + 0.794318i \(0.292172\pi\)
\(138\) 5.60488 + 1.38148i 0.477119 + 0.117599i
\(139\) −0.517147 + 4.25909i −0.0438638 + 0.361251i 0.954206 + 0.299150i \(0.0967031\pi\)
−0.998070 + 0.0621009i \(0.980220\pi\)
\(140\) 0.820347 + 2.16308i 0.0693320 + 0.182813i
\(141\) 7.18839 1.77178i 0.605372 0.149211i
\(142\) 0.277806 + 0.0684730i 0.0233129 + 0.00574612i
\(143\) −2.05326 11.8675i −0.171703 0.992411i
\(144\) −1.93625 + 0.477242i −0.161354 + 0.0397702i
\(145\) 0.746609 0.391851i 0.0620025 0.0325414i
\(146\) −9.24228 −0.764897
\(147\) −7.99298 −0.659250
\(148\) −1.00970 + 0.529930i −0.0829966 + 0.0435600i
\(149\) 16.3447 + 14.4801i 1.33901 + 1.18626i 0.966033 + 0.258417i \(0.0832008\pi\)
0.372975 + 0.927841i \(0.378338\pi\)
\(150\) −5.92573 −0.483834
\(151\) −4.05848 + 3.59550i −0.330274 + 0.292597i −0.811920 0.583768i \(-0.801578\pi\)
0.481646 + 0.876366i \(0.340039\pi\)
\(152\) 2.03736 + 1.06929i 0.165252 + 0.0867309i
\(153\) −0.439852 + 3.62251i −0.0355599 + 0.292862i
\(154\) 3.48858 + 1.83095i 0.281118 + 0.147542i
\(155\) −0.519071 + 4.27493i −0.0416928 + 0.343371i
\(156\) 7.08541 + 9.23115i 0.567287 + 0.739083i
\(157\) 2.73033 + 22.4863i 0.217904 + 1.79460i 0.533594 + 0.845741i \(0.320841\pi\)
−0.315690 + 0.948863i \(0.602236\pi\)
\(158\) 0.227890 0.600897i 0.0181300 0.0478048i
\(159\) 15.8698 8.32913i 1.25856 0.660543i
\(160\) −1.71081 4.51104i −0.135251 0.356629i
\(161\) −6.57263 3.44958i −0.517996 0.271865i
\(162\) −6.60238 3.46520i −0.518732 0.272252i
\(163\) −22.1108 5.44981i −1.73185 0.426862i −0.757669 0.652639i \(-0.773662\pi\)
−0.974179 + 0.225777i \(0.927508\pi\)
\(164\) 0.209265 + 1.72345i 0.0163408 + 0.134579i
\(165\) −4.34147 + 3.84621i −0.337983 + 0.299427i
\(166\) −6.78262 + 9.82632i −0.526433 + 0.762671i
\(167\) −7.45656 19.6613i −0.577006 1.52144i −0.832158 0.554538i \(-0.812895\pi\)
0.255153 0.966901i \(-0.417874\pi\)
\(168\) −8.69537 −0.670862
\(169\) 6.26872 11.3887i 0.482209 0.876056i
\(170\) −1.57108 −0.120496
\(171\) 0.446358 + 1.17695i 0.0341338 + 0.0900035i
\(172\) −8.25357 + 11.9574i −0.629329 + 0.911740i
\(173\) 12.5449 11.1138i 0.953773 0.844969i −0.0342287 0.999414i \(-0.510897\pi\)
0.988001 + 0.154445i \(0.0493590\pi\)
\(174\) 0.167242 + 1.37736i 0.0126786 + 0.104418i
\(175\) 7.39834 + 1.82353i 0.559262 + 0.137846i
\(176\) 4.55563 + 2.39098i 0.343393 + 0.180227i
\(177\) 2.17325 + 1.14061i 0.163351 + 0.0857335i
\(178\) 0.130274 + 0.343503i 0.00976442 + 0.0257467i
\(179\) −11.3083 + 5.93508i −0.845225 + 0.443608i −0.830988 0.556290i \(-0.812224\pi\)
−0.0142371 + 0.999899i \(0.504532\pi\)
\(180\) 0.599100 1.57970i 0.0446543 0.117744i
\(181\) 0.691941 + 5.69864i 0.0514316 + 0.423577i 0.995570 + 0.0940269i \(0.0299740\pi\)
−0.944138 + 0.329550i \(0.893103\pi\)
\(182\) 1.70677 + 3.89513i 0.126514 + 0.288726i
\(183\) 3.52519 29.0326i 0.260590 2.14615i
\(184\) 8.77413 + 4.60502i 0.646837 + 0.339486i
\(185\) 0.0739476 0.609014i 0.00543674 0.0447756i
\(186\) −6.27444 3.29308i −0.460064 0.241460i
\(187\) 7.04691 6.24302i 0.515321 0.456535i
\(188\) 5.56375 0.405778
\(189\) 4.68961 + 4.15463i 0.341119 + 0.302205i
\(190\) −0.479861 + 0.251850i −0.0348128 + 0.0182711i
\(191\) 0.657915 0.0476051 0.0238025 0.999717i \(-0.492423\pi\)
0.0238025 + 0.999717i \(0.492423\pi\)
\(192\) 1.55495 0.112219
\(193\) −15.0285 + 7.88754i −1.08177 + 0.567758i −0.908827 0.417174i \(-0.863021\pi\)
−0.172945 + 0.984932i \(0.555328\pi\)
\(194\) 8.84699 2.18059i 0.635177 0.156557i
\(195\) −6.25265 + 0.315959i −0.447762 + 0.0226263i
\(196\) −5.83218 1.43750i −0.416585 0.102679i
\(197\) 8.23261 2.02916i 0.586549 0.144571i 0.0651369 0.997876i \(-0.479252\pi\)
0.521412 + 0.853305i \(0.325405\pi\)
\(198\) −1.02030 2.69031i −0.0725095 0.191192i
\(199\) −0.466046 + 3.83824i −0.0330371 + 0.272085i 0.966824 + 0.255442i \(0.0822210\pi\)
−0.999861 + 0.0166432i \(0.994702\pi\)
\(200\) −9.87640 2.43431i −0.698367 0.172132i
\(201\) −5.30206 + 1.30684i −0.373979 + 0.0921775i
\(202\) 3.64013 + 5.27364i 0.256119 + 0.371052i
\(203\) 0.215053 1.77112i 0.0150937 0.124308i
\(204\) −3.22565 + 8.50535i −0.225841 + 0.595494i
\(205\) −0.827037 0.434063i −0.0577628 0.0303163i
\(206\) 1.32781 + 0.327276i 0.0925131 + 0.0228024i
\(207\) 1.92229 + 5.06866i 0.133608 + 0.352296i
\(208\) 2.22881 + 5.08653i 0.154540 + 0.352688i
\(209\) 1.15159 3.03648i 0.0796569 0.210038i
\(210\) 1.16341 1.68549i 0.0802829 0.116310i
\(211\) 4.08429 + 3.61837i 0.281174 + 0.249099i 0.791908 0.610640i \(-0.209088\pi\)
−0.510734 + 0.859739i \(0.670626\pi\)
\(212\) 13.0776 3.22334i 0.898172 0.221380i
\(213\) 0.316046 + 0.833344i 0.0216551 + 0.0570998i
\(214\) −0.710549 + 0.372925i −0.0485721 + 0.0254926i
\(215\) −2.77185 7.30877i −0.189039 0.498454i
\(216\) −6.26039 5.54622i −0.425966 0.377373i
\(217\) 6.82032 + 6.04227i 0.462993 + 0.410176i
\(218\) 3.24182 + 4.69659i 0.219564 + 0.318093i
\(219\) −16.3544 23.6934i −1.10513 1.60105i
\(220\) −3.85954 + 2.02564i −0.260210 + 0.136569i
\(221\) 10.1491 0.512852i 0.682700 0.0344982i
\(222\) 0.893867 + 0.469137i 0.0599924 + 0.0314864i
\(223\) −0.334281 2.75305i −0.0223851 0.184358i 0.977227 0.212195i \(-0.0680611\pi\)
−0.999612 + 0.0278370i \(0.991138\pi\)
\(224\) −9.91174 2.44302i −0.662256 0.163231i
\(225\) −3.16112 4.57967i −0.210741 0.305311i
\(226\) −7.25670 + 10.5131i −0.482709 + 0.699324i
\(227\) −12.5680 + 11.1343i −0.834170 + 0.739010i −0.967719 0.252032i \(-0.918901\pi\)
0.133549 + 0.991042i \(0.457363\pi\)
\(228\) 0.378219 + 3.11491i 0.0250482 + 0.206290i
\(229\) 7.95230 1.96007i 0.525503 0.129525i 0.0323652 0.999476i \(-0.489696\pi\)
0.493138 + 0.869951i \(0.335850\pi\)
\(230\) −2.06657 + 1.08462i −0.136266 + 0.0715178i
\(231\) 1.47930 + 12.1832i 0.0973311 + 0.801594i
\(232\) −0.287085 + 2.36435i −0.0188480 + 0.155227i
\(233\) −4.93610 7.15118i −0.323375 0.468489i 0.627256 0.778813i \(-0.284178\pi\)
−0.950631 + 0.310324i \(0.899563\pi\)
\(234\) 0.953346 2.95578i 0.0623222 0.193225i
\(235\) −1.70038 + 2.46343i −0.110921 + 0.160696i
\(236\) 1.38061 + 1.22311i 0.0898698 + 0.0796177i
\(237\) 1.94371 0.479081i 0.126258 0.0311197i
\(238\) −1.88840 + 2.73582i −0.122407 + 0.177337i
\(239\) 17.8074 1.15186 0.575932 0.817498i \(-0.304639\pi\)
0.575932 + 0.817498i \(0.304639\pi\)
\(240\) 1.51926 2.20103i 0.0980679 0.142076i
\(241\) 1.20366 9.91302i 0.0775345 0.638554i −0.901197 0.433409i \(-0.857310\pi\)
0.978732 0.205145i \(-0.0657665\pi\)
\(242\) −0.0372700 + 0.0982730i −0.00239581 + 0.00631723i
\(243\) −1.52178 12.5330i −0.0976220 0.803990i
\(244\) 7.79360 20.5500i 0.498934 1.31558i
\(245\) 2.41890 2.14295i 0.154538 0.136908i
\(246\) 1.15042 1.01918i 0.0733482 0.0649808i
\(247\) 3.01766 1.78358i 0.192009 0.113487i
\(248\) −9.10478 8.06613i −0.578154 0.512200i
\(249\) −37.1926 −2.35699
\(250\) 3.87950 3.43693i 0.245361 0.217371i
\(251\) 22.1803 + 5.46696i 1.40001 + 0.345071i 0.865846 0.500310i \(-0.166781\pi\)
0.534163 + 0.845382i \(0.320627\pi\)
\(252\) −2.03073 2.94202i −0.127924 0.185330i
\(253\) 4.95943 13.0770i 0.311797 0.822141i
\(254\) −1.25211 + 3.30155i −0.0785646 + 0.207158i
\(255\) −2.78005 4.02759i −0.174093 0.252218i
\(256\) 8.57357 + 2.11319i 0.535848 + 0.132075i
\(257\) 17.1854 15.2249i 1.07199 0.949704i 0.0731291 0.997322i \(-0.476701\pi\)
0.998866 + 0.0476181i \(0.0151630\pi\)
\(258\) 12.8625 0.800785
\(259\) −0.971634 0.860792i −0.0603744 0.0534870i
\(260\) −4.61915 0.893969i −0.286468 0.0554416i
\(261\) −0.975271 + 0.864015i −0.0603678 + 0.0534812i
\(262\) 5.57451 4.93859i 0.344394 0.305107i
\(263\) −0.752629 + 1.98452i −0.0464091 + 0.122371i −0.956217 0.292660i \(-0.905460\pi\)
0.909808 + 0.415030i \(0.136229\pi\)
\(264\) −1.97480 16.2639i −0.121540 1.00097i
\(265\) −2.56957 + 6.77539i −0.157847 + 0.416209i
\(266\) −0.138219 + 1.13833i −0.00847473 + 0.0697957i
\(267\) −0.650080 + 0.941803i −0.0397842 + 0.0576374i
\(268\) −4.10375 −0.250677
\(269\) 13.5237 19.5924i 0.824552 1.19457i −0.153899 0.988087i \(-0.549183\pi\)
0.978450 0.206483i \(-0.0662017\pi\)
\(270\) 1.91269 0.471435i 0.116402 0.0286906i
\(271\) 3.77176 + 3.34149i 0.229118 + 0.202981i 0.769869 0.638202i \(-0.220321\pi\)
−0.540751 + 0.841183i \(0.681860\pi\)
\(272\) −2.46601 + 3.57263i −0.149524 + 0.216622i
\(273\) −6.96536 + 11.2679i −0.421563 + 0.681967i
\(274\) −3.53667 5.12375i −0.213658 0.309537i
\(275\) −1.73051 + 14.2521i −0.104354 + 0.859432i
\(276\) 1.62884 + 13.4147i 0.0980448 + 0.807471i
\(277\) −6.05488 + 3.17785i −0.363803 + 0.190938i −0.636713 0.771101i \(-0.719706\pi\)
0.272910 + 0.962040i \(0.412014\pi\)
\(278\) 2.77140 0.683088i 0.166217 0.0409689i
\(279\) −0.802098 6.60587i −0.0480203 0.395483i
\(280\) 2.63146 2.33127i 0.157260 0.139320i
\(281\) −11.4628 + 16.6068i −0.683815 + 0.990678i 0.315315 + 0.948987i \(0.397890\pi\)
−0.999131 + 0.0416906i \(0.986726\pi\)
\(282\) −2.79800 4.05360i −0.166618 0.241388i
\(283\) 20.8986 + 5.15103i 1.24229 + 0.306197i 0.805082 0.593163i \(-0.202121\pi\)
0.437209 + 0.899360i \(0.355967\pi\)
\(284\) 0.0807334 + 0.664900i 0.00479065 + 0.0394545i
\(285\) −1.49476 0.784512i −0.0885421 0.0464705i
\(286\) −6.89787 + 4.07697i −0.407880 + 0.241076i
\(287\) −1.74995 + 0.918442i −0.103296 + 0.0542139i
\(288\) 4.23503 + 6.13549i 0.249551 + 0.361537i
\(289\) −5.14464 7.45329i −0.302626 0.438429i
\(290\) −0.419890 0.371990i −0.0246568 0.0218440i
\(291\) 21.2450 + 18.8215i 1.24541 + 1.10333i
\(292\) −7.67203 20.2295i −0.448972 1.18384i
\(293\) 21.6529 11.3643i 1.26498 0.663911i 0.307261 0.951625i \(-0.400588\pi\)
0.957716 + 0.287714i \(0.0928952\pi\)
\(294\) 1.88566 + 4.97209i 0.109974 + 0.289978i
\(295\) −0.963488 + 0.237478i −0.0560964 + 0.0138265i
\(296\) 1.29708 + 1.14911i 0.0753913 + 0.0667909i
\(297\) −6.70582 + 9.71505i −0.389111 + 0.563725i
\(298\) 5.15151 13.5834i 0.298419 0.786865i
\(299\) 12.9959 7.68119i 0.751572 0.444215i
\(300\) −4.91896 12.9702i −0.283996 0.748836i
\(301\) −16.0590 3.95818i −0.925624 0.228146i
\(302\) 3.19406 + 1.67637i 0.183797 + 0.0964644i
\(303\) −7.07817 + 18.6636i −0.406630 + 1.07220i
\(304\) −0.180496 + 1.48652i −0.0103521 + 0.0852575i
\(305\) 6.71695 + 9.73118i 0.384611 + 0.557206i
\(306\) 2.35717 0.580991i 0.134751 0.0332130i
\(307\) −19.2746 4.75076i −1.10006 0.271140i −0.352818 0.935692i \(-0.614776\pi\)
−0.747242 + 0.664552i \(0.768623\pi\)
\(308\) −1.11170 + 9.15566i −0.0633449 + 0.521692i
\(309\) 1.51059 + 3.98309i 0.0859342 + 0.226590i
\(310\) 2.78171 0.685629i 0.157990 0.0389411i
\(311\) 1.19669 + 0.294958i 0.0678581 + 0.0167255i 0.273099 0.961986i \(-0.411951\pi\)
−0.205240 + 0.978712i \(0.565798\pi\)
\(312\) 9.29840 15.0421i 0.526418 0.851593i
\(313\) 24.4816 6.03418i 1.38378 0.341072i 0.523995 0.851722i \(-0.324441\pi\)
0.859789 + 0.510650i \(0.170595\pi\)
\(314\) 13.3436 7.00328i 0.753025 0.395218i
\(315\) 1.92325 0.108363
\(316\) 1.50441 0.0846299
\(317\) −5.34365 + 2.80457i −0.300129 + 0.157520i −0.608065 0.793887i \(-0.708054\pi\)
0.307936 + 0.951407i \(0.400362\pi\)
\(318\) −8.92512 7.90697i −0.500496 0.443401i
\(319\) 3.36156 0.188211
\(320\) −0.470571 + 0.416889i −0.0263057 + 0.0233048i
\(321\) −2.21335 1.16166i −0.123537 0.0648374i
\(322\) −0.595254 + 4.90236i −0.0331722 + 0.273198i
\(323\) 2.42624 + 1.27339i 0.135000 + 0.0708533i
\(324\) 2.10397 17.3277i 0.116887 0.962652i
\(325\) −11.0659 + 10.8484i −0.613828 + 0.601761i
\(326\) 1.82617 + 15.0398i 0.101142 + 0.832980i
\(327\) −6.30366 + 16.6214i −0.348593 + 0.919165i
\(328\) 2.33609 1.22607i 0.128989 0.0676986i
\(329\) 2.24591 + 5.92199i 0.123821 + 0.326490i
\(330\) 3.41678 + 1.79326i 0.188088 + 0.0987159i
\(331\) −26.4747 13.8950i −1.45518 0.763739i −0.462746 0.886491i \(-0.653136\pi\)
−0.992437 + 0.122752i \(0.960828\pi\)
\(332\) −27.1381 6.68894i −1.48940 0.367103i
\(333\) 0.114268 + 0.941083i 0.00626186 + 0.0515710i
\(334\) −10.4713 + 9.27680i −0.572967 + 0.507604i
\(335\) 1.25418 1.81699i 0.0685232 0.0992730i
\(336\) −2.00668 5.29119i −0.109474 0.288658i
\(337\) 23.1057 1.25865 0.629325 0.777142i \(-0.283332\pi\)
0.629325 + 0.777142i \(0.283332\pi\)
\(338\) −8.56332 1.21272i −0.465783 0.0659635i
\(339\) −39.7922 −2.16122
\(340\) −1.30415 3.43877i −0.0707276 0.186493i
\(341\) −9.75258 + 14.1291i −0.528132 + 0.765131i
\(342\) 0.626826 0.555320i 0.0338949 0.0300282i
\(343\) −2.32008 19.1076i −0.125273 1.03171i
\(344\) 21.4379 + 5.28397i 1.15585 + 0.284893i
\(345\) −6.43736 3.37859i −0.346576 0.181897i
\(346\) −9.87297 5.18173i −0.530774 0.278572i
\(347\) 10.9297 + 28.8191i 0.586735 + 1.54709i 0.818612 + 0.574347i \(0.194744\pi\)
−0.231877 + 0.972745i \(0.574487\pi\)
\(348\) −2.87594 + 1.50941i −0.154167 + 0.0809130i
\(349\) −10.5012 + 27.6894i −0.562116 + 1.48218i 0.289068 + 0.957309i \(0.406655\pi\)
−0.851183 + 0.524869i \(0.824114\pi\)
\(350\) −0.611042 5.03238i −0.0326616 0.268992i
\(351\) −12.2019 + 3.66981i −0.651292 + 0.195880i
\(352\) 2.31841 19.0939i 0.123572 1.01771i
\(353\) 1.71045 + 0.897712i 0.0910379 + 0.0477804i 0.509628 0.860395i \(-0.329783\pi\)
−0.418590 + 0.908175i \(0.637475\pi\)
\(354\) 0.196822 1.62097i 0.0104610 0.0861537i
\(355\) −0.319067 0.167459i −0.0169343 0.00888782i
\(356\) −0.643719 + 0.570285i −0.0341170 + 0.0302251i
\(357\) −10.3551 −0.548049
\(358\) 6.35976 + 5.63426i 0.336124 + 0.297780i
\(359\) −11.7667 + 6.17563i −0.621022 + 0.325937i −0.745722 0.666257i \(-0.767895\pi\)
0.124700 + 0.992194i \(0.460203\pi\)
\(360\) −2.56744 −0.135316
\(361\) −18.0548 −0.950253
\(362\) 3.38164 1.77482i 0.177735 0.0932826i
\(363\) −0.317882 + 0.0783508i −0.0166845 + 0.00411235i
\(364\) −7.10886 + 6.96911i −0.372605 + 0.365281i
\(365\) 11.3016 + 2.78559i 0.591553 + 0.145805i
\(366\) −18.8916 + 4.65635i −0.987478 + 0.243392i
\(367\) 8.48261 + 22.3668i 0.442789 + 1.16754i 0.951784 + 0.306769i \(0.0992478\pi\)
−0.508995 + 0.860769i \(0.669983\pi\)
\(368\) −0.777324 + 6.40184i −0.0405208 + 0.333719i
\(369\) 1.40137 + 0.345406i 0.0729523 + 0.0179811i
\(370\) −0.396286 + 0.0976758i −0.0206020 + 0.00507793i
\(371\) 8.70989 + 12.6185i 0.452195 + 0.655117i
\(372\) 1.99946 16.4671i 0.103667 0.853777i
\(373\) −6.13099 + 16.1661i −0.317451 + 0.837049i 0.677392 + 0.735622i \(0.263110\pi\)
−0.994843 + 0.101427i \(0.967659\pi\)
\(374\) −5.54598 2.91076i −0.286776 0.150512i
\(375\) 15.6757 + 3.86372i 0.809491 + 0.199522i
\(376\) −2.99818 7.90555i −0.154619 0.407698i
\(377\) 2.83390 + 2.26597i 0.145953 + 0.116703i
\(378\) 1.47807 3.89734i 0.0760236 0.200458i
\(379\) −19.7715 + 28.6439i −1.01559 + 1.47134i −0.138890 + 0.990308i \(0.544354\pi\)
−0.876703 + 0.481033i \(0.840262\pi\)
\(380\) −0.949582 0.841256i −0.0487125 0.0431555i
\(381\) −10.6795 + 2.63225i −0.547125 + 0.134854i
\(382\) −0.155212 0.409261i −0.00794134 0.0209396i
\(383\) 17.7452 9.31339i 0.906737 0.475892i 0.0541827 0.998531i \(-0.482745\pi\)
0.852554 + 0.522639i \(0.175052\pi\)
\(384\) 8.09611 + 21.3477i 0.413153 + 1.08939i
\(385\) −3.71404 3.29035i −0.189285 0.167692i
\(386\) 8.45194 + 7.48776i 0.430192 + 0.381117i
\(387\) 6.86158 + 9.94071i 0.348794 + 0.505315i
\(388\) 12.1168 + 17.5542i 0.615135 + 0.891177i
\(389\) 25.2576 13.2562i 1.28061 0.672116i 0.319318 0.947647i \(-0.396546\pi\)
0.961292 + 0.275531i \(0.0888537\pi\)
\(390\) 1.67164 + 3.81496i 0.0846467 + 0.193178i
\(391\) 10.4489 + 5.48399i 0.528422 + 0.277337i
\(392\) 1.10028 + 9.06160i 0.0555724 + 0.457680i
\(393\) 22.5247 + 5.55184i 1.13622 + 0.280053i
\(394\) −3.20445 4.64244i −0.161438 0.233883i
\(395\) −0.459776 + 0.666101i −0.0231338 + 0.0335152i
\(396\) 5.04159 4.46646i 0.253349 0.224448i
\(397\) −1.63785 13.4889i −0.0822011 0.676987i −0.974317 0.225181i \(-0.927703\pi\)
0.892116 0.451807i \(-0.149220\pi\)
\(398\) 2.49755 0.615590i 0.125191 0.0308568i
\(399\) −3.16280 + 1.65996i −0.158338 + 0.0831022i
\(400\) −0.797941 6.57164i −0.0398971 0.328582i
\(401\) 2.19503 18.0777i 0.109615 0.902757i −0.829347 0.558734i \(-0.811287\pi\)
0.938961 0.344023i \(-0.111790\pi\)
\(402\) 2.06377 + 2.98988i 0.102931 + 0.149122i
\(403\) −17.7459 + 5.33717i −0.883984 + 0.265863i
\(404\) −8.52125 + 12.3452i −0.423948 + 0.614195i
\(405\) 7.02909 + 6.22723i 0.349278 + 0.309434i
\(406\) −1.15247 + 0.284059i −0.0571962 + 0.0140976i
\(407\) 1.38937 2.01285i 0.0688684 0.0997732i
\(408\) 13.8235 0.684366
\(409\) −7.71205 + 11.1728i −0.381336 + 0.552461i −0.965910 0.258880i \(-0.916647\pi\)
0.584573 + 0.811341i \(0.301262\pi\)
\(410\) −0.0749011 + 0.616866i −0.00369910 + 0.0304649i
\(411\) 6.87699 18.1331i 0.339217 0.894442i
\(412\) 0.385877 + 3.17798i 0.0190108 + 0.156568i
\(413\) −0.744556 + 1.96323i −0.0366372 + 0.0966043i
\(414\) 2.69950 2.39155i 0.132673 0.117538i
\(415\) 11.2555 9.97151i 0.552511 0.489482i
\(416\) 14.8253 14.5339i 0.726871 0.712582i
\(417\) 6.65519 + 5.89598i 0.325906 + 0.288728i
\(418\) −2.16054 −0.105676
\(419\) −9.08066 + 8.04476i −0.443619 + 0.393012i −0.855148 0.518385i \(-0.826534\pi\)
0.411528 + 0.911397i \(0.364995\pi\)
\(420\) 4.65494 + 1.14734i 0.227138 + 0.0559845i
\(421\) −8.40860 12.1820i −0.409810 0.593713i 0.562675 0.826678i \(-0.309772\pi\)
−0.972485 + 0.232966i \(0.925157\pi\)
\(422\) 1.28729 3.39429i 0.0626641 0.165232i
\(423\) 1.64019 4.32483i 0.0797489 0.210280i
\(424\) −11.6273 16.8450i −0.564670 0.818065i
\(425\) −11.7615 2.89896i −0.570519 0.140620i
\(426\) 0.443827 0.393197i 0.0215035 0.0190504i
\(427\) 25.0192 1.21076
\(428\) −1.40608 1.24568i −0.0679656 0.0602123i
\(429\) −22.6576 10.4690i −1.09392 0.505450i
\(430\) −3.89255 + 3.44850i −0.187715 + 0.166301i
\(431\) 7.65943 6.78566i 0.368942 0.326854i −0.458198 0.888850i \(-0.651505\pi\)
0.827140 + 0.561996i \(0.189966\pi\)
\(432\) 1.93016 5.08942i 0.0928651 0.244865i
\(433\) −0.676258 5.56948i −0.0324989 0.267652i −0.999896 0.0143897i \(-0.995419\pi\)
0.967398 0.253262i \(-0.0815036\pi\)
\(434\) 2.14962 5.66809i 0.103185 0.272077i
\(435\) 0.210627 1.73467i 0.0100988 0.0831710i
\(436\) −7.58884 + 10.9943i −0.363440 + 0.526533i
\(437\) 4.07055 0.194721
\(438\) −10.8804 + 15.7630i −0.519886 + 0.753185i
\(439\) 27.5372 6.78730i 1.31428 0.323940i 0.480964 0.876740i \(-0.340287\pi\)
0.833314 + 0.552800i \(0.186441\pi\)
\(440\) 4.95806 + 4.39245i 0.236366 + 0.209402i
\(441\) −2.83673 + 4.10971i −0.135082 + 0.195701i
\(442\) −2.71334 6.19230i −0.129060 0.294538i
\(443\) −11.5337 16.7095i −0.547983 0.793891i 0.446936 0.894566i \(-0.352515\pi\)
−0.994919 + 0.100675i \(0.967900\pi\)
\(444\) −0.284847 + 2.34592i −0.0135182 + 0.111333i
\(445\) −0.0557697 0.459305i −0.00264374 0.0217731i
\(446\) −1.63369 + 0.857427i −0.0773575 + 0.0406003i
\(447\) 43.9379 10.8297i 2.07819 0.512229i
\(448\) 0.160341 + 1.32053i 0.00757541 + 0.0623892i
\(449\) 21.7330 19.2538i 1.02565 0.908643i 0.0297870 0.999556i \(-0.490517\pi\)
0.995859 + 0.0909134i \(0.0289786\pi\)
\(450\) −2.10306 + 3.04681i −0.0991391 + 0.143628i
\(451\) −2.11529 3.06453i −0.0996053 0.144303i
\(452\) −29.0349 7.15647i −1.36569 0.336612i
\(453\) 1.35442 + 11.1546i 0.0636360 + 0.524090i
\(454\) 9.89116 + 5.19128i 0.464215 + 0.243639i
\(455\) −0.913078 5.27743i −0.0428058 0.247410i
\(456\) 4.22218 2.21597i 0.197721 0.103772i
\(457\) −2.65318 3.84379i −0.124110 0.179805i 0.756003 0.654568i \(-0.227149\pi\)
−0.880114 + 0.474763i \(0.842534\pi\)
\(458\) −3.09534 4.48437i −0.144636 0.209541i
\(459\) −7.45533 6.60485i −0.347985 0.308288i
\(460\) −4.08948 3.62296i −0.190673 0.168922i
\(461\) −8.16012 21.5165i −0.380055 1.00212i −0.979453 0.201671i \(-0.935363\pi\)
0.599399 0.800451i \(-0.295406\pi\)
\(462\) 7.22963 3.79440i 0.336353 0.176532i
\(463\) 10.6549 + 28.0946i 0.495173 + 1.30567i 0.916963 + 0.398971i \(0.130633\pi\)
−0.421790 + 0.906694i \(0.638598\pi\)
\(464\) −1.50498 + 0.370944i −0.0698668 + 0.0172206i
\(465\) 6.67995 + 5.91792i 0.309775 + 0.274437i
\(466\) −3.28394 + 4.75761i −0.152126 + 0.220392i
\(467\) 0.244349 0.644294i 0.0113071 0.0298144i −0.929244 0.369467i \(-0.879540\pi\)
0.940551 + 0.339653i \(0.110310\pi\)
\(468\) 7.26096 0.366911i 0.335638 0.0169605i
\(469\) −1.65656 4.36798i −0.0764927 0.201695i
\(470\) 1.93354 + 0.476575i 0.0891875 + 0.0219828i
\(471\) 41.5653 + 21.8152i 1.91523 + 1.00519i
\(472\) 0.993944 2.62081i 0.0457500 0.120633i
\(473\) 3.75629 30.9358i 0.172714 1.42243i
\(474\) −0.756566 1.09608i −0.0347502 0.0503444i
\(475\) −4.05710 + 0.999985i −0.186152 + 0.0458824i
\(476\) −7.55572 1.86232i −0.346316 0.0853592i
\(477\) 1.34969 11.1157i 0.0617983 0.508955i
\(478\) −4.20103 11.0772i −0.192150 0.506659i
\(479\) 21.9659 5.41412i 1.00365 0.247377i 0.296951 0.954893i \(-0.404030\pi\)
0.706698 + 0.707515i \(0.250184\pi\)
\(480\) −9.70774 2.39274i −0.443096 0.109213i
\(481\) 2.52810 0.760342i 0.115272 0.0346686i
\(482\) −6.45043 + 1.58989i −0.293809 + 0.0724174i
\(483\) −13.6209 + 7.14882i −0.619774 + 0.325283i
\(484\) −0.246038 −0.0111835
\(485\) −11.4754 −0.521073
\(486\) −7.43720 + 3.90335i −0.337358 + 0.177059i
\(487\) −27.3338 24.2157i −1.23861 1.09732i −0.991739 0.128269i \(-0.959058\pi\)
−0.246875 0.969047i \(-0.579404\pi\)
\(488\) −33.3994 −1.51192
\(489\) −35.3245 + 31.2948i −1.59743 + 1.41520i
\(490\) −1.90369 0.999135i −0.0860001 0.0451363i
\(491\) −4.49586 + 37.0267i −0.202895 + 1.67099i 0.434666 + 0.900592i \(0.356866\pi\)
−0.637561 + 0.770400i \(0.720057\pi\)
\(492\) 3.18575 + 1.67201i 0.143625 + 0.0753801i
\(493\) −0.341881 + 2.81565i −0.0153976 + 0.126810i
\(494\) −1.82140 1.45638i −0.0819487 0.0655258i
\(495\) 0.436787 + 3.59726i 0.0196321 + 0.161685i
\(496\) 2.80713 7.40179i 0.126044 0.332350i
\(497\) −0.675121 + 0.354331i −0.0302833 + 0.0158939i
\(498\) 8.77430 + 23.1359i 0.393186 + 1.03675i
\(499\) 25.6260 + 13.4496i 1.14718 + 0.602086i 0.927624 0.373515i \(-0.121847\pi\)
0.219554 + 0.975600i \(0.429540\pi\)
\(500\) 10.7431 + 5.63843i 0.480447 + 0.252158i
\(501\) −42.3111 10.4288i −1.89032 0.465923i
\(502\) −1.83191 15.0872i −0.0817622 0.673373i
\(503\) −17.5098 + 15.5123i −0.780723 + 0.691660i −0.956165 0.292830i \(-0.905403\pi\)
0.175442 + 0.984490i \(0.443865\pi\)
\(504\) −3.08601 + 4.47085i −0.137462 + 0.199148i
\(505\) −2.86175 7.54581i −0.127346 0.335784i
\(506\) −9.30461 −0.413641
\(507\) −12.0440 24.0988i −0.534894 1.07026i
\(508\) −8.26581 −0.366736
\(509\) −9.79810 25.8355i −0.434293 1.14514i −0.956349 0.292226i \(-0.905604\pi\)
0.522056 0.852911i \(-0.325165\pi\)
\(510\) −1.84954 + 2.67952i −0.0818989 + 0.118651i
\(511\) 18.4350 16.3320i 0.815518 0.722486i
\(512\) 1.94780 + 16.0416i 0.0860815 + 0.708945i
\(513\) −3.33590 0.822226i −0.147284 0.0363022i
\(514\) −13.5251 7.09850i −0.596565 0.313101i
\(515\) −1.52503 0.800396i −0.0672008 0.0352697i
\(516\) 10.6772 + 28.1534i 0.470037 + 1.23939i
\(517\) −10.5665 + 5.54572i −0.464713 + 0.243900i
\(518\) −0.306239 + 0.807485i −0.0134554 + 0.0354789i
\(519\) −4.18656 34.4794i −0.183769 1.51348i
\(520\) 1.21891 + 7.04511i 0.0534529 + 0.308948i
\(521\) 2.40188 19.7813i 0.105228 0.866633i −0.840531 0.541764i \(-0.817757\pi\)
0.945759 0.324869i \(-0.105320\pi\)
\(522\) 0.767548 + 0.402840i 0.0335947 + 0.0176318i
\(523\) 4.46167 36.7452i 0.195095 1.60675i −0.485595 0.874184i \(-0.661397\pi\)
0.680691 0.732571i \(-0.261680\pi\)
\(524\) 15.4370 + 8.10194i 0.674367 + 0.353935i
\(525\) 11.8197 10.4714i 0.515854 0.457007i
\(526\) 1.41204 0.0615679
\(527\) −10.8426 9.60574i −0.472313 0.418433i
\(528\) 9.44096 4.95500i 0.410865 0.215639i
\(529\) −5.46971 −0.237813
\(530\) 4.82088 0.209406
\(531\) 1.35775 0.712604i 0.0589215 0.0309244i
\(532\) −2.60632 + 0.642399i −0.112998 + 0.0278515i
\(533\) 0.282491 4.00937i 0.0122360 0.173665i
\(534\) 0.739219 + 0.182201i 0.0319891 + 0.00788461i
\(535\) 0.981268 0.241861i 0.0424239 0.0104566i
\(536\) 2.21142 + 5.83103i 0.0955187 + 0.251862i
\(537\) −3.19021 + 26.2737i −0.137668 + 1.13380i
\(538\) −15.3780 3.79034i −0.662993 0.163413i
\(539\) 12.5091 3.08322i 0.538806 0.132804i
\(540\) 2.61960 + 3.79514i 0.112729 + 0.163317i
\(541\) 1.73477 14.2871i 0.0745835 0.614250i −0.906713 0.421748i \(-0.861417\pi\)
0.981297 0.192502i \(-0.0616603\pi\)
\(542\) 1.18878 3.13456i 0.0510625 0.134641i
\(543\) 10.5338 + 5.52856i 0.452048 + 0.237253i
\(544\) 15.7572 + 3.88381i 0.675586 + 0.166517i
\(545\) −2.54861 6.72013i −0.109170 0.287859i
\(546\) 8.65253 + 1.67457i 0.370294 + 0.0716651i
\(547\) −10.7057 + 28.2285i −0.457741 + 1.20696i 0.485319 + 0.874337i \(0.338704\pi\)
−0.943059 + 0.332625i \(0.892066\pi\)
\(548\) 8.27906 11.9943i 0.353664 0.512371i
\(549\) −13.6764 12.1163i −0.583696 0.517110i
\(550\) 9.27385 2.28580i 0.395438 0.0974668i
\(551\) 0.346938 + 0.914800i 0.0147801 + 0.0389718i
\(552\) 18.1833 9.54331i 0.773931 0.406190i
\(553\) 0.607285 + 1.60128i 0.0258244 + 0.0680933i
\(554\) 3.40524 + 3.01678i 0.144675 + 0.128171i
\(555\) −0.951636 0.843076i −0.0403947 0.0357866i
\(556\) 3.79568 + 5.49899i 0.160973 + 0.233209i
\(557\) −10.7758 15.6114i −0.456584 0.661476i 0.525310 0.850911i \(-0.323950\pi\)
−0.981893 + 0.189436i \(0.939334\pi\)
\(558\) −3.92000 + 2.05737i −0.165947 + 0.0870956i
\(559\) 24.0199 23.5478i 1.01594 0.995964i
\(560\) 2.02587 + 1.06326i 0.0856086 + 0.0449308i
\(561\) −2.35173 19.3683i −0.0992902 0.817729i
\(562\) 13.0346 + 3.21274i 0.549832 + 0.135521i
\(563\) 16.9492 + 24.5552i 0.714324 + 1.03488i 0.997131 + 0.0756999i \(0.0241191\pi\)
−0.282807 + 0.959177i \(0.591266\pi\)
\(564\) 6.54989 9.48915i 0.275800 0.399565i
\(565\) 12.0422 10.6685i 0.506620 0.448826i
\(566\) −1.72605 14.2153i −0.0725513 0.597514i
\(567\) 19.2927 4.75523i 0.810219 0.199701i
\(568\) 0.901252 0.473014i 0.0378157 0.0198472i
\(569\) 0.818835 + 6.74372i 0.0343274 + 0.282711i 0.999757 + 0.0220472i \(0.00701841\pi\)
−0.965430 + 0.260664i \(0.916059\pi\)
\(570\) −0.135374 + 1.11491i −0.00567019 + 0.0466983i
\(571\) 4.95459 + 7.17796i 0.207343 + 0.300388i 0.912834 0.408331i \(-0.133889\pi\)
−0.705491 + 0.708719i \(0.749274\pi\)
\(572\) −14.6496 11.7137i −0.612530 0.489776i
\(573\) 0.774525 1.12209i 0.0323563 0.0468761i
\(574\) 0.984162 + 0.871891i 0.0410781 + 0.0363920i
\(575\) −17.4723 + 4.30654i −0.728647 + 0.179595i
\(576\) 0.551856 0.799501i 0.0229940 0.0333125i
\(577\) 3.23138 0.134524 0.0672621 0.997735i \(-0.478574\pi\)
0.0672621 + 0.997735i \(0.478574\pi\)
\(578\) −3.42268 + 4.95860i −0.142365 + 0.206251i
\(579\) −4.23969 + 34.9170i −0.176196 + 1.45110i
\(580\) 0.465659 1.22784i 0.0193355 0.0509834i
\(581\) −3.83518 31.5855i −0.159110 1.31039i
\(582\) 6.69599 17.6559i 0.277558 0.731860i
\(583\) −21.6236 + 19.1568i −0.895558 + 0.793395i
\(584\) −24.6098 + 21.8024i −1.01836 + 0.902190i
\(585\) −2.05663 + 3.32703i −0.0850310 + 0.137556i
\(586\) −12.1775 10.7883i −0.503048 0.445662i
\(587\) 29.0103 1.19738 0.598692 0.800979i \(-0.295687\pi\)
0.598692 + 0.800979i \(0.295687\pi\)
\(588\) −9.31760 + 8.25467i −0.384251 + 0.340417i
\(589\) −4.85156 1.19580i −0.199905 0.0492721i
\(590\) 0.375026 + 0.543319i 0.0154396 + 0.0223681i
\(591\) 6.23099 16.4298i 0.256309 0.675830i
\(592\) −0.399908 + 1.05447i −0.0164361 + 0.0433385i
\(593\) 12.7437 + 18.4624i 0.523319 + 0.758159i 0.992140 0.125134i \(-0.0399362\pi\)
−0.468820 + 0.883294i \(0.655321\pi\)
\(594\) 7.62532 + 1.87947i 0.312871 + 0.0771157i
\(595\) 3.13373 2.77624i 0.128470 0.113815i
\(596\) 34.0076 1.39300
\(597\) 5.99757 + 5.31339i 0.245464 + 0.217462i
\(598\) −7.84406 6.27207i −0.320768 0.256484i
\(599\) −17.5046 + 15.5077i −0.715219 + 0.633629i −0.940156 0.340745i \(-0.889321\pi\)
0.224937 + 0.974373i \(0.427782\pi\)
\(600\) −15.7787 + 13.9787i −0.644163 + 0.570679i
\(601\) −4.52169 + 11.9227i −0.184443 + 0.486337i −0.995064 0.0992342i \(-0.968361\pi\)
0.810621 + 0.585572i \(0.199130\pi\)
\(602\) 1.32634 + 10.9234i 0.0540576 + 0.445204i
\(603\) −1.20978 + 3.18994i −0.0492662 + 0.129904i
\(604\) −1.01784 + 8.38271i −0.0414155 + 0.341087i
\(605\) 0.0751935 0.108937i 0.00305705 0.00442890i
\(606\) 13.2797 0.539449
\(607\) 6.78844 9.83475i 0.275534 0.399180i −0.660648 0.750696i \(-0.729718\pi\)
0.936182 + 0.351516i \(0.114334\pi\)
\(608\) 5.43540 1.33970i 0.220434 0.0543322i
\(609\) −2.76753 2.45181i −0.112146 0.0993525i
\(610\) 4.46872 6.47406i 0.180933 0.262127i
\(611\) −12.6461 2.44747i −0.511608 0.0990142i
\(612\) 3.22836 + 4.67709i 0.130499 + 0.189060i
\(613\) −2.32413 + 19.1409i −0.0938708 + 0.773095i 0.867423 + 0.497571i \(0.165775\pi\)
−0.961294 + 0.275524i \(0.911148\pi\)
\(614\) 1.59192 + 13.1107i 0.0642449 + 0.529104i
\(615\) −1.71393 + 0.899540i −0.0691123 + 0.0362729i
\(616\) 13.6084 3.35416i 0.548297 0.135143i
\(617\) 3.30011 + 27.1789i 0.132857 + 1.09418i 0.894779 + 0.446510i \(0.147333\pi\)
−0.761921 + 0.647670i \(0.775744\pi\)
\(618\) 2.12134 1.87934i 0.0853327 0.0755981i
\(619\) −16.7623 + 24.2844i −0.673734 + 0.976073i 0.325796 + 0.945440i \(0.394368\pi\)
−0.999531 + 0.0306328i \(0.990248\pi\)
\(620\) 3.80980 + 5.51945i 0.153005 + 0.221666i
\(621\) −14.3664 3.54101i −0.576505 0.142096i
\(622\) −0.0988369 0.813995i −0.00396300 0.0326382i
\(623\) −0.866853 0.454960i −0.0347297 0.0182276i
\(624\) 11.2991 + 2.18677i 0.452325 + 0.0875410i
\(625\) 13.2485 6.95336i 0.529941 0.278135i
\(626\) −9.52919 13.8054i −0.380863 0.551775i
\(627\) −3.82312 5.53874i −0.152681 0.221196i
\(628\) 26.4053 + 23.3931i 1.05369 + 0.933486i
\(629\) 1.54466 + 1.36845i 0.0615896 + 0.0545636i
\(630\) −0.453723 1.19637i −0.0180768 0.0476645i
\(631\) 21.8910 11.4893i 0.871468 0.457382i 0.0311746 0.999514i \(-0.490075\pi\)
0.840293 + 0.542132i \(0.182383\pi\)
\(632\) −0.810695 2.13763i −0.0322477 0.0850302i
\(633\) 10.9794 2.70619i 0.436394 0.107561i
\(634\) 3.00525 + 2.66242i 0.119354 + 0.105738i
\(635\) 2.52618 3.65980i 0.100248 0.145235i
\(636\) 9.89799 26.0989i 0.392481 1.03489i
\(637\) 12.6239 + 5.83293i 0.500177 + 0.231109i
\(638\) −0.793043 2.09108i −0.0313969 0.0827867i
\(639\) 0.540642 + 0.133256i 0.0213875 + 0.00527153i
\(640\) −8.17352 4.28979i −0.323087 0.169569i
\(641\) 4.77373 12.5873i 0.188551 0.497168i −0.807091 0.590427i \(-0.798959\pi\)
0.995642 + 0.0932593i \(0.0297286\pi\)
\(642\) −0.200454 + 1.65089i −0.00791128 + 0.0651552i
\(643\) 2.62792 + 3.80720i 0.103635 + 0.150141i 0.871370 0.490626i \(-0.163232\pi\)
−0.767735 + 0.640767i \(0.778616\pi\)
\(644\) −11.2244 + 2.76656i −0.442303 + 0.109018i
\(645\) −15.7285 3.87672i −0.619307 0.152646i
\(646\) 0.219734 1.80967i 0.00864532 0.0712006i
\(647\) 15.5969 + 41.1256i 0.613176 + 1.61681i 0.776412 + 0.630226i \(0.217038\pi\)
−0.163235 + 0.986587i \(0.552193\pi\)
\(648\) −25.7548 + 6.34799i −1.01174 + 0.249373i
\(649\) −3.84115 0.946757i −0.150778 0.0371635i
\(650\) 9.35895 + 4.32434i 0.367088 + 0.169615i
\(651\) 18.3344 4.51903i 0.718583 0.177115i
\(652\) −31.4032 + 16.4817i −1.22985 + 0.645473i
\(653\) −44.5562 −1.74362 −0.871809 0.489846i \(-0.837053\pi\)
−0.871809 + 0.489846i \(0.837053\pi\)
\(654\) 11.8266 0.462456
\(655\) −8.30506 + 4.35883i −0.324506 + 0.170314i
\(656\) 1.28519 + 1.13858i 0.0501781 + 0.0444539i
\(657\) −17.9865 −0.701722
\(658\) 3.15397 2.79417i 0.122955 0.108928i
\(659\) −31.2980 16.4264i −1.21920 0.639883i −0.272544 0.962143i \(-0.587865\pi\)
−0.946651 + 0.322260i \(0.895557\pi\)
\(660\) −1.08882 + 8.96723i −0.0423822 + 0.349049i
\(661\) 23.7819 + 12.4817i 0.925008 + 0.485482i 0.858792 0.512324i \(-0.171215\pi\)
0.0662155 + 0.997805i \(0.478908\pi\)
\(662\) −2.39770 + 19.7468i −0.0931893 + 0.767483i
\(663\) 11.0732 17.9133i 0.430048 0.695694i
\(664\) 5.11977 + 42.1651i 0.198686 + 1.63632i
\(665\) 0.512106 1.35031i 0.0198586 0.0523628i
\(666\) 0.558450 0.293097i 0.0216395 0.0113573i
\(667\) 1.49413 + 3.93969i 0.0578528 + 0.152545i
\(668\) −28.9973 15.2190i −1.12194 0.588839i
\(669\) −5.08893 2.67088i −0.196750 0.103262i
\(670\) −1.42615 0.351515i −0.0550971 0.0135802i
\(671\) 5.68209 + 46.7962i 0.219355 + 1.80655i
\(672\) −15.8352 + 14.0287i −0.610855 + 0.541170i
\(673\) 4.43854 6.43034i 0.171093 0.247871i −0.728052 0.685522i \(-0.759574\pi\)
0.899145 + 0.437651i \(0.144189\pi\)
\(674\) −5.45099 14.3731i −0.209964 0.553630i
\(675\) 15.1888 0.584618
\(676\) −4.45402 19.7501i −0.171308 0.759618i
\(677\) −47.7975 −1.83701 −0.918504 0.395412i \(-0.870602\pi\)
−0.918504 + 0.395412i \(0.870602\pi\)
\(678\) 9.38759 + 24.7530i 0.360528 + 0.950635i
\(679\) −13.7933 + 19.9830i −0.529337 + 0.766877i
\(680\) −4.18337 + 3.70614i −0.160425 + 0.142124i
\(681\) 4.19427 + 34.5429i 0.160725 + 1.32369i
\(682\) 11.0899 + 2.73340i 0.424653 + 0.104667i
\(683\) −32.0459 16.8190i −1.22620 0.643560i −0.277802 0.960638i \(-0.589606\pi\)
−0.948400 + 0.317078i \(0.897298\pi\)
\(684\) 1.73581 + 0.911024i 0.0663704 + 0.0348339i
\(685\) 2.78041 + 7.33134i 0.106234 + 0.280116i
\(686\) −11.3387 + 5.95100i −0.432913 + 0.227210i
\(687\) 6.01883 15.8704i 0.229633 0.605492i
\(688\) 1.73203 + 14.2645i 0.0660329 + 0.543830i
\(689\) −31.1426 + 1.57370i −1.18644 + 0.0599531i
\(690\) −0.583003 + 4.80146i −0.0221946 + 0.182789i
\(691\) −20.9518 10.9964i −0.797045 0.418322i 0.0164707 0.999864i \(-0.494757\pi\)
−0.813516 + 0.581543i \(0.802449\pi\)
\(692\) 3.14620 25.9113i 0.119601 0.984999i
\(693\) 6.78917 + 3.56323i 0.257899 + 0.135356i
\(694\) 15.3487 13.5977i 0.582628 0.516163i
\(695\) −3.59478 −0.136358
\(696\) 3.69451 + 3.27305i 0.140040 + 0.124065i
\(697\) 2.78199 1.46010i 0.105375 0.0553052i
\(698\) 19.7017 0.745722
\(699\) −18.0075 −0.681108
\(700\) 10.5076 5.51483i 0.397151 0.208441i
\(701\) −19.9987 + 4.92923i −0.755340 + 0.186175i −0.598139 0.801392i \(-0.704093\pi\)
−0.157201 + 0.987567i \(0.550247\pi\)
\(702\) 5.16145 + 6.72454i 0.194806 + 0.253801i
\(703\) 0.691161 + 0.170356i 0.0260676 + 0.00642509i
\(704\) −2.43352 + 0.599808i −0.0917167 + 0.0226061i
\(705\) 2.19969 + 5.80011i 0.0828452 + 0.218445i
\(706\) 0.154908 1.27578i 0.00583003 0.0480146i
\(707\) −16.5798 4.08655i −0.623547 0.153691i
\(708\) 3.71136 0.914768i 0.139481 0.0343791i
\(709\) 19.2921 + 27.9494i 0.724530 + 1.04966i 0.996185 + 0.0872680i \(0.0278136\pi\)
−0.271655 + 0.962395i \(0.587571\pi\)
\(710\) −0.0288965 + 0.237984i −0.00108447 + 0.00893139i
\(711\) 0.443501 1.16941i 0.0166326 0.0438565i
\(712\) 1.15721 + 0.607348i 0.0433681 + 0.0227613i
\(713\) −20.8938 5.14985i −0.782478 0.192863i
\(714\) 2.44292 + 6.44145i 0.0914240 + 0.241065i
\(715\) 9.66360 2.90638i 0.361398 0.108693i
\(716\) −7.05300 + 18.5972i −0.263583 + 0.695011i
\(717\) 20.9636 30.3710i 0.782899 1.13423i
\(718\) 6.61753 + 5.86262i 0.246964 + 0.218791i
\(719\) 8.82279 2.17462i 0.329035 0.0810998i −0.0713379 0.997452i \(-0.522727\pi\)
0.400373 + 0.916352i \(0.368881\pi\)
\(720\) −0.592503 1.56230i −0.0220813 0.0582236i
\(721\) −3.22684 + 1.69358i −0.120174 + 0.0630720i
\(722\) 4.25940 + 11.2311i 0.158519 + 0.417979i
\(723\) −15.4900 13.7229i −0.576078 0.510360i
\(724\) 6.69183 + 5.92844i 0.248700 + 0.220329i
\(725\) −2.45702 3.55961i −0.0912516 0.132201i
\(726\) 0.123732 + 0.179256i 0.00459211 + 0.00665282i
\(727\) 4.99974 2.62407i 0.185430 0.0973212i −0.369454 0.929249i \(-0.620455\pi\)
0.554884 + 0.831928i \(0.312763\pi\)
\(728\) 13.7332 + 6.34550i 0.508988 + 0.235180i
\(729\) 6.60538 + 3.46677i 0.244644 + 0.128399i
\(730\) −0.933419 7.68740i −0.0345474 0.284523i
\(731\) 25.5298 + 6.29254i 0.944255 + 0.232738i
\(732\) −25.8737 37.4846i −0.956320 1.38547i
\(733\) −10.9970 + 15.9319i −0.406182 + 0.588457i −0.971682 0.236292i \(-0.924068\pi\)
0.565500 + 0.824748i \(0.308683\pi\)
\(734\) 11.9123 10.5533i 0.439689 0.389531i
\(735\) −0.807247 6.64827i −0.0297757 0.245225i
\(736\) 23.4081 5.76959i 0.862835 0.212670i
\(737\) 7.79370 4.09045i 0.287085 0.150674i
\(738\) −0.115742 0.953217i −0.00426051 0.0350884i
\(739\) 3.04429 25.0720i 0.111986 0.922289i −0.823107 0.567886i \(-0.807761\pi\)
0.935093 0.354402i \(-0.115316\pi\)
\(740\) −0.542750 0.786310i −0.0199519 0.0289053i
\(741\) 0.510566 7.24642i 0.0187561 0.266204i
\(742\) 5.79460 8.39493i 0.212727 0.308188i
\(743\) 34.4028 + 30.4783i 1.26212 + 1.11814i 0.987672 + 0.156536i \(0.0500328\pi\)
0.274446 + 0.961603i \(0.411506\pi\)
\(744\) −24.4755 + 6.03268i −0.897317 + 0.221169i
\(745\) −10.3933 + 15.0573i −0.380782 + 0.551658i
\(746\) 11.5026 0.421141
\(747\) −13.1998 + 19.1231i −0.482954 + 0.699679i
\(748\) 1.76733 14.5553i 0.0646199 0.532193i
\(749\) 0.758295 1.99946i 0.0277075 0.0730587i
\(750\) −1.29469 10.6627i −0.0472752 0.389347i
\(751\) −3.50752 + 9.24856i −0.127991 + 0.337485i −0.983659 0.180040i \(-0.942377\pi\)
0.855668 + 0.517525i \(0.173146\pi\)
\(752\) 4.11867 3.64883i 0.150193 0.133059i
\(753\) 35.4357 31.3933i 1.29135 1.14403i
\(754\) 0.741003 2.29742i 0.0269857 0.0836671i
\(755\) −3.40049 3.01257i −0.123756 0.109639i
\(756\) 9.75744 0.354875
\(757\) −27.2140 + 24.1095i −0.989111 + 0.876276i −0.992317 0.123719i \(-0.960518\pi\)
0.00320619 + 0.999995i \(0.498979\pi\)
\(758\) 22.4826 + 5.54145i 0.816603 + 0.201275i
\(759\) −16.4647 23.8532i −0.597630 0.865816i
\(760\) −0.683635 + 1.80260i −0.0247980 + 0.0653871i
\(761\) 16.7285 44.1093i 0.606406 1.59896i −0.181653 0.983363i \(-0.558145\pi\)
0.788059 0.615600i \(-0.211086\pi\)
\(762\) 4.15686 + 6.02225i 0.150587 + 0.218163i
\(763\) −14.7656 3.63939i −0.534551 0.131755i
\(764\) 0.766947 0.679455i 0.0277472 0.0245818i
\(765\) −3.05749 −0.110544
\(766\) −9.97982 8.84135i −0.360586 0.319451i
\(767\) −2.60001 3.38739i −0.0938808 0.122312i