Properties

Label 169.2.g.a.27.4
Level $169$
Weight $2$
Character 169.27
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 27.4
Character \(\chi\) \(=\) 169.27
Dual form 169.2.g.a.144.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.553905 - 1.46053i) q^{2} +(-0.577862 + 0.837177i) q^{3} +(-0.329307 + 0.291741i) q^{4} +(0.268400 + 2.21047i) q^{5} +(1.54280 + 0.380266i) q^{6} +(3.47659 + 1.82465i) q^{7} +(-2.15772 - 1.13246i) q^{8} +(0.696873 + 1.83750i) q^{9} +O(q^{10})\) \(q+(-0.553905 - 1.46053i) q^{2} +(-0.577862 + 0.837177i) q^{3} +(-0.329307 + 0.291741i) q^{4} +(0.268400 + 2.21047i) q^{5} +(1.54280 + 0.380266i) q^{6} +(3.47659 + 1.82465i) q^{7} +(-2.15772 - 1.13246i) q^{8} +(0.696873 + 1.83750i) q^{9} +(3.07979 - 1.61640i) q^{10} +(0.440706 - 1.16205i) q^{11} +(-0.0539447 - 0.444274i) q^{12} +(1.75157 - 3.15151i) q^{13} +(0.739257 - 6.08833i) q^{14} +(-2.00565 - 1.05265i) q^{15} +(-0.564876 + 4.65218i) q^{16} +(-0.323252 - 0.169656i) q^{17} +(2.29772 - 2.03560i) q^{18} -0.0607791 q^{19} +(-0.733271 - 0.649621i) q^{20} +(-3.53654 + 1.85612i) q^{21} -1.94131 q^{22} +1.62786 q^{23} +(2.19494 - 1.15199i) q^{24} +(0.0405622 - 0.00999768i) q^{25} +(-5.57307 - 0.812585i) q^{26} +(-4.90407 - 1.20875i) q^{27} +(-1.67719 + 0.413391i) q^{28} +(0.378580 + 0.998234i) q^{29} +(-0.426480 + 3.51238i) q^{30} +(-5.11532 - 1.26081i) q^{31} +(2.37543 - 0.585492i) q^{32} +(0.718172 + 1.04045i) q^{33} +(-0.0687360 + 0.566092i) q^{34} +(-3.10023 + 8.17463i) q^{35} +(-0.765560 - 0.401797i) q^{36} +(-1.02730 - 0.253207i) q^{37} +(0.0336659 + 0.0887696i) q^{38} +(1.62620 + 3.28751i) q^{39} +(1.92414 - 5.07354i) q^{40} +(-5.47439 + 7.93102i) q^{41} +(4.66982 + 4.13710i) q^{42} +(8.94471 - 2.20467i) q^{43} +(0.193889 + 0.511243i) q^{44} +(-3.87471 + 2.03360i) q^{45} +(-0.901680 - 2.37753i) q^{46} +(-7.59014 - 6.72427i) q^{47} +(-3.56827 - 3.16122i) q^{48} +(4.78084 + 6.92624i) q^{49} +(-0.0370695 - 0.0537044i) q^{50} +(0.328827 - 0.172582i) q^{51} +(0.342617 + 1.54882i) q^{52} +(0.122643 + 0.0643680i) q^{53} +(0.950984 + 7.83206i) q^{54} +(2.68696 + 0.662276i) q^{55} +(-5.43517 - 7.87420i) q^{56} +(0.0351219 - 0.0508829i) q^{57} +(1.24825 - 1.10585i) q^{58} +(-1.20684 - 9.93920i) q^{59} +(0.967577 - 0.238486i) q^{60} +(-10.3882 + 5.45214i) q^{61} +(0.991950 + 8.16944i) q^{62} +(-0.930067 + 7.65979i) q^{63} +(3.15340 + 4.56849i) q^{64} +(7.43644 + 3.02594i) q^{65} +(1.12181 - 1.62522i) q^{66} +(-9.33975 - 8.27430i) q^{67} +(0.155945 - 0.0384370i) q^{68} +(-0.940678 + 1.36281i) q^{69} +13.6565 q^{70} +(6.75811 - 9.79081i) q^{71} +(0.577241 - 4.75401i) q^{72} +(5.29800 - 13.9697i) q^{73} +(0.199212 + 1.64066i) q^{74} +(-0.0150695 + 0.0397350i) q^{75} +(0.0200150 - 0.0177318i) q^{76} +(3.65249 - 3.23582i) q^{77} +(3.90074 - 4.19608i) q^{78} +(1.48316 + 1.31397i) q^{79} -10.4351 q^{80} +(-0.567134 + 0.502437i) q^{81} +(14.6158 + 3.60246i) q^{82} +(-4.07266 - 5.90026i) q^{83} +(0.623103 - 1.64299i) q^{84} +(0.288259 - 0.760075i) q^{85} +(-8.17450 - 11.8428i) q^{86} +(-1.05447 - 0.259902i) q^{87} +(-2.26690 + 2.00829i) q^{88} +5.81279 q^{89} +(5.11635 + 4.53269i) q^{90} +(11.8399 - 7.76047i) q^{91} +(-0.536066 + 0.474913i) q^{92} +(4.01147 - 3.55386i) q^{93} +(-5.61677 + 14.8102i) q^{94} +(-0.0163131 - 0.134351i) q^{95} +(-0.882512 + 2.32699i) q^{96} +(-1.42435 + 11.7306i) q^{97} +(7.46783 - 10.8190i) q^{98} +2.44238 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.553905 1.46053i −0.391670 1.03275i −0.975330 0.220751i \(-0.929149\pi\)
0.583660 0.811998i \(-0.301620\pi\)
\(3\) −0.577862 + 0.837177i −0.333629 + 0.483344i −0.953514 0.301348i \(-0.902564\pi\)
0.619886 + 0.784692i \(0.287179\pi\)
\(4\) −0.329307 + 0.291741i −0.164654 + 0.145870i
\(5\) 0.268400 + 2.21047i 0.120032 + 0.988553i 0.920923 + 0.389743i \(0.127436\pi\)
−0.800891 + 0.598810i \(0.795641\pi\)
\(6\) 1.54280 + 0.380266i 0.629846 + 0.155243i
\(7\) 3.47659 + 1.82465i 1.31403 + 0.689654i 0.968561 0.248777i \(-0.0800288\pi\)
0.345465 + 0.938431i \(0.387721\pi\)
\(8\) −2.15772 1.13246i −0.762871 0.400385i
\(9\) 0.696873 + 1.83750i 0.232291 + 0.612501i
\(10\) 3.07979 1.61640i 0.973914 0.511149i
\(11\) 0.440706 1.16205i 0.132878 0.350370i −0.852019 0.523510i \(-0.824622\pi\)
0.984897 + 0.173140i \(0.0553913\pi\)
\(12\) −0.0539447 0.444274i −0.0155725 0.128251i
\(13\) 1.75157 3.15151i 0.485799 0.874071i
\(14\) 0.739257 6.08833i 0.197575 1.62718i
\(15\) −2.00565 1.05265i −0.517858 0.271793i
\(16\) −0.564876 + 4.65218i −0.141219 + 1.16304i
\(17\) −0.323252 0.169656i −0.0784002 0.0411476i 0.425067 0.905162i \(-0.360250\pi\)
−0.503468 + 0.864014i \(0.667943\pi\)
\(18\) 2.29772 2.03560i 0.541578 0.479797i
\(19\) −0.0607791 −0.0139437 −0.00697184 0.999976i \(-0.502219\pi\)
−0.00697184 + 0.999976i \(0.502219\pi\)
\(20\) −0.733271 0.649621i −0.163964 0.145260i
\(21\) −3.53654 + 1.85612i −0.771737 + 0.405039i
\(22\) −1.94131 −0.413889
\(23\) 1.62786 0.339432 0.169716 0.985493i \(-0.445715\pi\)
0.169716 + 0.985493i \(0.445715\pi\)
\(24\) 2.19494 1.15199i 0.448040 0.235149i
\(25\) 0.0405622 0.00999768i 0.00811244 0.00199954i
\(26\) −5.57307 0.812585i −1.09297 0.159361i
\(27\) −4.90407 1.20875i −0.943789 0.232623i
\(28\) −1.67719 + 0.413391i −0.316959 + 0.0781235i
\(29\) 0.378580 + 0.998234i 0.0703006 + 0.185367i 0.965562 0.260175i \(-0.0837802\pi\)
−0.895261 + 0.445542i \(0.853011\pi\)
\(30\) −0.426480 + 3.51238i −0.0778643 + 0.641270i
\(31\) −5.11532 1.26081i −0.918739 0.226449i −0.248533 0.968623i \(-0.579948\pi\)
−0.670207 + 0.742175i \(0.733795\pi\)
\(32\) 2.37543 0.585492i 0.419922 0.103501i
\(33\) 0.718172 + 1.04045i 0.125018 + 0.181119i
\(34\) −0.0687360 + 0.566092i −0.0117881 + 0.0970839i
\(35\) −3.10023 + 8.17463i −0.524034 + 1.38177i
\(36\) −0.765560 0.401797i −0.127593 0.0669662i
\(37\) −1.02730 0.253207i −0.168887 0.0416270i 0.153965 0.988076i \(-0.450796\pi\)
−0.322853 + 0.946449i \(0.604642\pi\)
\(38\) 0.0336659 + 0.0887696i 0.00546132 + 0.0144003i
\(39\) 1.62620 + 3.28751i 0.260401 + 0.526423i
\(40\) 1.92414 5.07354i 0.304233 0.802197i
\(41\) −5.47439 + 7.93102i −0.854955 + 1.23862i 0.114518 + 0.993421i \(0.463468\pi\)
−0.969474 + 0.245196i \(0.921148\pi\)
\(42\) 4.66982 + 4.13710i 0.720570 + 0.638369i
\(43\) 8.94471 2.20467i 1.36405 0.336209i 0.511696 0.859167i \(-0.329017\pi\)
0.852359 + 0.522957i \(0.175171\pi\)
\(44\) 0.193889 + 0.511243i 0.0292298 + 0.0770727i
\(45\) −3.87471 + 2.03360i −0.577608 + 0.303152i
\(46\) −0.901680 2.37753i −0.132945 0.350548i
\(47\) −7.59014 6.72427i −1.10714 0.980836i −0.107225 0.994235i \(-0.534196\pi\)
−0.999910 + 0.0133986i \(0.995735\pi\)
\(48\) −3.56827 3.16122i −0.515036 0.456282i
\(49\) 4.78084 + 6.92624i 0.682977 + 0.989463i
\(50\) −0.0370695 0.0537044i −0.00524241 0.00759495i
\(51\) 0.328827 0.172582i 0.0460450 0.0241663i
\(52\) 0.342617 + 1.54882i 0.0475125 + 0.214783i
\(53\) 0.122643 + 0.0643680i 0.0168463 + 0.00884162i 0.473125 0.880995i \(-0.343126\pi\)
−0.456279 + 0.889837i \(0.650818\pi\)
\(54\) 0.950984 + 7.83206i 0.129413 + 1.06581i
\(55\) 2.68696 + 0.662276i 0.362309 + 0.0893012i
\(56\) −5.43517 7.87420i −0.726305 1.05223i
\(57\) 0.0351219 0.0508829i 0.00465201 0.00673960i
\(58\) 1.24825 1.10585i 0.163903 0.145206i
\(59\) −1.20684 9.93920i −0.157117 1.29397i −0.831472 0.555567i \(-0.812501\pi\)
0.674355 0.738407i \(-0.264422\pi\)
\(60\) 0.967577 0.238486i 0.124914 0.0307885i
\(61\) −10.3882 + 5.45214i −1.33007 + 0.698075i −0.971859 0.235564i \(-0.924306\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(62\) 0.991950 + 8.16944i 0.125978 + 1.03752i
\(63\) −0.930067 + 7.65979i −0.117177 + 0.965043i
\(64\) 3.15340 + 4.56849i 0.394175 + 0.571061i
\(65\) 7.43644 + 3.02594i 0.922377 + 0.375321i
\(66\) 1.12181 1.62522i 0.138085 0.200051i
\(67\) −9.33975 8.27430i −1.14103 1.01087i −0.999782 0.0208923i \(-0.993349\pi\)
−0.141250 0.989974i \(-0.545112\pi\)
\(68\) 0.155945 0.0384370i 0.0189111 0.00466117i
\(69\) −0.940678 + 1.36281i −0.113244 + 0.164063i
\(70\) 13.6565 1.63226
\(71\) 6.75811 9.79081i 0.802040 1.16196i −0.181876 0.983321i \(-0.558217\pi\)
0.983916 0.178634i \(-0.0571677\pi\)
\(72\) 0.577241 4.75401i 0.0680285 0.560265i
\(73\) 5.29800 13.9697i 0.620084 1.63503i −0.143748 0.989614i \(-0.545916\pi\)
0.763833 0.645414i \(-0.223315\pi\)
\(74\) 0.199212 + 1.64066i 0.0231579 + 0.190722i
\(75\) −0.0150695 + 0.0397350i −0.00174008 + 0.00458820i
\(76\) 0.0200150 0.0177318i 0.00229588 0.00203397i
\(77\) 3.65249 3.23582i 0.416240 0.368756i
\(78\) 3.90074 4.19608i 0.441672 0.475113i
\(79\) 1.48316 + 1.31397i 0.166869 + 0.147833i 0.742425 0.669930i \(-0.233676\pi\)
−0.575556 + 0.817763i \(0.695214\pi\)
\(80\) −10.4351 −1.16668
\(81\) −0.567134 + 0.502437i −0.0630149 + 0.0558263i
\(82\) 14.6158 + 3.60246i 1.61404 + 0.397825i
\(83\) −4.07266 5.90026i −0.447032 0.647638i 0.533084 0.846062i \(-0.321033\pi\)
−0.980116 + 0.198424i \(0.936418\pi\)
\(84\) 0.623103 1.64299i 0.0679862 0.179265i
\(85\) 0.288259 0.760075i 0.0312660 0.0824418i
\(86\) −8.17450 11.8428i −0.881479 1.27704i
\(87\) −1.05447 0.259902i −0.113051 0.0278645i
\(88\) −2.26690 + 2.00829i −0.241652 + 0.214085i
\(89\) 5.81279 0.616155 0.308077 0.951361i \(-0.400314\pi\)
0.308077 + 0.951361i \(0.400314\pi\)
\(90\) 5.11635 + 4.53269i 0.539311 + 0.477788i
\(91\) 11.8399 7.76047i 1.24116 0.813518i
\(92\) −0.536066 + 0.474913i −0.0558888 + 0.0495131i
\(93\) 4.01147 3.55386i 0.415971 0.368518i
\(94\) −5.61677 + 14.8102i −0.579326 + 1.52756i
\(95\) −0.0163131 0.134351i −0.00167369 0.0137841i
\(96\) −0.882512 + 2.32699i −0.0900710 + 0.237498i
\(97\) −1.42435 + 11.7306i −0.144621 + 1.19106i 0.721928 + 0.691968i \(0.243256\pi\)
−0.866549 + 0.499092i \(0.833667\pi\)
\(98\) 7.46783 10.8190i 0.754365 1.09289i
\(99\) 2.44238 0.245469
\(100\) −0.0104407 + 0.0151260i −0.00104407 + 0.00151260i
\(101\) −8.43507 + 2.07906i −0.839321 + 0.206874i −0.635468 0.772127i \(-0.719193\pi\)
−0.203853 + 0.979001i \(0.565347\pi\)
\(102\) −0.434199 0.384667i −0.0429921 0.0380877i
\(103\) 5.54653 8.03553i 0.546515 0.791764i −0.448254 0.893906i \(-0.647954\pi\)
0.994770 + 0.102142i \(0.0325695\pi\)
\(104\) −7.34837 + 4.81649i −0.720567 + 0.472296i
\(105\) −5.05211 7.31925i −0.493036 0.714285i
\(106\) 0.0260787 0.214777i 0.00253298 0.0208610i
\(107\) −1.44721 11.9189i −0.139907 1.15224i −0.878382 0.477959i \(-0.841377\pi\)
0.738475 0.674281i \(-0.235546\pi\)
\(108\) 1.96759 1.03267i 0.189331 0.0993687i
\(109\) −6.95637 + 1.71459i −0.666300 + 0.164228i −0.557937 0.829883i \(-0.688407\pi\)
−0.108363 + 0.994111i \(0.534561\pi\)
\(110\) −0.521048 4.29121i −0.0496799 0.409151i
\(111\) 0.805618 0.713715i 0.0764659 0.0677429i
\(112\) −10.4524 + 15.1430i −0.987664 + 1.43088i
\(113\) 4.92823 + 7.13977i 0.463609 + 0.671653i 0.983152 0.182791i \(-0.0585132\pi\)
−0.519543 + 0.854444i \(0.673898\pi\)
\(114\) −0.0937700 0.0231122i −0.00878237 0.00216466i
\(115\) 0.436917 + 3.59834i 0.0407428 + 0.335547i
\(116\) −0.415895 0.218278i −0.0386149 0.0202666i
\(117\) 7.01153 + 1.02232i 0.648216 + 0.0945136i
\(118\) −13.8480 + 7.26799i −1.27481 + 0.669073i
\(119\) −0.814251 1.17965i −0.0746423 0.108138i
\(120\) 3.13557 + 4.54265i 0.286237 + 0.414685i
\(121\) 7.07749 + 6.27011i 0.643408 + 0.570010i
\(122\) 13.7171 + 12.1523i 1.24189 + 1.10021i
\(123\) −3.47623 9.16606i −0.313441 0.826476i
\(124\) 2.05234 1.07715i 0.184306 0.0967313i
\(125\) 3.98099 + 10.4970i 0.356071 + 0.938881i
\(126\) 11.7025 2.88441i 1.04254 0.256963i
\(127\) 7.66467 + 6.79031i 0.680130 + 0.602542i 0.930799 0.365530i \(-0.119112\pi\)
−0.250670 + 0.968073i \(0.580651\pi\)
\(128\) 7.70529 11.1630i 0.681058 0.986683i
\(129\) −3.32310 + 8.76230i −0.292583 + 0.771477i
\(130\) 0.300385 12.5372i 0.0263455 1.09959i
\(131\) 4.78317 + 12.6122i 0.417908 + 1.10193i 0.964395 + 0.264465i \(0.0851952\pi\)
−0.546488 + 0.837467i \(0.684036\pi\)
\(132\) −0.540042 0.133108i −0.0470046 0.0115856i
\(133\) −0.211304 0.110901i −0.0183224 0.00961632i
\(134\) −6.91150 + 18.2241i −0.597063 + 1.57433i
\(135\) 1.35564 11.1647i 0.116675 0.960908i
\(136\) 0.505360 + 0.732141i 0.0433343 + 0.0627806i
\(137\) −16.9667 + 4.18190i −1.44956 + 0.357284i −0.884025 0.467441i \(-0.845176\pi\)
−0.565534 + 0.824725i \(0.691330\pi\)
\(138\) 2.51146 + 0.619020i 0.213790 + 0.0526945i
\(139\) −0.472428 + 3.89079i −0.0400708 + 0.330013i 0.958864 + 0.283866i \(0.0916172\pi\)
−0.998935 + 0.0461464i \(0.985306\pi\)
\(140\) −1.36395 3.59643i −0.115274 0.303954i
\(141\) 10.0155 2.46859i 0.843454 0.207893i
\(142\) −18.0431 4.44722i −1.51414 0.373203i
\(143\) −2.89027 3.42430i −0.241697 0.286354i
\(144\) −8.94204 + 2.20401i −0.745170 + 0.183668i
\(145\) −2.10496 + 1.10477i −0.174807 + 0.0917459i
\(146\) −23.3377 −1.93144
\(147\) −8.56115 −0.706112
\(148\) 0.412169 0.216323i 0.0338801 0.0177816i
\(149\) 6.35051 + 5.62606i 0.520254 + 0.460905i 0.881917 0.471404i \(-0.156253\pi\)
−0.361663 + 0.932309i \(0.617791\pi\)
\(150\) 0.0663811 0.00542000
\(151\) −11.8864 + 10.5305i −0.967304 + 0.856957i −0.989753 0.142791i \(-0.954392\pi\)
0.0224487 + 0.999748i \(0.492854\pi\)
\(152\) 0.131145 + 0.0688300i 0.0106372 + 0.00558285i
\(153\) 0.0864774 0.712206i 0.00699129 0.0575784i
\(154\) −6.74913 3.54222i −0.543861 0.285440i
\(155\) 1.41404 11.6457i 0.113579 0.935404i
\(156\) −1.49462 0.608172i −0.119666 0.0486927i
\(157\) −1.34440 11.0721i −0.107295 0.883651i −0.942614 0.333885i \(-0.891640\pi\)
0.835319 0.549766i \(-0.185283\pi\)
\(158\) 1.09756 2.89402i 0.0873168 0.230236i
\(159\) −0.124758 + 0.0654781i −0.00989396 + 0.00519275i
\(160\) 1.93178 + 5.09369i 0.152721 + 0.402691i
\(161\) 5.65940 + 2.97028i 0.446023 + 0.234091i
\(162\) 1.04796 + 0.550012i 0.0823356 + 0.0432131i
\(163\) −14.3833 3.54516i −1.12659 0.277679i −0.368369 0.929680i \(-0.620084\pi\)
−0.758218 + 0.652001i \(0.773930\pi\)
\(164\) −0.511046 4.20884i −0.0399060 0.328655i
\(165\) −2.10713 + 1.86676i −0.164040 + 0.145327i
\(166\) −6.36163 + 9.21641i −0.493758 + 0.715332i
\(167\) 5.79120 + 15.2701i 0.448136 + 1.18164i 0.948767 + 0.315977i \(0.102332\pi\)
−0.500631 + 0.865661i \(0.666899\pi\)
\(168\) 9.73287 0.750907
\(169\) −6.86399 11.0402i −0.527999 0.849245i
\(170\) −1.26978 −0.0973876
\(171\) −0.0423553 0.111682i −0.00323899 0.00854053i
\(172\) −2.30236 + 3.33555i −0.175554 + 0.254333i
\(173\) 5.88078 5.20991i 0.447107 0.396102i −0.409303 0.912399i \(-0.634228\pi\)
0.856410 + 0.516296i \(0.172690\pi\)
\(174\) 0.204479 + 1.68404i 0.0155015 + 0.127666i
\(175\) 0.159260 + 0.0392541i 0.0120389 + 0.00296733i
\(176\) 5.15710 + 2.70666i 0.388731 + 0.204022i
\(177\) 9.01826 + 4.73315i 0.677854 + 0.355765i
\(178\) −3.21973 8.48974i −0.241329 0.636333i
\(179\) 15.1989 7.97701i 1.13602 0.596230i 0.211507 0.977377i \(-0.432163\pi\)
0.924515 + 0.381147i \(0.124471\pi\)
\(180\) 0.682685 1.80009i 0.0508843 0.134171i
\(181\) −1.87511 15.4429i −0.139376 1.14786i −0.879672 0.475582i \(-0.842238\pi\)
0.740296 0.672281i \(-0.234686\pi\)
\(182\) −17.8926 12.9939i −1.32628 0.963174i
\(183\) 1.43853 11.8473i 0.106339 0.875781i
\(184\) −3.51247 1.84349i −0.258943 0.135904i
\(185\) 0.283980 2.33878i 0.0208786 0.171951i
\(186\) −7.41248 3.89037i −0.543509 0.285256i
\(187\) −0.339607 + 0.300866i −0.0248346 + 0.0220015i
\(188\) 4.46123 0.325369
\(189\) −14.8439 13.1505i −1.07973 0.956561i
\(190\) −0.187187 + 0.0982431i −0.0135799 + 0.00712731i
\(191\) −0.984574 −0.0712413 −0.0356206 0.999365i \(-0.511341\pi\)
−0.0356206 + 0.999365i \(0.511341\pi\)
\(192\) −5.64687 −0.407527
\(193\) 4.65410 2.44266i 0.335009 0.175826i −0.288827 0.957381i \(-0.593265\pi\)
0.623837 + 0.781555i \(0.285573\pi\)
\(194\) 17.9218 4.41732i 1.28671 0.317145i
\(195\) −6.83048 + 4.47704i −0.489141 + 0.320608i
\(196\) −3.59503 0.886096i −0.256788 0.0632926i
\(197\) 25.2983 6.23547i 1.80243 0.444259i 0.812162 0.583433i \(-0.198291\pi\)
0.990268 + 0.139174i \(0.0444446\pi\)
\(198\) −1.35285 3.56717i −0.0961427 0.253507i
\(199\) −2.45620 + 20.2286i −0.174116 + 1.43397i 0.599530 + 0.800352i \(0.295354\pi\)
−0.773646 + 0.633618i \(0.781569\pi\)
\(200\) −0.0988440 0.0243629i −0.00698932 0.00172271i
\(201\) 12.3241 3.03763i 0.869277 0.214258i
\(202\) 7.70875 + 11.1681i 0.542386 + 0.785781i
\(203\) −0.505264 + 4.16122i −0.0354626 + 0.292061i
\(204\) −0.0579360 + 0.152765i −0.00405633 + 0.0106957i
\(205\) −19.0006 9.97229i −1.32706 0.696495i
\(206\) −14.8084 3.64993i −1.03175 0.254303i
\(207\) 1.13441 + 2.99120i 0.0788471 + 0.207903i
\(208\) 13.6719 + 9.92883i 0.947978 + 0.688441i
\(209\) −0.0267857 + 0.0706282i −0.00185281 + 0.00488546i
\(210\) −7.89157 + 11.4329i −0.544570 + 0.788946i
\(211\) −4.40832 3.90543i −0.303481 0.268861i 0.497613 0.867399i \(-0.334210\pi\)
−0.801094 + 0.598538i \(0.795748\pi\)
\(212\) −0.0591660 + 0.0145831i −0.00406354 + 0.00100157i
\(213\) 4.29139 + 11.3155i 0.294041 + 0.775323i
\(214\) −16.6062 + 8.71560i −1.13518 + 0.595786i
\(215\) 7.27412 + 19.1803i 0.496091 + 1.30808i
\(216\) 9.21278 + 8.16181i 0.626850 + 0.555341i
\(217\) −15.4833 13.7170i −1.05108 0.931172i
\(218\) 6.35738 + 9.21025i 0.430576 + 0.623797i
\(219\) 8.63359 + 12.5079i 0.583404 + 0.845207i
\(220\) −1.07805 + 0.565803i −0.0726820 + 0.0381464i
\(221\) −1.10087 + 0.721567i −0.0740526 + 0.0485378i
\(222\) −1.48864 0.781297i −0.0999107 0.0524372i
\(223\) 0.604914 + 4.98192i 0.0405081 + 0.333614i 0.998848 + 0.0479841i \(0.0152797\pi\)
−0.958340 + 0.285630i \(0.907797\pi\)
\(224\) 9.32672 + 2.29883i 0.623168 + 0.153597i
\(225\) 0.0466375 + 0.0675660i 0.00310916 + 0.00450440i
\(226\) 7.69806 11.1526i 0.512067 0.741858i
\(227\) 11.1975 9.92008i 0.743202 0.658419i −0.204032 0.978964i \(-0.565405\pi\)
0.947233 + 0.320545i \(0.103866\pi\)
\(228\) 0.00327871 + 0.0270026i 0.000217138 + 0.00178829i
\(229\) 10.2125 2.51715i 0.674858 0.166338i 0.113030 0.993592i \(-0.463944\pi\)
0.561828 + 0.827254i \(0.310098\pi\)
\(230\) 5.01346 2.63127i 0.330578 0.173501i
\(231\) 0.598323 + 4.92764i 0.0393668 + 0.324215i
\(232\) 0.313589 2.58264i 0.0205881 0.169559i
\(233\) 14.8144 + 21.4623i 0.970521 + 1.40604i 0.913120 + 0.407691i \(0.133666\pi\)
0.0574012 + 0.998351i \(0.481719\pi\)
\(234\) −2.39059 10.8068i −0.156278 0.706462i
\(235\) 12.8266 18.5826i 0.836717 1.21219i
\(236\) 3.29709 + 2.92097i 0.214622 + 0.190139i
\(237\) −1.95709 + 0.482379i −0.127127 + 0.0313339i
\(238\) −1.27189 + 1.84265i −0.0824442 + 0.119441i
\(239\) −4.12835 −0.267041 −0.133521 0.991046i \(-0.542628\pi\)
−0.133521 + 0.991046i \(0.542628\pi\)
\(240\) 6.03005 8.73604i 0.389238 0.563909i
\(241\) −2.61208 + 21.5124i −0.168259 + 1.38574i 0.626789 + 0.779189i \(0.284369\pi\)
−0.795048 + 0.606547i \(0.792554\pi\)
\(242\) 5.23741 13.8099i 0.336673 0.887734i
\(243\) −1.91934 15.8072i −0.123126 1.01403i
\(244\) 1.83029 4.82609i 0.117173 0.308959i
\(245\) −14.0271 + 12.4269i −0.896158 + 0.793926i
\(246\) −11.4618 + 10.1543i −0.730776 + 0.647411i
\(247\) −0.106459 + 0.191546i −0.00677383 + 0.0121878i
\(248\) 9.60964 + 8.51340i 0.610213 + 0.540601i
\(249\) 7.29300 0.462175
\(250\) 13.1261 11.6287i 0.830166 0.735463i
\(251\) −15.3767 3.79002i −0.970570 0.239224i −0.278005 0.960580i \(-0.589673\pi\)
−0.692565 + 0.721356i \(0.743519\pi\)
\(252\) −1.92840 2.79376i −0.121478 0.175991i
\(253\) 0.717408 1.89165i 0.0451031 0.118927i
\(254\) 5.67193 14.9556i 0.355888 0.938401i
\(255\) 0.469744 + 0.680542i 0.0294165 + 0.0426172i
\(256\) −9.79227 2.41358i −0.612017 0.150849i
\(257\) 2.01791 1.78771i 0.125874 0.111514i −0.597838 0.801617i \(-0.703973\pi\)
0.723711 + 0.690103i \(0.242435\pi\)
\(258\) 14.6383 0.911338
\(259\) −3.10949 2.75477i −0.193214 0.171173i
\(260\) −3.33166 + 1.17305i −0.206621 + 0.0727494i
\(261\) −1.57044 + 1.39128i −0.0972075 + 0.0861184i
\(262\) 15.7710 13.9719i 0.974337 0.863187i
\(263\) 0.169781 0.447675i 0.0104691 0.0276048i −0.929680 0.368369i \(-0.879916\pi\)
0.940149 + 0.340764i \(0.110686\pi\)
\(264\) −0.371346 3.05831i −0.0228548 0.188226i
\(265\) −0.109366 + 0.288375i −0.00671831 + 0.0177147i
\(266\) −0.0449314 + 0.370044i −0.00275492 + 0.0226888i
\(267\) −3.35899 + 4.86634i −0.205567 + 0.297815i
\(268\) 5.48960 0.335331
\(269\) 0.369967 0.535989i 0.0225573 0.0326798i −0.811543 0.584293i \(-0.801372\pi\)
0.834100 + 0.551613i \(0.185987\pi\)
\(270\) −17.0573 + 4.20425i −1.03807 + 0.255862i
\(271\) 17.5332 + 15.5331i 1.06507 + 0.943566i 0.998529 0.0542175i \(-0.0172664\pi\)
0.0665372 + 0.997784i \(0.478805\pi\)
\(272\) 0.971866 1.40799i 0.0589280 0.0853720i
\(273\) −0.344935 + 14.3966i −0.0208764 + 0.871320i
\(274\) 15.5057 + 22.4639i 0.936733 + 1.35709i
\(275\) 0.00625824 0.0515412i 0.000377386 0.00310805i
\(276\) −0.0878144 0.723217i −0.00528581 0.0435325i
\(277\) 2.86313 1.50269i 0.172029 0.0902878i −0.376511 0.926412i \(-0.622876\pi\)
0.548540 + 0.836124i \(0.315184\pi\)
\(278\) 5.94429 1.46514i 0.356515 0.0878730i
\(279\) −1.24798 10.2781i −0.0747147 0.615331i
\(280\) 15.9469 14.1277i 0.953009 0.844292i
\(281\) −4.61637 + 6.68796i −0.275389 + 0.398970i −0.936136 0.351639i \(-0.885624\pi\)
0.660746 + 0.750609i \(0.270240\pi\)
\(282\) −9.15305 13.2605i −0.545056 0.789650i
\(283\) −23.1258 5.69999i −1.37468 0.338829i −0.518314 0.855190i \(-0.673440\pi\)
−0.856371 + 0.516361i \(0.827286\pi\)
\(284\) 0.630884 + 5.19580i 0.0374361 + 0.308314i
\(285\) 0.121902 + 0.0639791i 0.00722085 + 0.00378979i
\(286\) −3.40035 + 6.11805i −0.201067 + 0.361768i
\(287\) −33.5035 + 17.5840i −1.97765 + 1.03795i
\(288\) 2.73122 + 3.95686i 0.160939 + 0.233160i
\(289\) −9.58139 13.8810i −0.563611 0.816532i
\(290\) 2.77949 + 2.46241i 0.163217 + 0.144598i
\(291\) −8.99750 7.97109i −0.527443 0.467273i
\(292\) 2.33086 + 6.14597i 0.136403 + 0.359665i
\(293\) −14.2486 + 7.47825i −0.832413 + 0.436884i −0.826390 0.563098i \(-0.809609\pi\)
−0.00602264 + 0.999982i \(0.501917\pi\)
\(294\) 4.74207 + 12.5038i 0.276563 + 0.729236i
\(295\) 21.6464 5.33536i 1.26030 0.310637i
\(296\) 1.92989 + 1.70973i 0.112172 + 0.0993761i
\(297\) −3.56588 + 5.16606i −0.206913 + 0.299765i
\(298\) 4.69944 12.3914i 0.272231 0.717814i
\(299\) 2.85132 5.13021i 0.164896 0.296688i
\(300\) −0.00662983 0.0174814i −0.000382773 0.00100929i
\(301\) 35.1198 + 8.65625i 2.02427 + 0.498938i
\(302\) 21.9640 + 11.5276i 1.26388 + 0.663338i
\(303\) 3.13376 8.26306i 0.180030 0.474700i
\(304\) 0.0343327 0.282755i 0.00196911 0.0162171i
\(305\) −14.8400 21.4995i −0.849736 1.23105i
\(306\) −1.08810 + 0.268192i −0.0622023 + 0.0153315i
\(307\) −27.4710 6.77099i −1.56785 0.386441i −0.642725 0.766097i \(-0.722196\pi\)
−0.925128 + 0.379656i \(0.876042\pi\)
\(308\) −0.258770 + 2.13116i −0.0147448 + 0.121434i
\(309\) 3.52204 + 9.28685i 0.200362 + 0.528310i
\(310\) −17.7921 + 4.38535i −1.01052 + 0.249071i
\(311\) 4.91854 + 1.21231i 0.278905 + 0.0687438i 0.376287 0.926503i \(-0.377201\pi\)
−0.0973821 + 0.995247i \(0.531047\pi\)
\(312\) 0.214082 8.93515i 0.0121200 0.505853i
\(313\) 13.2582 3.26785i 0.749398 0.184710i 0.153922 0.988083i \(-0.450810\pi\)
0.595476 + 0.803373i \(0.296963\pi\)
\(314\) −15.4265 + 8.09643i −0.870565 + 0.456908i
\(315\) −17.1814 −0.968061
\(316\) −0.871755 −0.0490401
\(317\) 3.99472 2.09659i 0.224366 0.117756i −0.348795 0.937199i \(-0.613409\pi\)
0.573161 + 0.819443i \(0.305717\pi\)
\(318\) 0.164737 + 0.145944i 0.00923797 + 0.00818413i
\(319\) 1.32684 0.0742886
\(320\) −9.25215 + 8.19669i −0.517211 + 0.458209i
\(321\) 10.8145 + 5.67588i 0.603605 + 0.316797i
\(322\) 1.20341 9.91095i 0.0670633 0.552316i
\(323\) 0.0196470 + 0.0103115i 0.00109319 + 0.000573749i
\(324\) 0.0401800 0.330912i 0.00223222 0.0183840i
\(325\) 0.0395399 0.145344i 0.00219328 0.00806221i
\(326\) 2.78917 + 22.9709i 0.154478 + 1.27224i
\(327\) 2.58440 6.81451i 0.142918 0.376843i
\(328\) 20.7938 10.9134i 1.14814 0.602593i
\(329\) −14.1183 37.2269i −0.778367 2.05238i
\(330\) 3.89360 + 2.04352i 0.214336 + 0.112492i
\(331\) −4.82066 2.53008i −0.264967 0.139066i 0.327008 0.945021i \(-0.393959\pi\)
−0.591976 + 0.805956i \(0.701652\pi\)
\(332\) 3.06250 + 0.754839i 0.168077 + 0.0414272i
\(333\) −0.250630 2.06413i −0.0137344 0.113113i
\(334\) 19.0947 16.9164i 1.04481 0.925624i
\(335\) 15.7833 22.8661i 0.862334 1.24931i
\(336\) −6.63729 17.5011i −0.362094 0.954763i
\(337\) −22.4164 −1.22110 −0.610549 0.791978i \(-0.709051\pi\)
−0.610549 + 0.791978i \(0.709051\pi\)
\(338\) −12.3225 + 16.1403i −0.670255 + 0.877914i
\(339\) −8.82509 −0.479313
\(340\) 0.126819 + 0.334395i 0.00687775 + 0.0181351i
\(341\) −3.71948 + 5.38860i −0.201421 + 0.291809i
\(342\) −0.139654 + 0.123722i −0.00755160 + 0.00669013i
\(343\) 0.670150 + 5.51918i 0.0361847 + 0.298008i
\(344\) −21.7969 5.37246i −1.17521 0.289663i
\(345\) −3.26492 1.71356i −0.175778 0.0922552i
\(346\) −10.8666 5.70324i −0.584193 0.306608i
\(347\) 11.9832 + 31.5972i 0.643294 + 1.69623i 0.715296 + 0.698821i \(0.246292\pi\)
−0.0720027 + 0.997404i \(0.522939\pi\)
\(348\) 0.423067 0.222043i 0.0226788 0.0119027i
\(349\) 11.3842 30.0177i 0.609383 1.60681i −0.173635 0.984810i \(-0.555551\pi\)
0.783017 0.622000i \(-0.213680\pi\)
\(350\) −0.0308833 0.254347i −0.00165078 0.0135954i
\(351\) −12.3992 + 13.3380i −0.661821 + 0.711930i
\(352\) 0.366500 3.01840i 0.0195345 0.160881i
\(353\) −5.26242 2.76193i −0.280091 0.147003i 0.318829 0.947812i \(-0.396711\pi\)
−0.598919 + 0.800810i \(0.704403\pi\)
\(354\) 1.91763 15.7931i 0.101921 0.839395i
\(355\) 23.4562 + 12.3108i 1.24492 + 0.653387i
\(356\) −1.91420 + 1.69583i −0.101452 + 0.0898788i
\(357\) 1.45810 0.0771707
\(358\) −20.0694 17.7799i −1.06070 0.939699i
\(359\) 28.4995 14.9577i 1.50415 0.789437i 0.506787 0.862071i \(-0.330833\pi\)
0.997359 + 0.0726345i \(0.0231407\pi\)
\(360\) 10.6635 0.562018
\(361\) −18.9963 −0.999806
\(362\) −21.5162 + 11.2926i −1.13086 + 0.593524i
\(363\) −9.33900 + 2.30186i −0.490170 + 0.120816i
\(364\) −1.63492 + 6.00976i −0.0856931 + 0.314997i
\(365\) 32.3016 + 7.96163i 1.69074 + 0.416731i
\(366\) −18.1002 + 4.46129i −0.946111 + 0.233195i
\(367\) 0.442217 + 1.16603i 0.0230835 + 0.0608662i 0.946063 0.323984i \(-0.105022\pi\)
−0.922979 + 0.384850i \(0.874253\pi\)
\(368\) −0.919540 + 7.57309i −0.0479343 + 0.394775i
\(369\) −18.3882 4.53229i −0.957253 0.235942i
\(370\) −3.57315 + 0.880704i −0.185759 + 0.0457856i
\(371\) 0.308929 + 0.447562i 0.0160388 + 0.0232362i
\(372\) −0.284203 + 2.34062i −0.0147352 + 0.121356i
\(373\) −8.42743 + 22.2213i −0.436356 + 1.15058i 0.518910 + 0.854829i \(0.326338\pi\)
−0.955266 + 0.295747i \(0.904431\pi\)
\(374\) 0.627533 + 0.329355i 0.0324490 + 0.0170305i
\(375\) −11.0883 2.73303i −0.572599 0.141133i
\(376\) 8.76244 + 23.1047i 0.451889 + 1.19153i
\(377\) 3.80905 + 0.555381i 0.196176 + 0.0286036i
\(378\) −10.9846 + 28.9641i −0.564988 + 1.48975i
\(379\) 1.70150 2.46505i 0.0874004 0.126621i −0.776845 0.629692i \(-0.783181\pi\)
0.864245 + 0.503071i \(0.167796\pi\)
\(380\) 0.0445676 + 0.0394834i 0.00228627 + 0.00202546i
\(381\) −10.1138 + 2.49283i −0.518146 + 0.127712i
\(382\) 0.545360 + 1.43800i 0.0279031 + 0.0735743i
\(383\) −15.4843 + 8.12676i −0.791208 + 0.415258i −0.811366 0.584539i \(-0.801276\pi\)
0.0201576 + 0.999797i \(0.493583\pi\)
\(384\) 4.89285 + 12.9014i 0.249687 + 0.658371i
\(385\) 8.13302 + 7.20523i 0.414497 + 0.367212i
\(386\) −6.14550 5.44443i −0.312798 0.277114i
\(387\) 10.2844 + 14.8996i 0.522786 + 0.757387i
\(388\) −2.95324 4.27851i −0.149928 0.217208i
\(389\) 5.07010 2.66099i 0.257064 0.134918i −0.331269 0.943536i \(-0.607477\pi\)
0.588333 + 0.808619i \(0.299784\pi\)
\(390\) 10.3223 + 7.49624i 0.522689 + 0.379587i
\(391\) −0.526209 0.276176i −0.0266116 0.0139668i
\(392\) −2.47203 20.3590i −0.124857 1.02829i
\(393\) −13.3226 3.28374i −0.672038 0.165643i
\(394\) −23.1199 33.4950i −1.16477 1.68745i
\(395\) −2.50641 + 3.63116i −0.126111 + 0.182704i
\(396\) −0.804294 + 0.712543i −0.0404173 + 0.0358066i
\(397\) 4.59532 + 37.8459i 0.230633 + 1.89943i 0.404301 + 0.914626i \(0.367515\pi\)
−0.173668 + 0.984804i \(0.555562\pi\)
\(398\) 30.9050 7.61739i 1.54913 0.381825i
\(399\) 0.214948 0.112813i 0.0107609 0.00564774i
\(400\) 0.0235983 + 0.194350i 0.00117992 + 0.00971749i
\(401\) −2.85006 + 23.4723i −0.142325 + 1.17215i 0.730077 + 0.683365i \(0.239484\pi\)
−0.872402 + 0.488788i \(0.837439\pi\)
\(402\) −11.2629 16.3172i −0.561744 0.813827i
\(403\) −12.9333 + 13.9126i −0.644255 + 0.693035i
\(404\) 2.17119 3.14550i 0.108020 0.156495i
\(405\) −1.26284 1.11878i −0.0627511 0.0555926i
\(406\) 6.35745 1.56697i 0.315515 0.0777674i
\(407\) −0.746978 + 1.08218i −0.0370263 + 0.0536419i
\(408\) −0.904960 −0.0448022
\(409\) −14.8290 + 21.4836i −0.733249 + 1.06229i 0.262013 + 0.965064i \(0.415614\pi\)
−0.995262 + 0.0972298i \(0.969002\pi\)
\(410\) −4.04027 + 33.2746i −0.199535 + 1.64332i
\(411\) 6.30338 16.6207i 0.310923 0.819836i
\(412\) 0.517781 + 4.26431i 0.0255092 + 0.210087i
\(413\) 13.9399 36.7565i 0.685939 1.80867i
\(414\) 3.74037 3.31368i 0.183829 0.162858i
\(415\) 11.9493 10.5861i 0.586566 0.519652i
\(416\) 2.31556 8.51173i 0.113530 0.417322i
\(417\) −2.98428 2.64385i −0.146141 0.129470i
\(418\) 0.117991 0.00577114
\(419\) −21.9327 + 19.4307i −1.07148 + 0.949252i −0.998842 0.0481061i \(-0.984681\pi\)
−0.0726418 + 0.997358i \(0.523143\pi\)
\(420\) 3.79902 + 0.936375i 0.185373 + 0.0456904i
\(421\) 4.44656 + 6.44196i 0.216712 + 0.313962i 0.916230 0.400654i \(-0.131217\pi\)
−0.699517 + 0.714616i \(0.746602\pi\)
\(422\) −3.26220 + 8.60171i −0.158801 + 0.418725i
\(423\) 7.06652 18.6329i 0.343586 0.905961i
\(424\) −0.191735 0.277777i −0.00931149 0.0134900i
\(425\) −0.0148080 0.00364984i −0.000718292 0.000177043i
\(426\) 14.1495 12.5354i 0.685547 0.607341i
\(427\) −46.0637 −2.22918
\(428\) 3.95379 + 3.50276i 0.191114 + 0.169312i
\(429\) 4.53692 0.440897i 0.219045 0.0212867i
\(430\) 23.9842 21.2481i 1.15662 1.02467i
\(431\) −5.27677 + 4.67481i −0.254173 + 0.225178i −0.780581 0.625054i \(-0.785077\pi\)
0.526408 + 0.850232i \(0.323538\pi\)
\(432\) 8.39349 22.1318i 0.403832 1.06482i
\(433\) 0.624684 + 5.14474i 0.0300204 + 0.247240i 0.999992 + 0.00402170i \(0.00128015\pi\)
−0.969972 + 0.243219i \(0.921797\pi\)
\(434\) −11.4578 + 30.2117i −0.549992 + 1.45021i
\(435\) 0.291488 2.40062i 0.0139758 0.115101i
\(436\) 1.79057 2.59409i 0.0857527 0.124234i
\(437\) −0.0989399 −0.00473294
\(438\) 13.4860 19.5378i 0.644384 0.933552i
\(439\) 2.43309 0.599704i 0.116125 0.0286223i −0.180825 0.983515i \(-0.557877\pi\)
0.296950 + 0.954893i \(0.404031\pi\)
\(440\) −5.04771 4.47188i −0.240640 0.213189i
\(441\) −9.39536 + 13.6115i −0.447398 + 0.648168i
\(442\) 1.66365 + 1.20817i 0.0791316 + 0.0574669i
\(443\) 9.17113 + 13.2867i 0.435733 + 0.631269i 0.977918 0.208991i \(-0.0670179\pi\)
−0.542184 + 0.840260i \(0.682402\pi\)
\(444\) −0.0570760 + 0.470063i −0.00270871 + 0.0223082i
\(445\) 1.56015 + 12.8490i 0.0739583 + 0.609102i
\(446\) 6.94116 3.64300i 0.328673 0.172501i
\(447\) −8.37973 + 2.06542i −0.396347 + 0.0976909i
\(448\) 2.62716 + 21.6366i 0.124122 + 1.02223i
\(449\) 20.0605 17.7720i 0.946712 0.838714i −0.0403280 0.999186i \(-0.512840\pi\)
0.987040 + 0.160473i \(0.0513018\pi\)
\(450\) 0.0728493 0.105540i 0.00343415 0.00497522i
\(451\) 6.80362 + 9.85674i 0.320370 + 0.464136i
\(452\) −3.70586 0.913413i −0.174309 0.0429634i
\(453\) −1.94715 16.0362i −0.0914849 0.753446i
\(454\) −20.6909 10.8594i −0.971071 0.509657i
\(455\) 20.3321 + 24.0889i 0.953185 + 1.12930i
\(456\) −0.133406 + 0.0700170i −0.00624732 + 0.00327885i
\(457\) −2.21492 3.20886i −0.103609 0.150104i 0.767750 0.640750i \(-0.221376\pi\)
−0.871359 + 0.490646i \(0.836761\pi\)
\(458\) −9.33309 13.5213i −0.436107 0.631810i
\(459\) 1.38018 + 1.22273i 0.0644214 + 0.0570723i
\(460\) −1.19366 1.05749i −0.0556548 0.0493059i
\(461\) 8.62753 + 22.7489i 0.401824 + 1.05952i 0.971372 + 0.237564i \(0.0763491\pi\)
−0.569548 + 0.821958i \(0.692882\pi\)
\(462\) 6.86553 3.60331i 0.319413 0.167641i
\(463\) 3.72065 + 9.81055i 0.172913 + 0.455935i 0.993257 0.115936i \(-0.0369869\pi\)
−0.820343 + 0.571871i \(0.806218\pi\)
\(464\) −4.85781 + 1.19734i −0.225518 + 0.0555852i
\(465\) 8.93238 + 7.91340i 0.414229 + 0.366975i
\(466\) 23.1405 33.5249i 1.07196 1.55301i
\(467\) −0.461511 + 1.21690i −0.0213562 + 0.0563116i −0.945270 0.326288i \(-0.894202\pi\)
0.923914 + 0.382600i \(0.124971\pi\)
\(468\) −2.60720 + 1.70889i −0.120518 + 0.0789935i
\(469\) −17.3727 45.8081i −0.802198 2.11522i
\(470\) −34.2451 8.44066i −1.57961 0.389338i
\(471\) 10.0462 + 5.27265i 0.462904 + 0.242951i
\(472\) −8.65173 + 22.8128i −0.398228 + 1.05004i
\(473\) 1.38006 11.3658i 0.0634550 0.522599i
\(474\) 1.78857 + 2.59119i 0.0821517 + 0.119017i
\(475\) −0.00246533 0.000607650i −0.000113117 2.78809e-5i
\(476\) 0.612290 + 0.150916i 0.0280643 + 0.00691722i
\(477\) −0.0328098 + 0.270213i −0.00150226 + 0.0123722i
\(478\) 2.28672 + 6.02957i 0.104592 + 0.275786i
\(479\) 3.04219 0.749832i 0.139001 0.0342607i −0.169201 0.985582i \(-0.554119\pi\)
0.308202 + 0.951321i \(0.400273\pi\)
\(480\) −5.38062 1.32620i −0.245591 0.0605326i
\(481\) −2.59738 + 2.79404i −0.118430 + 0.127397i
\(482\) 32.8663 8.10081i 1.49702 0.368982i
\(483\) −5.75700 + 3.02151i −0.261953 + 0.137483i
\(484\) −4.15991 −0.189087
\(485\) −26.3124 −1.19479
\(486\) −22.0237 + 11.5589i −0.999014 + 0.524323i
\(487\) 26.6225 + 23.5855i 1.20638 + 1.06876i 0.995835 + 0.0911768i \(0.0290628\pi\)
0.210547 + 0.977584i \(0.432476\pi\)
\(488\) 28.5892 1.29417
\(489\) 11.2795 9.99275i 0.510076 0.451888i
\(490\) 25.9195 + 13.6036i 1.17092 + 0.614548i
\(491\) 2.43520 20.0557i 0.109899 0.905102i −0.828605 0.559834i \(-0.810865\pi\)
0.938504 0.345268i \(-0.112212\pi\)
\(492\) 3.81886 + 2.00429i 0.172168 + 0.0903605i
\(493\) 0.0469793 0.386910i 0.00211584 0.0174255i
\(494\) 0.338726 + 0.0493882i 0.0152400 + 0.00222208i
\(495\) 0.655535 + 5.39882i 0.0294641 + 0.242659i
\(496\) 8.75506 23.0852i 0.393114 1.03656i
\(497\) 41.3600 21.7074i 1.85525 0.973709i
\(498\) −4.03963 10.6516i −0.181020 0.477310i
\(499\) −9.63923 5.05906i −0.431511 0.226474i 0.234961 0.972005i \(-0.424504\pi\)
−0.666472 + 0.745530i \(0.732196\pi\)
\(500\) −4.37338 2.29533i −0.195583 0.102650i
\(501\) −16.1303 3.97576i −0.720649 0.177624i
\(502\) 2.98181 + 24.5574i 0.133085 + 1.09605i
\(503\) −14.8202 + 13.1296i −0.660801 + 0.585419i −0.925424 0.378933i \(-0.876291\pi\)
0.264623 + 0.964352i \(0.414753\pi\)
\(504\) 10.6812 15.4745i 0.475780 0.689287i
\(505\) −6.85967 18.0875i −0.305251 0.804882i
\(506\) −3.16018 −0.140487
\(507\) 13.2090 + 0.633328i 0.586633 + 0.0281271i
\(508\) −4.50504 −0.199879
\(509\) 7.21208 + 19.0167i 0.319670 + 0.842901i 0.994482 + 0.104911i \(0.0334556\pi\)
−0.674812 + 0.737990i \(0.735775\pi\)
\(510\) 0.733756 1.06303i 0.0324913 0.0470717i
\(511\) 43.9088 38.8998i 1.94241 1.72083i
\(512\) −1.37105 11.2916i −0.0605926 0.499025i
\(513\) 0.298065 + 0.0734665i 0.0131599 + 0.00324362i
\(514\) −3.72873 1.95699i −0.164467 0.0863190i
\(515\) 19.2510 + 10.1037i 0.848300 + 0.445222i
\(516\) −1.46200 3.85497i −0.0643609 0.169706i
\(517\) −11.1589 + 5.85667i −0.490770 + 0.257576i
\(518\) −2.30105 + 6.06737i −0.101102 + 0.266585i
\(519\) 0.963345 + 7.93386i 0.0422862 + 0.348258i
\(520\) −12.6190 14.9506i −0.553381 0.655628i
\(521\) 2.87749 23.6983i 0.126065 1.03824i −0.783126 0.621863i \(-0.786376\pi\)
0.909192 0.416378i \(-0.136701\pi\)
\(522\) 2.90188 + 1.52302i 0.127012 + 0.0666610i
\(523\) 2.47589 20.3908i 0.108263 0.891627i −0.832841 0.553512i \(-0.813287\pi\)
0.941105 0.338116i \(-0.109789\pi\)
\(524\) −5.25462 2.75784i −0.229549 0.120477i
\(525\) −0.124893 + 0.110646i −0.00545078 + 0.00482897i
\(526\) −0.747884 −0.0326093
\(527\) 1.43964 + 1.27541i 0.0627115 + 0.0555575i
\(528\) −5.24604 + 2.75334i −0.228305 + 0.119824i
\(529\) −20.3501 −0.884786
\(530\) 0.481758 0.0209262
\(531\) 17.4223 9.14393i 0.756064 0.396813i
\(532\) 0.101938 0.0251255i 0.00441958 0.00108933i
\(533\) 15.4059 + 31.1443i 0.667302 + 1.34901i
\(534\) 8.96798 + 2.21041i 0.388082 + 0.0956537i
\(535\) 25.9579 6.39804i 1.12226 0.276611i
\(536\) 10.7823 + 28.4306i 0.465724 + 1.22801i
\(537\) −2.10470 + 17.3338i −0.0908247 + 0.748009i
\(538\) −0.987753 0.243459i −0.0425851 0.0104963i
\(539\) 10.1556 2.50312i 0.437431 0.107817i
\(540\) 2.81079 + 4.07213i 0.120957 + 0.175236i
\(541\) 2.97025 24.4622i 0.127701 1.05171i −0.778139 0.628092i \(-0.783836\pi\)
0.905840 0.423620i \(-0.139241\pi\)
\(542\) 12.9747 34.2116i 0.557313 1.46951i
\(543\) 14.0120 + 7.35407i 0.601313 + 0.315593i
\(544\) −0.867197 0.213745i −0.0371807 0.00916423i
\(545\) −5.65715 14.9167i −0.242326 0.638960i
\(546\) 21.2176 7.47054i 0.908031 0.319710i
\(547\) −12.2832 + 32.3881i −0.525191 + 1.38482i 0.365757 + 0.930710i \(0.380810\pi\)
−0.890948 + 0.454105i \(0.849959\pi\)
\(548\) 4.36721 6.32700i 0.186558 0.270276i
\(549\) −17.2576 15.2889i −0.736536 0.652514i
\(550\) −0.0787438 + 0.0194086i −0.00335765 + 0.000827586i
\(551\) −0.0230098 0.0606718i −0.000980249 0.00258470i
\(552\) 3.57305 1.87528i 0.152079 0.0798173i
\(553\) 2.75881 + 7.27439i 0.117317 + 0.309338i
\(554\) −3.78062 3.34934i −0.160623 0.142300i
\(555\) 1.79388 + 1.58923i 0.0761458 + 0.0674593i
\(556\) −0.979529 1.41909i −0.0415413 0.0601829i
\(557\) −14.5773 21.1188i −0.617659 0.894833i 0.381910 0.924200i \(-0.375266\pi\)
−0.999569 + 0.0293662i \(0.990651\pi\)
\(558\) −14.3201 + 7.51578i −0.606219 + 0.318168i
\(559\) 8.71926 32.0509i 0.368786 1.35561i
\(560\) −36.2786 19.0405i −1.53305 0.804607i
\(561\) −0.0556320 0.458170i −0.00234878 0.0193440i
\(562\) 12.3250 + 3.03783i 0.519898 + 0.128143i
\(563\) 2.39559 + 3.47062i 0.100962 + 0.146269i 0.870209 0.492683i \(-0.163984\pi\)
−0.769247 + 0.638952i \(0.779368\pi\)
\(564\) −2.57798 + 3.73484i −0.108552 + 0.157265i
\(565\) −14.4595 + 12.8100i −0.608317 + 0.538922i
\(566\) 4.48449 + 36.9331i 0.188497 + 1.55241i
\(567\) −2.88846 + 0.711942i −0.121304 + 0.0298988i
\(568\) −25.6698 + 13.4726i −1.07708 + 0.565297i
\(569\) −0.876566 7.21917i −0.0367476 0.302644i −0.999482 0.0321937i \(-0.989751\pi\)
0.962734 0.270450i \(-0.0871724\pi\)
\(570\) 0.0259211 0.213479i 0.00108571 0.00894167i
\(571\) −6.40462 9.27870i −0.268025 0.388302i 0.665742 0.746182i \(-0.268115\pi\)
−0.933768 + 0.357880i \(0.883500\pi\)
\(572\) 1.95080 + 0.284437i 0.0815668 + 0.0118929i
\(573\) 0.568948 0.824263i 0.0237681 0.0344341i
\(574\) 44.2397 + 39.1929i 1.84653 + 1.63588i
\(575\) 0.0660296 0.0162748i 0.00275362 0.000678707i
\(576\) −6.19710 + 8.97805i −0.258212 + 0.374085i
\(577\) −16.4996 −0.686889 −0.343444 0.939173i \(-0.611594\pi\)
−0.343444 + 0.939173i \(0.611594\pi\)
\(578\) −14.9665 + 21.6827i −0.622523 + 0.901880i
\(579\) −0.644486 + 5.30782i −0.0267839 + 0.220586i
\(580\) 0.370872 0.977909i 0.0153996 0.0406055i
\(581\) −3.39301 27.9440i −0.140766 1.15931i
\(582\) −6.65823 + 17.5563i −0.275993 + 0.727733i
\(583\) 0.128848 0.114149i 0.00533634 0.00472759i
\(584\) −27.2518 + 24.1430i −1.12769 + 0.999043i
\(585\) −0.377918 + 15.7732i −0.0156250 + 0.652141i
\(586\) 18.8146 + 16.6682i 0.777222 + 0.688559i
\(587\) −31.8981 −1.31657 −0.658287 0.752767i \(-0.728719\pi\)
−0.658287 + 0.752767i \(0.728719\pi\)
\(588\) 2.81925 2.49764i 0.116264 0.103001i
\(589\) 0.310905 + 0.0766312i 0.0128106 + 0.00315753i
\(590\) −19.7825 28.6599i −0.814432 1.17991i
\(591\) −9.39873 + 24.7824i −0.386612 + 1.01941i
\(592\) 1.75826 4.63616i 0.0722642 0.190545i
\(593\) −0.309018 0.447690i −0.0126899 0.0183844i 0.816588 0.577222i \(-0.195863\pi\)
−0.829277 + 0.558837i \(0.811248\pi\)
\(594\) 9.52033 + 2.34655i 0.390624 + 0.0962801i
\(595\) 2.38903 2.11650i 0.0979407 0.0867679i
\(596\) −3.73262 −0.152894
\(597\) −15.5156 13.7456i −0.635012 0.562571i
\(598\) −9.07217 1.32277i −0.370989 0.0540923i
\(599\) 9.02044 7.99141i 0.368565 0.326520i −0.458429 0.888731i \(-0.651588\pi\)
0.826994 + 0.562211i \(0.190049\pi\)
\(600\) 0.0775142 0.0686716i 0.00316450 0.00280350i
\(601\) 6.10862 16.1071i 0.249176 0.657023i −0.750818 0.660509i \(-0.770341\pi\)
0.999994 + 0.00348637i \(0.00110975\pi\)
\(602\) −6.81034 56.0882i −0.277569 2.28598i
\(603\) 8.69543 22.9280i 0.354105 0.933699i
\(604\) 0.842124 6.93551i 0.0342655 0.282202i
\(605\) −11.9603 + 17.3275i −0.486255 + 0.704462i
\(606\) −13.8042 −0.560758
\(607\) −5.79554 + 8.39629i −0.235234 + 0.340795i −0.922767 0.385358i \(-0.874078\pi\)
0.687534 + 0.726153i \(0.258693\pi\)
\(608\) −0.144377 + 0.0355857i −0.00585525 + 0.00144319i
\(609\) −3.19171 2.82761i −0.129335 0.114580i
\(610\) −23.1806 + 33.5829i −0.938554 + 1.35973i
\(611\) −34.4863 + 12.1423i −1.39517 + 0.491225i
\(612\) 0.179302 + 0.259764i 0.00724785 + 0.0105003i
\(613\) −2.51597 + 20.7209i −0.101619 + 0.836907i 0.849395 + 0.527758i \(0.176967\pi\)
−0.951014 + 0.309149i \(0.899956\pi\)
\(614\) 5.32710 + 43.8726i 0.214984 + 1.77055i
\(615\) 19.3283 10.1443i 0.779392 0.409057i
\(616\) −11.5455 + 2.84571i −0.465182 + 0.114657i
\(617\) −3.90444 32.1559i −0.157187 1.29455i −0.831260 0.555885i \(-0.812380\pi\)
0.674073 0.738665i \(-0.264543\pi\)
\(618\) 11.6128 10.2881i 0.467136 0.413847i
\(619\) −4.27091 + 6.18748i −0.171662 + 0.248696i −0.899367 0.437195i \(-0.855972\pi\)
0.727704 + 0.685891i \(0.240587\pi\)
\(620\) 2.93187 + 4.24754i 0.117747 + 0.170585i
\(621\) −7.98314 1.96767i −0.320353 0.0789598i
\(622\) −0.953789 7.85516i −0.0382435 0.314963i
\(623\) 20.2087 + 10.6063i 0.809644 + 0.424934i
\(624\) −16.2127 + 5.70834i −0.649027 + 0.228517i
\(625\) −21.9499 + 11.5202i −0.877996 + 0.460808i
\(626\) −12.1166 17.5539i −0.484276 0.701594i
\(627\) −0.0436499 0.0632377i −0.00174321 0.00252547i
\(628\) 3.67291 + 3.25391i 0.146565 + 0.129845i
\(629\) 0.289120 + 0.256138i 0.0115280 + 0.0102129i
\(630\) 9.51685 + 25.0939i 0.379160 + 0.999764i
\(631\) 20.3864 10.6996i 0.811570 0.425945i −0.00726534 0.999974i \(-0.502313\pi\)
0.818835 + 0.574029i \(0.194620\pi\)
\(632\) −1.71224 4.51481i −0.0681093 0.179589i
\(633\) 5.81694 1.43375i 0.231202 0.0569863i
\(634\) −5.27483 4.67309i −0.209490 0.185592i
\(635\) −12.9526 + 18.7651i −0.514008 + 0.744669i
\(636\) 0.0219811 0.0579594i 0.000871608 0.00229824i
\(637\) 30.2021 2.93503i 1.19665 0.116290i
\(638\) −0.734942 1.93788i −0.0290966 0.0767215i
\(639\) 22.7002 + 5.59509i 0.898006 + 0.221339i
\(640\) 26.7437 + 14.0362i 1.05714 + 0.554828i
\(641\) 12.0387 31.7433i 0.475498 1.25379i −0.455980 0.889990i \(-0.650711\pi\)
0.931479 0.363796i \(-0.118519\pi\)
\(642\) 2.29958 18.9387i 0.0907571 0.747452i
\(643\) 13.4083 + 19.4253i 0.528772 + 0.766058i 0.992803 0.119761i \(-0.0382128\pi\)
−0.464031 + 0.885819i \(0.653597\pi\)
\(644\) −2.73023 + 0.672942i −0.107586 + 0.0265176i
\(645\) −20.2607 4.99382i −0.797766 0.196632i
\(646\) 0.00417771 0.0344066i 0.000164370 0.00135371i
\(647\) 6.74758 + 17.7919i 0.265275 + 0.699472i 0.999782 + 0.0208714i \(0.00664404\pi\)
−0.734507 + 0.678601i \(0.762587\pi\)
\(648\) 1.79271 0.441863i 0.0704243 0.0173580i
\(649\) −12.0817 2.97787i −0.474247 0.116891i
\(650\) −0.234180 + 0.0227575i −0.00918528 + 0.000892623i
\(651\) 20.4308 5.03574i 0.800746 0.197366i
\(652\) 5.77079 3.02875i 0.226002 0.118615i
\(653\) 29.8739 1.16906 0.584529 0.811373i \(-0.301279\pi\)
0.584529 + 0.811373i \(0.301279\pi\)
\(654\) −11.3843 −0.445161
\(655\) −26.5951 + 13.9582i −1.03916 + 0.545391i
\(656\) −33.8041 29.9478i −1.31983 1.16927i
\(657\) 29.3614 1.14550
\(658\) −46.5507 + 41.2403i −1.81473 + 1.60771i
\(659\) 37.0891 + 19.4659i 1.44479 + 0.758282i 0.991130 0.132895i \(-0.0424273\pi\)
0.453656 + 0.891177i \(0.350120\pi\)
\(660\) 0.149285 1.22947i 0.00581091 0.0478572i
\(661\) −4.92209 2.58331i −0.191447 0.100479i 0.366276 0.930506i \(-0.380633\pi\)
−0.557723 + 0.830027i \(0.688325\pi\)
\(662\) −1.02506 + 8.44212i −0.0398400 + 0.328112i
\(663\) 0.0320720 1.33859i 0.00124557 0.0519865i
\(664\) 2.10585 + 17.3433i 0.0817230 + 0.673049i
\(665\) 0.188429 0.496847i 0.00730697 0.0192669i
\(666\) −2.87589 + 1.50938i −0.111438 + 0.0584873i
\(667\) 0.616275 + 1.62498i 0.0238623 + 0.0629197i
\(668\) −6.36200 3.33904i −0.246153 0.129191i
\(669\) −4.52030 2.37244i −0.174765 0.0917238i
\(670\) −42.1390 10.3863i −1.62797 0.401259i
\(671\) 1.75751 + 14.4744i 0.0678478 + 0.558777i
\(672\) −7.31408 + 6.47971i −0.282147 + 0.249960i
\(673\) 21.3167 30.8825i 0.821697 1.19043i −0.157499 0.987519i \(-0.550343\pi\)
0.979196 0.202915i \(-0.0650414\pi\)
\(674\) 12.4165 + 32.7397i 0.478267 + 1.26109i
\(675\) −0.211004 −0.00812157
\(676\) 5.48123 + 1.63311i 0.210817 + 0.0628119i
\(677\) −4.98384 −0.191545 −0.0957723 0.995403i \(-0.530532\pi\)
−0.0957723 + 0.995403i \(0.530532\pi\)
\(678\) 4.88826 + 12.8893i 0.187732 + 0.495010i
\(679\) −26.3561 + 38.1834i −1.01146 + 1.46535i
\(680\) −1.48274 + 1.31359i −0.0568604 + 0.0503739i
\(681\) 1.83428 + 15.1067i 0.0702899 + 0.578890i
\(682\) 9.93044 + 2.44763i 0.380256 + 0.0937247i
\(683\) −2.38235 1.25035i −0.0911579 0.0478434i 0.418528 0.908204i \(-0.362546\pi\)
−0.509686 + 0.860360i \(0.670238\pi\)
\(684\) 0.0465301 + 0.0244209i 0.00177912 + 0.000933755i
\(685\) −13.7978 36.3819i −0.527188 1.39008i
\(686\) 7.68972 4.03587i 0.293595 0.154090i
\(687\) −3.79409 + 10.0042i −0.144754 + 0.381684i
\(688\) 5.20387 + 42.8577i 0.198396 + 1.63393i
\(689\) 0.417674 0.273765i 0.0159121 0.0104296i
\(690\) −0.694250 + 5.71766i −0.0264296 + 0.217668i
\(691\) −1.95629 1.02674i −0.0744208 0.0390590i 0.427102 0.904203i \(-0.359534\pi\)
−0.501523 + 0.865144i \(0.667227\pi\)
\(692\) −0.416638 + 3.43133i −0.0158382 + 0.130439i
\(693\) 8.49115 + 4.45650i 0.322552 + 0.169288i
\(694\) 39.5110 35.0037i 1.49982 1.32872i
\(695\) −8.72729 −0.331045
\(696\) 1.98092 + 1.75494i 0.0750864 + 0.0665208i
\(697\) 3.11515 1.63496i 0.117995 0.0619284i
\(698\) −50.1474 −1.89811
\(699\) −26.5284 −1.00340
\(700\) −0.0638976 + 0.0335360i −0.00241510 + 0.00126754i
\(701\) −30.5938 + 7.54070i −1.15551 + 0.284808i −0.770092 0.637933i \(-0.779790\pi\)
−0.385421 + 0.922741i \(0.625944\pi\)
\(702\) 26.3485 + 10.7214i 0.994460 + 0.404653i
\(703\) 0.0624385 + 0.0153897i 0.00235491 + 0.000580434i
\(704\) 6.69853 1.65104i 0.252460 0.0622259i
\(705\) 8.14489 + 21.4763i 0.306754 + 0.808845i
\(706\) −1.11900 + 9.21576i −0.0421140 + 0.346840i
\(707\) −33.1188 8.16306i −1.24556 0.307003i
\(708\) −4.35063 + 1.07233i −0.163507 + 0.0403008i
\(709\) 1.23024 + 1.78231i 0.0462026 + 0.0669360i 0.845404 0.534127i \(-0.179360\pi\)
−0.799202 + 0.601063i \(0.794744\pi\)
\(710\) 4.98770 41.0774i 0.187185 1.54161i
\(711\) −1.38085 + 3.64099i −0.0517857 + 0.136548i
\(712\) −12.5424 6.58276i −0.470047 0.246699i
\(713\) −8.32703 2.05243i −0.311850 0.0768641i
\(714\) −0.807647 2.12959i −0.0302254 0.0796979i
\(715\) 6.79357 7.30794i 0.254065 0.273302i
\(716\) −2.67790 + 7.06104i −0.100078 + 0.263883i
\(717\) 2.38562 3.45616i 0.0890925 0.129073i
\(718\) −37.6321 33.3391i −1.40442 1.24421i
\(719\) 17.8863 4.40858i 0.667047 0.164412i 0.108770 0.994067i \(-0.465309\pi\)
0.558277 + 0.829655i \(0.311463\pi\)
\(720\) −7.27195 19.1746i −0.271010 0.714594i
\(721\) 33.9450 17.8157i 1.26418 0.663492i
\(722\) 10.5221 + 27.7446i 0.391594 + 1.03255i
\(723\) −16.5003 14.6180i −0.613652 0.543648i
\(724\) 5.12282 + 4.53842i 0.190388 + 0.168669i
\(725\) 0.0253361 + 0.0367056i 0.000940957 + 0.00136321i
\(726\) 8.53484 + 12.3648i 0.316758 + 0.458903i
\(727\) 17.1162 8.98328i 0.634805 0.333171i −0.116437 0.993198i \(-0.537147\pi\)
0.751242 + 0.660027i \(0.229455\pi\)
\(728\) −34.3357 + 3.33673i −1.27256 + 0.123668i
\(729\) 12.3298 + 6.47119i 0.456660 + 0.239674i
\(730\) −6.26384 51.5873i −0.231835 1.90933i
\(731\) −3.26543 0.804856i −0.120776 0.0297687i
\(732\) 2.98264 + 4.32109i 0.110241 + 0.159712i
\(733\) −26.1141 + 37.8327i −0.964545 + 1.39738i −0.0473793 + 0.998877i \(0.515087\pi\)
−0.917165 + 0.398507i \(0.869528\pi\)
\(734\) 1.45807 1.29174i 0.0538184 0.0476789i
\(735\) −2.29781 18.9242i −0.0847561 0.698029i
\(736\) 3.86688 0.953099i 0.142535 0.0351317i
\(737\) −13.7312 + 7.20670i −0.505796 + 0.265462i
\(738\) 3.56579 + 29.3670i 0.131259 + 1.08101i
\(739\) 4.57256 37.6584i 0.168204 1.38529i −0.627034 0.778992i \(-0.715731\pi\)
0.795239 0.606296i \(-0.207345\pi\)
\(740\) 0.588802 + 0.853027i 0.0216448 + 0.0313579i
\(741\) −0.0988392 0.199812i −0.00363095 0.00734028i
\(742\) 0.482558 0.699106i 0.0177153 0.0256650i
\(743\) −2.91635 2.58366i −0.106990 0.0947852i 0.607932 0.793989i \(-0.291999\pi\)
−0.714922 + 0.699204i \(0.753538\pi\)
\(744\) −12.6803 + 3.12540i −0.464881 + 0.114583i
\(745\) −10.7318 + 15.5477i −0.393182 + 0.569622i
\(746\) 37.1228 1.35916
\(747\) 8.00363 11.5953i 0.292837 0.424248i
\(748\) 0.0240603 0.198155i 0.000879733 0.00724525i
\(749\) 16.7164 44.0776i 0.610805 1.61056i
\(750\) 2.15022 + 17.7086i 0.0785148 + 0.646628i
\(751\) −5.87294 + 15.4857i −0.214306 + 0.565080i −0.998459 0.0554879i \(-0.982329\pi\)
0.784153 + 0.620568i \(0.213098\pi\)
\(752\) 35.5700 31.5123i 1.29710 1.14913i
\(753\) 12.0585 10.6829i 0.439437 0.389307i
\(754\) −1.29870 5.87085i −0.0472959 0.213804i
\(755\) −26.4676 23.4482i −0.963255 0.853369i
\(756\) 8.72475 0.317316
\(757\) 7.19434 6.37363i 0.261483 0.231653i −0.522187 0.852831i \(-0.674884\pi\)
0.783670 + 0.621177i \(0.213345\pi\)
\(758\) −4.54275 1.11969i −0.165000 0.0406689i
\(759\) 1.16908 + 1.69371i 0.0424350 + 0.0614778i
\(760\) −0.116948 + 0.308365i −0.00424213 + 0.0111856i
\(761\) 16.5186 43.5561i 0.598800 1.57891i −0.201617 0.979464i \(-0.564620\pi\)
0.800418 0.599443i \(-0.204611\pi\)
\(762\) 9.24294 + 13.3907i 0.334836 + 0.485094i
\(763\) −27.3130 6.73204i −0.988796 0.243716i
\(764\) 0.324227 0.287240i 0.0117301 0.0103920i
\(765\) 1.59752 0.0577585
\(766\) 20.4462 + 18.1137i 0.738750 + 0.654475i
\(767\) −33.4373 13.6059i −1.20735