Properties

Label 169.2.g.a.27.3
Level $169$
Weight $2$
Character 169.27
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 27.3
Character \(\chi\) \(=\) 169.27
Dual form 169.2.g.a.144.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.568511 - 1.49904i) q^{2} +(-1.77394 + 2.57000i) q^{3} +(-0.426895 + 0.378196i) q^{4} +(0.00472042 + 0.0388761i) q^{5} +(4.86104 + 1.19814i) q^{6} +(-3.29128 - 1.72740i) q^{7} +(-2.02954 - 1.06519i) q^{8} +(-2.39421 - 6.31302i) q^{9} +O(q^{10})\) \(q+(-0.568511 - 1.49904i) q^{2} +(-1.77394 + 2.57000i) q^{3} +(-0.426895 + 0.378196i) q^{4} +(0.00472042 + 0.0388761i) q^{5} +(4.86104 + 1.19814i) q^{6} +(-3.29128 - 1.72740i) q^{7} +(-2.02954 - 1.06519i) q^{8} +(-2.39421 - 6.31302i) q^{9} +(0.0555933 - 0.0291776i) q^{10} +(0.680286 - 1.79377i) q^{11} +(-0.214676 - 1.76802i) q^{12} +(-3.41862 - 1.14589i) q^{13} +(-0.718309 + 5.91581i) q^{14} +(-0.108285 - 0.0568326i) q^{15} +(-0.580430 + 4.78027i) q^{16} +(3.52523 + 1.85018i) q^{17} +(-8.10234 + 7.17804i) q^{18} -6.43536 q^{19} +(-0.0167179 - 0.0148108i) q^{20} +(10.2780 - 5.39429i) q^{21} -3.07568 q^{22} -3.92377 q^{23} +(6.33782 - 3.32635i) q^{24} +(4.85322 - 1.19621i) q^{25} +(0.225784 + 5.77609i) q^{26} +(11.3755 + 2.80382i) q^{27} +(2.05833 - 0.507332i) q^{28} +(1.01974 + 2.68884i) q^{29} +(-0.0236329 + 0.194634i) q^{30} +(0.0209135 + 0.00515471i) q^{31} +(3.04483 - 0.750483i) q^{32} +(3.40319 + 4.93037i) q^{33} +(0.769367 - 6.33631i) q^{34} +(0.0516183 - 0.136106i) q^{35} +(3.40964 + 1.78952i) q^{36} +(-9.43808 - 2.32628i) q^{37} +(3.65857 + 9.64687i) q^{38} +(9.00937 - 6.75310i) q^{39} +(0.0318300 - 0.0839289i) q^{40} +(4.85721 - 7.03689i) q^{41} +(-13.9294 - 12.3404i) q^{42} +(-4.79339 + 1.18146i) q^{43} +(0.387985 + 1.02303i) q^{44} +(0.234124 - 0.122878i) q^{45} +(2.23070 + 5.88188i) q^{46} +(8.53161 + 7.55835i) q^{47} +(-11.2556 - 9.97163i) q^{48} +(3.87218 + 5.60982i) q^{49} +(-4.55228 - 6.59511i) q^{50} +(-11.0085 + 5.77772i) q^{51} +(1.89276 - 0.803732i) q^{52} +(-1.29858 - 0.681548i) q^{53} +(-2.26408 - 18.6464i) q^{54} +(0.0729460 + 0.0179796i) q^{55} +(4.83980 + 7.01166i) q^{56} +(11.4160 - 16.5389i) q^{57} +(3.45095 - 3.05727i) q^{58} +(-0.219032 - 1.80389i) q^{59} +(0.0677204 - 0.0166916i) q^{60} +(-0.676767 + 0.355195i) q^{61} +(-0.00416242 - 0.0342806i) q^{62} +(-3.02507 + 24.9137i) q^{63} +(2.61487 + 3.78829i) q^{64} +(0.0284105 - 0.138312i) q^{65} +(5.45608 - 7.90449i) q^{66} +(-2.03540 - 1.80321i) q^{67} +(-2.20463 + 0.543394i) q^{68} +(6.96054 - 10.0841i) q^{69} -0.233375 q^{70} +(-1.18093 + 1.71087i) q^{71} +(-1.86539 + 15.3628i) q^{72} +(2.06682 - 5.44977i) q^{73} +(1.87847 + 15.4706i) q^{74} +(-5.53507 + 14.5948i) q^{75} +(2.74722 - 2.43383i) q^{76} +(-5.33756 + 4.72867i) q^{77} +(-15.2451 - 9.66620i) q^{78} +(-6.77962 - 6.00622i) q^{79} -0.188578 q^{80} +(-12.2241 + 10.8296i) q^{81} +(-13.3100 - 3.28061i) q^{82} +(4.20354 + 6.08988i) q^{83} +(-2.34751 + 6.18988i) q^{84} +(-0.0552874 + 0.145781i) q^{85} +(4.49616 + 6.51381i) q^{86} +(-8.71929 - 2.14911i) q^{87} +(-3.29136 + 2.91589i) q^{88} -4.07667 q^{89} +(-0.317301 - 0.281104i) q^{90} +(9.27222 + 9.67676i) q^{91} +(1.67504 - 1.48395i) q^{92} +(-0.0503469 + 0.0446035i) q^{93} +(6.47995 - 17.0862i) q^{94} +(-0.0303776 - 0.250182i) q^{95} +(-3.47261 + 9.15653i) q^{96} +(0.361319 - 2.97573i) q^{97} +(6.20797 - 8.99380i) q^{98} -12.9528 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.568511 1.49904i −0.401998 1.05998i −0.971301 0.237854i \(-0.923556\pi\)
0.569303 0.822128i \(-0.307213\pi\)
\(3\) −1.77394 + 2.57000i −1.02419 + 1.48379i −0.155872 + 0.987777i \(0.549819\pi\)
−0.868315 + 0.496013i \(0.834797\pi\)
\(4\) −0.426895 + 0.378196i −0.213447 + 0.189098i
\(5\) 0.00472042 + 0.0388761i 0.00211104 + 0.0173859i 0.993726 0.111839i \(-0.0356741\pi\)
−0.991615 + 0.129225i \(0.958751\pi\)
\(6\) 4.86104 + 1.19814i 1.98451 + 0.489138i
\(7\) −3.29128 1.72740i −1.24399 0.652895i −0.291238 0.956651i \(-0.594067\pi\)
−0.952750 + 0.303756i \(0.901759\pi\)
\(8\) −2.02954 1.06519i −0.717552 0.376600i
\(9\) −2.39421 6.31302i −0.798071 2.10434i
\(10\) 0.0555933 0.0291776i 0.0175801 0.00922677i
\(11\) 0.680286 1.79377i 0.205114 0.540841i −0.792501 0.609871i \(-0.791221\pi\)
0.997615 + 0.0690301i \(0.0219905\pi\)
\(12\) −0.214676 1.76802i −0.0619717 0.510383i
\(13\) −3.41862 1.14589i −0.948153 0.317813i
\(14\) −0.718309 + 5.91581i −0.191976 + 1.58107i
\(15\) −0.108285 0.0568326i −0.0279592 0.0146741i
\(16\) −0.580430 + 4.78027i −0.145107 + 1.19507i
\(17\) 3.52523 + 1.85018i 0.854994 + 0.448735i 0.834470 0.551054i \(-0.185774\pi\)
0.0205243 + 0.999789i \(0.493466\pi\)
\(18\) −8.10234 + 7.17804i −1.90974 + 1.69188i
\(19\) −6.43536 −1.47637 −0.738187 0.674597i \(-0.764318\pi\)
−0.738187 + 0.674597i \(0.764318\pi\)
\(20\) −0.0167179 0.0148108i −0.00373824 0.00331179i
\(21\) 10.2780 5.39429i 2.24284 1.17713i
\(22\) −3.07568 −0.655737
\(23\) −3.92377 −0.818162 −0.409081 0.912498i \(-0.634151\pi\)
−0.409081 + 0.912498i \(0.634151\pi\)
\(24\) 6.33782 3.32635i 1.29370 0.678987i
\(25\) 4.85322 1.19621i 0.970644 0.239242i
\(26\) 0.225784 + 5.77609i 0.0442799 + 1.13279i
\(27\) 11.3755 + 2.80382i 2.18922 + 0.539595i
\(28\) 2.05833 0.507332i 0.388987 0.0958767i
\(29\) 1.01974 + 2.68884i 0.189362 + 0.499305i 0.995752 0.0920785i \(-0.0293511\pi\)
−0.806390 + 0.591384i \(0.798582\pi\)
\(30\) −0.0236329 + 0.194634i −0.00431475 + 0.0355352i
\(31\) 0.0209135 + 0.00515471i 0.00375617 + 0.000925812i 0.241193 0.970477i \(-0.422461\pi\)
−0.237437 + 0.971403i \(0.576307\pi\)
\(32\) 3.04483 0.750483i 0.538255 0.132668i
\(33\) 3.40319 + 4.93037i 0.592420 + 0.858268i
\(34\) 0.769367 6.33631i 0.131945 1.08667i
\(35\) 0.0516183 0.136106i 0.00872509 0.0230062i
\(36\) 3.40964 + 1.78952i 0.568273 + 0.298253i
\(37\) −9.43808 2.32628i −1.55161 0.382438i −0.631905 0.775046i \(-0.717727\pi\)
−0.919706 + 0.392608i \(0.871573\pi\)
\(38\) 3.65857 + 9.64687i 0.593499 + 1.56493i
\(39\) 9.00937 6.75310i 1.44265 1.08136i
\(40\) 0.0318300 0.0839289i 0.00503277 0.0132703i
\(41\) 4.85721 7.03689i 0.758570 1.09898i −0.233385 0.972384i \(-0.574980\pi\)
0.991955 0.126593i \(-0.0404043\pi\)
\(42\) −13.9294 12.3404i −2.14935 1.90416i
\(43\) −4.79339 + 1.18146i −0.730985 + 0.180172i −0.587205 0.809438i \(-0.699772\pi\)
−0.143780 + 0.989610i \(0.545926\pi\)
\(44\) 0.387985 + 1.02303i 0.0584909 + 0.154228i
\(45\) 0.234124 0.122878i 0.0349012 0.0183176i
\(46\) 2.23070 + 5.88188i 0.328899 + 0.867236i
\(47\) 8.53161 + 7.55835i 1.24446 + 1.10250i 0.990818 + 0.135201i \(0.0431679\pi\)
0.253645 + 0.967297i \(0.418371\pi\)
\(48\) −11.2556 9.97163i −1.62461 1.43928i
\(49\) 3.87218 + 5.60982i 0.553169 + 0.801403i
\(50\) −4.55228 6.59511i −0.643789 0.932690i
\(51\) −11.0085 + 5.77772i −1.54150 + 0.809043i
\(52\) 1.89276 0.803732i 0.262479 0.111458i
\(53\) −1.29858 0.681548i −0.178374 0.0936179i 0.373173 0.927762i \(-0.378270\pi\)
−0.551547 + 0.834144i \(0.685962\pi\)
\(54\) −2.26408 18.6464i −0.308103 2.53745i
\(55\) 0.0729460 + 0.0179796i 0.00983603 + 0.00242436i
\(56\) 4.83980 + 7.01166i 0.646745 + 0.936972i
\(57\) 11.4160 16.5389i 1.51208 2.19063i
\(58\) 3.45095 3.05727i 0.453131 0.401439i
\(59\) −0.219032 1.80389i −0.0285156 0.234847i 0.971482 0.237114i \(-0.0762015\pi\)
−0.999997 + 0.00226697i \(0.999278\pi\)
\(60\) 0.0677204 0.0166916i 0.00874266 0.00215487i
\(61\) −0.676767 + 0.355195i −0.0866512 + 0.0454780i −0.507492 0.861656i \(-0.669427\pi\)
0.420841 + 0.907134i \(0.361735\pi\)
\(62\) −0.00416242 0.0342806i −0.000528628 0.00435364i
\(63\) −3.02507 + 24.9137i −0.381123 + 3.13883i
\(64\) 2.61487 + 3.78829i 0.326859 + 0.473537i
\(65\) 0.0284105 0.138312i 0.00352389 0.0171555i
\(66\) 5.45608 7.90449i 0.671597 0.972976i
\(67\) −2.03540 1.80321i −0.248664 0.220297i 0.529579 0.848261i \(-0.322350\pi\)
−0.778242 + 0.627964i \(0.783889\pi\)
\(68\) −2.20463 + 0.543394i −0.267351 + 0.0658962i
\(69\) 6.96054 10.0841i 0.837951 1.21398i
\(70\) −0.233375 −0.0278936
\(71\) −1.18093 + 1.71087i −0.140150 + 0.203043i −0.886773 0.462205i \(-0.847059\pi\)
0.746623 + 0.665247i \(0.231674\pi\)
\(72\) −1.86539 + 15.3628i −0.219838 + 1.81053i
\(73\) 2.06682 5.44977i 0.241903 0.637847i −0.757993 0.652263i \(-0.773820\pi\)
0.999896 + 0.0144162i \(0.00458896\pi\)
\(74\) 1.87847 + 15.4706i 0.218367 + 1.79842i
\(75\) −5.53507 + 14.5948i −0.639135 + 1.68526i
\(76\) 2.74722 2.43383i 0.315128 0.279179i
\(77\) −5.33756 + 4.72867i −0.608272 + 0.538882i
\(78\) −15.2451 9.66620i −1.72617 1.09448i
\(79\) −6.77962 6.00622i −0.762767 0.675753i 0.189205 0.981938i \(-0.439409\pi\)
−0.951972 + 0.306185i \(0.900947\pi\)
\(80\) −0.188578 −0.0210837
\(81\) −12.2241 + 10.8296i −1.35823 + 1.20329i
\(82\) −13.3100 3.28061i −1.46984 0.362283i
\(83\) 4.20354 + 6.08988i 0.461398 + 0.668451i 0.982760 0.184885i \(-0.0591912\pi\)
−0.521362 + 0.853336i \(0.674576\pi\)
\(84\) −2.34751 + 6.18988i −0.256134 + 0.675371i
\(85\) −0.0552874 + 0.145781i −0.00599676 + 0.0158122i
\(86\) 4.49616 + 6.51381i 0.484833 + 0.702402i
\(87\) −8.71929 2.14911i −0.934806 0.230409i
\(88\) −3.29136 + 2.91589i −0.350861 + 0.310835i
\(89\) −4.07667 −0.432126 −0.216063 0.976379i \(-0.569322\pi\)
−0.216063 + 0.976379i \(0.569322\pi\)
\(90\) −0.317301 0.281104i −0.0334465 0.0296310i
\(91\) 9.27222 + 9.67676i 0.971993 + 1.01440i
\(92\) 1.67504 1.48395i 0.174635 0.154713i
\(93\) −0.0503469 + 0.0446035i −0.00522073 + 0.00462516i
\(94\) 6.47995 17.0862i 0.668356 1.76231i
\(95\) −0.0303776 0.250182i −0.00311668 0.0256681i
\(96\) −3.47261 + 9.15653i −0.354422 + 0.934535i
\(97\) 0.361319 2.97573i 0.0366864 0.302139i −0.962804 0.270202i \(-0.912909\pi\)
0.999490 0.0319369i \(-0.0101675\pi\)
\(98\) 6.20797 8.99380i 0.627100 0.908511i
\(99\) −12.9528 −1.30181
\(100\) −1.61941 + 2.34612i −0.161941 + 0.234612i
\(101\) 1.59216 0.392433i 0.158426 0.0390485i −0.159305 0.987229i \(-0.550925\pi\)
0.317731 + 0.948181i \(0.397079\pi\)
\(102\) 14.9195 + 13.2175i 1.47725 + 1.30873i
\(103\) 7.75262 11.2316i 0.763889 1.10668i −0.227248 0.973837i \(-0.572973\pi\)
0.991137 0.132847i \(-0.0424118\pi\)
\(104\) 5.71764 + 5.96710i 0.560661 + 0.585122i
\(105\) 0.258225 + 0.374104i 0.0252002 + 0.0365088i
\(106\) −0.283410 + 2.33409i −0.0275272 + 0.226707i
\(107\) −1.82182 15.0040i −0.176122 1.45050i −0.765915 0.642942i \(-0.777714\pi\)
0.589793 0.807554i \(-0.299209\pi\)
\(108\) −5.91656 + 3.10525i −0.569321 + 0.298803i
\(109\) −11.8782 + 2.92772i −1.13773 + 0.280425i −0.762803 0.646631i \(-0.776178\pi\)
−0.374925 + 0.927055i \(0.622331\pi\)
\(110\) −0.0145185 0.119570i −0.00138428 0.0114006i
\(111\) 22.7212 20.1292i 2.15660 1.91058i
\(112\) 10.1678 14.7306i 0.960766 1.39191i
\(113\) −9.91833 14.3692i −0.933038 1.35174i −0.936096 0.351744i \(-0.885589\pi\)
0.00305809 0.999995i \(-0.499027\pi\)
\(114\) −31.2826 7.71046i −2.92988 0.722150i
\(115\) −0.0185218 0.152541i −0.00172717 0.0142245i
\(116\) −1.45223 0.762190i −0.134836 0.0707676i
\(117\) 0.950862 + 24.3253i 0.0879072 + 2.24888i
\(118\) −2.57959 + 1.35387i −0.237470 + 0.124634i
\(119\) −8.40652 12.1790i −0.770625 1.11644i
\(120\) 0.159233 + 0.230688i 0.0145359 + 0.0210589i
\(121\) 5.47881 + 4.85380i 0.498074 + 0.441255i
\(122\) 0.917201 + 0.812569i 0.0830395 + 0.0735665i
\(123\) 9.46839 + 24.9661i 0.853736 + 2.25112i
\(124\) −0.0108773 + 0.00570887i −0.000976814 + 0.000512672i
\(125\) 0.138848 + 0.366112i 0.0124189 + 0.0327460i
\(126\) 39.0664 9.62901i 3.48031 0.857820i
\(127\) −6.37889 5.65121i −0.566035 0.501464i 0.330876 0.943674i \(-0.392656\pi\)
−0.896911 + 0.442211i \(0.854194\pi\)
\(128\) 7.75508 11.2352i 0.685458 0.993058i
\(129\) 5.46684 14.4149i 0.481328 1.26916i
\(130\) −0.223486 + 0.0360432i −0.0196011 + 0.00316120i
\(131\) −4.88926 12.8919i −0.427176 1.12637i −0.959964 0.280123i \(-0.909625\pi\)
0.532788 0.846249i \(-0.321144\pi\)
\(132\) −3.31745 0.817679i −0.288747 0.0711698i
\(133\) 21.1806 + 11.1164i 1.83659 + 0.963917i
\(134\) −1.54593 + 4.07629i −0.133548 + 0.352138i
\(135\) −0.0553044 + 0.455472i −0.00475984 + 0.0392008i
\(136\) −5.18382 7.51005i −0.444508 0.643982i
\(137\) −14.5496 + 3.58615i −1.24306 + 0.306386i −0.805386 0.592750i \(-0.798042\pi\)
−0.437669 + 0.899136i \(0.644196\pi\)
\(138\) −19.0736 4.70122i −1.62365 0.400194i
\(139\) 0.669781 5.51615i 0.0568101 0.467873i −0.936346 0.351079i \(-0.885815\pi\)
0.993156 0.116795i \(-0.0372620\pi\)
\(140\) 0.0294393 + 0.0776250i 0.00248807 + 0.00656051i
\(141\) −34.5595 + 8.51816i −2.91044 + 0.717359i
\(142\) 3.23603 + 0.797610i 0.271562 + 0.0669339i
\(143\) −4.38110 + 5.35266i −0.366366 + 0.447612i
\(144\) 31.5676 7.78072i 2.63064 0.648393i
\(145\) −0.0997182 + 0.0523361i −0.00828114 + 0.00434628i
\(146\) −9.34443 −0.773351
\(147\) −21.2863 −1.75566
\(148\) 4.90886 2.57637i 0.403506 0.211776i
\(149\) −2.93801 2.60285i −0.240691 0.213233i 0.534150 0.845390i \(-0.320632\pi\)
−0.774841 + 0.632156i \(0.782170\pi\)
\(150\) 25.0249 2.04328
\(151\) −7.01963 + 6.21885i −0.571249 + 0.506083i −0.898570 0.438831i \(-0.855393\pi\)
0.327321 + 0.944913i \(0.393854\pi\)
\(152\) 13.0608 + 6.85486i 1.05937 + 0.556002i
\(153\) 3.24010 26.6846i 0.261946 2.15732i
\(154\) 10.1229 + 5.31292i 0.815728 + 0.428127i
\(155\) −0.000101675 0 0.000837367i −8.16671e−6 0 6.72589e-5i
\(156\) −1.29206 + 6.29017i −0.103448 + 0.503617i
\(157\) 1.26511 + 10.4191i 0.100967 + 0.831539i 0.951931 + 0.306314i \(0.0990957\pi\)
−0.850964 + 0.525225i \(0.823981\pi\)
\(158\) −5.14928 + 13.5775i −0.409654 + 1.08017i
\(159\) 4.05519 2.12833i 0.321598 0.168787i
\(160\) 0.0435488 + 0.114829i 0.00344283 + 0.00907800i
\(161\) 12.9142 + 6.77791i 1.01778 + 0.534174i
\(162\) 23.1835 + 12.1676i 1.82146 + 0.955978i
\(163\) 14.9790 + 3.69198i 1.17324 + 0.289179i 0.777320 0.629105i \(-0.216579\pi\)
0.395923 + 0.918284i \(0.370425\pi\)
\(164\) 0.587803 + 4.84099i 0.0458997 + 0.378018i
\(165\) −0.175609 + 0.155576i −0.0136712 + 0.0121116i
\(166\) 6.73921 9.76344i 0.523064 0.757790i
\(167\) 2.60498 + 6.86877i 0.201580 + 0.531522i 0.997242 0.0742187i \(-0.0236463\pi\)
−0.795662 + 0.605740i \(0.792877\pi\)
\(168\) −26.6055 −2.05266
\(169\) 10.3739 + 7.83472i 0.797990 + 0.602671i
\(170\) 0.249963 0.0191713
\(171\) 15.4076 + 40.6266i 1.17825 + 3.10679i
\(172\) 1.59945 2.31720i 0.121957 0.176685i
\(173\) −6.29403 + 5.57602i −0.478526 + 0.423937i −0.867595 0.497272i \(-0.834335\pi\)
0.389069 + 0.921209i \(0.372797\pi\)
\(174\) 1.73541 + 14.2924i 0.131561 + 1.08350i
\(175\) −18.0396 4.44637i −1.36367 0.336114i
\(176\) 8.17983 + 4.29311i 0.616578 + 0.323605i
\(177\) 5.02456 + 2.63709i 0.377669 + 0.198216i
\(178\) 2.31763 + 6.11109i 0.173714 + 0.458045i
\(179\) 16.7482 8.79014i 1.25182 0.657006i 0.297195 0.954817i \(-0.403949\pi\)
0.954625 + 0.297811i \(0.0962566\pi\)
\(180\) −0.0534745 + 0.141001i −0.00398576 + 0.0105096i
\(181\) −0.459591 3.78507i −0.0341611 0.281342i −0.999772 0.0213508i \(-0.993203\pi\)
0.965611 0.259991i \(-0.0837197\pi\)
\(182\) 9.23449 19.4008i 0.684506 1.43808i
\(183\) 0.287696 2.36939i 0.0212671 0.175150i
\(184\) 7.96345 + 4.17954i 0.587073 + 0.308120i
\(185\) 0.0458850 0.377897i 0.00337353 0.0277835i
\(186\) 0.0954851 + 0.0501145i 0.00700131 + 0.00367457i
\(187\) 5.71696 5.06479i 0.418066 0.370374i
\(188\) −6.50064 −0.474108
\(189\) −32.5968 28.8783i −2.37107 2.10058i
\(190\) −0.357763 + 0.187768i −0.0259549 + 0.0136222i
\(191\) −17.3024 −1.25196 −0.625980 0.779839i \(-0.715301\pi\)
−0.625980 + 0.779839i \(0.715301\pi\)
\(192\) −14.3746 −1.03739
\(193\) 23.8475 12.5162i 1.71658 0.900933i 0.744065 0.668107i \(-0.232895\pi\)
0.972519 0.232825i \(-0.0747971\pi\)
\(194\) −4.66615 + 1.15010i −0.335010 + 0.0825725i
\(195\) 0.305062 + 0.318372i 0.0218460 + 0.0227991i
\(196\) −3.77463 0.930362i −0.269616 0.0664544i
\(197\) 7.82984 1.92988i 0.557853 0.137498i 0.0496984 0.998764i \(-0.484174\pi\)
0.508155 + 0.861266i \(0.330328\pi\)
\(198\) 7.36383 + 19.4168i 0.523324 + 1.37989i
\(199\) −2.96888 + 24.4510i −0.210459 + 1.73328i 0.378924 + 0.925428i \(0.376294\pi\)
−0.589382 + 0.807854i \(0.700629\pi\)
\(200\) −11.1240 2.74182i −0.786586 0.193876i
\(201\) 8.24493 2.03219i 0.581552 0.143340i
\(202\) −1.49343 2.16361i −0.105078 0.152231i
\(203\) 1.28844 10.6112i 0.0904306 0.744763i
\(204\) 2.51438 6.62986i 0.176041 0.464183i
\(205\) 0.296495 + 0.155613i 0.0207081 + 0.0108685i
\(206\) −21.2441 5.23620i −1.48015 0.364823i
\(207\) 9.39433 + 24.7708i 0.652951 + 1.72169i
\(208\) 7.46194 15.6768i 0.517392 1.08699i
\(209\) −4.37789 + 11.5435i −0.302825 + 0.798483i
\(210\) 0.413993 0.599773i 0.0285682 0.0413882i
\(211\) −14.9798 13.2710i −1.03125 0.913610i −0.0349387 0.999389i \(-0.511124\pi\)
−0.996314 + 0.0857791i \(0.972662\pi\)
\(212\) 0.812117 0.200169i 0.0557764 0.0137477i
\(213\) −2.30203 6.06996i −0.157733 0.415907i
\(214\) −21.4559 + 11.2609i −1.46670 + 0.769782i
\(215\) −0.0685576 0.180772i −0.00467559 0.0123285i
\(216\) −20.1006 17.8075i −1.36767 1.21165i
\(217\) −0.0599279 0.0530915i −0.00406817 0.00360408i
\(218\) 11.1417 + 16.1415i 0.754609 + 1.09324i
\(219\) 10.3395 + 14.9793i 0.698677 + 1.01221i
\(220\) −0.0379401 + 0.0199125i −0.00255792 + 0.00134250i
\(221\) −9.93130 10.3646i −0.668051 0.697198i
\(222\) −43.0917 22.6163i −2.89212 1.51790i
\(223\) 1.40034 + 11.5328i 0.0937736 + 0.772295i 0.961415 + 0.275104i \(0.0887122\pi\)
−0.867641 + 0.497191i \(0.834365\pi\)
\(224\) −11.3178 2.78958i −0.756201 0.186387i
\(225\) −19.1714 27.7745i −1.27809 1.85163i
\(226\) −15.9013 + 23.0370i −1.05774 + 1.53240i
\(227\) 4.60510 4.07976i 0.305651 0.270783i −0.496328 0.868135i \(-0.665319\pi\)
0.801979 + 0.597352i \(0.203780\pi\)
\(228\) 1.38152 + 11.3778i 0.0914934 + 0.753516i
\(229\) −11.6521 + 2.87198i −0.769992 + 0.189786i −0.604694 0.796458i \(-0.706705\pi\)
−0.165298 + 0.986244i \(0.552859\pi\)
\(230\) −0.218135 + 0.114486i −0.0143834 + 0.00754899i
\(231\) −2.68414 22.1059i −0.176604 1.45446i
\(232\) 0.794505 6.54333i 0.0521618 0.429591i
\(233\) 6.82624 + 9.88952i 0.447202 + 0.647884i 0.980148 0.198265i \(-0.0635307\pi\)
−0.532947 + 0.846149i \(0.678915\pi\)
\(234\) 35.9240 15.2546i 2.34843 0.997223i
\(235\) −0.253567 + 0.367355i −0.0165409 + 0.0239636i
\(236\) 0.775729 + 0.687236i 0.0504957 + 0.0447353i
\(237\) 27.4627 6.76894i 1.78389 0.439690i
\(238\) −13.4775 + 19.5256i −0.873619 + 1.26566i
\(239\) 14.8575 0.961050 0.480525 0.876981i \(-0.340446\pi\)
0.480525 + 0.876981i \(0.340446\pi\)
\(240\) 0.334527 0.484646i 0.0215936 0.0312838i
\(241\) 1.06219 8.74790i 0.0684215 0.563502i −0.917676 0.397331i \(-0.869937\pi\)
0.986097 0.166171i \(-0.0531403\pi\)
\(242\) 4.16128 10.9724i 0.267497 0.705332i
\(243\) −1.91059 15.7352i −0.122565 1.00941i
\(244\) 0.154575 0.407582i 0.00989567 0.0260927i
\(245\) −0.199810 + 0.177016i −0.0127654 + 0.0113091i
\(246\) 32.0423 28.3870i 2.04294 1.80989i
\(247\) 22.0000 + 7.37422i 1.39983 + 0.469211i
\(248\) −0.0369540 0.0327384i −0.00234658 0.00207889i
\(249\) −23.1078 −1.46440
\(250\) 0.469880 0.416277i 0.0297178 0.0263277i
\(251\) 28.1320 + 6.93392i 1.77568 + 0.437665i 0.984711 0.174194i \(-0.0557319\pi\)
0.790967 + 0.611859i \(0.209578\pi\)
\(252\) −8.13087 11.7796i −0.512197 0.742045i
\(253\) −2.66928 + 7.03832i −0.167816 + 0.442495i
\(254\) −4.84491 + 12.7750i −0.303997 + 0.801574i
\(255\) −0.276580 0.400696i −0.0173201 0.0250926i
\(256\) −12.3121 3.03466i −0.769505 0.189666i
\(257\) −2.44338 + 2.16465i −0.152414 + 0.135027i −0.735884 0.677108i \(-0.763233\pi\)
0.583470 + 0.812135i \(0.301695\pi\)
\(258\) −24.7164 −1.53878
\(259\) 27.0450 + 23.9598i 1.68049 + 1.48879i
\(260\) 0.0401806 + 0.0697893i 0.00249190 + 0.00432815i
\(261\) 14.5332 12.8753i 0.899584 0.796962i
\(262\) −16.5459 + 14.6584i −1.02221 + 0.905598i
\(263\) 8.53964 22.5172i 0.526577 1.38847i −0.363046 0.931771i \(-0.618263\pi\)
0.889622 0.456697i \(-0.150968\pi\)
\(264\) −1.65516 13.6314i −0.101868 0.838957i
\(265\) 0.0203661 0.0537011i 0.00125108 0.00329883i
\(266\) 4.62258 38.0704i 0.283429 2.33424i
\(267\) 7.23177 10.4770i 0.442577 0.641184i
\(268\) 1.55087 0.0947343
\(269\) −16.3445 + 23.6791i −0.996544 + 1.44374i −0.103045 + 0.994677i \(0.532859\pi\)
−0.893499 + 0.449066i \(0.851757\pi\)
\(270\) 0.714213 0.176038i 0.0434656 0.0107133i
\(271\) −15.8591 14.0500i −0.963375 0.853475i 0.0258820 0.999665i \(-0.491761\pi\)
−0.989257 + 0.146190i \(0.953299\pi\)
\(272\) −10.8905 + 15.7777i −0.660335 + 0.956661i
\(273\) −41.3177 + 6.66358i −2.50066 + 0.403298i
\(274\) 13.6474 + 19.7717i 0.824469 + 1.19445i
\(275\) 1.15585 9.51931i 0.0697006 0.574036i
\(276\) 0.842340 + 6.93729i 0.0507029 + 0.417576i
\(277\) 6.63650 3.48310i 0.398749 0.209279i −0.253415 0.967358i \(-0.581554\pi\)
0.652164 + 0.758078i \(0.273862\pi\)
\(278\) −8.64970 + 2.13196i −0.518775 + 0.127866i
\(279\) −0.0175295 0.144369i −0.00104946 0.00864312i
\(280\) −0.249740 + 0.221251i −0.0149248 + 0.0132223i
\(281\) −5.50309 + 7.97260i −0.328287 + 0.475605i −0.952022 0.306031i \(-0.900999\pi\)
0.623735 + 0.781636i \(0.285614\pi\)
\(282\) 32.4165 + 46.9635i 1.93038 + 2.79663i
\(283\) −17.4904 4.31100i −1.03970 0.256262i −0.317724 0.948183i \(-0.602919\pi\)
−0.721973 + 0.691921i \(0.756765\pi\)
\(284\) −0.142912 1.17698i −0.00848024 0.0698411i
\(285\) 0.696856 + 0.365738i 0.0412782 + 0.0216645i
\(286\) 10.5146 + 3.52439i 0.621739 + 0.208402i
\(287\) −28.1420 + 14.7700i −1.66117 + 0.871848i
\(288\) −12.0278 17.4253i −0.708744 1.02679i
\(289\) −0.653032 0.946080i −0.0384136 0.0556518i
\(290\) 0.135145 + 0.119728i 0.00793598 + 0.00703066i
\(291\) 7.00666 + 6.20736i 0.410738 + 0.363882i
\(292\) 1.17876 + 3.10814i 0.0689819 + 0.181890i
\(293\) −13.5769 + 7.12571i −0.793171 + 0.416288i −0.812090 0.583533i \(-0.801670\pi\)
0.0189184 + 0.999821i \(0.493978\pi\)
\(294\) 12.1015 + 31.9090i 0.705773 + 1.86097i
\(295\) 0.0690945 0.0170303i 0.00402284 0.000991541i
\(296\) 16.6771 + 14.7746i 0.969335 + 0.858756i
\(297\) 12.7680 18.4977i 0.740876 1.07334i
\(298\) −2.23148 + 5.88394i −0.129266 + 0.340847i
\(299\) 13.4139 + 4.49621i 0.775743 + 0.260022i
\(300\) −3.15679 8.32378i −0.182258 0.480574i
\(301\) 17.8173 + 4.39156i 1.02697 + 0.253125i
\(302\) 13.3130 + 6.98722i 0.766079 + 0.402069i
\(303\) −1.81585 + 4.78801i −0.104318 + 0.275064i
\(304\) 3.73528 30.7628i 0.214233 1.76437i
\(305\) −0.0170032 0.0246334i −0.000973602 0.00141051i
\(306\) −41.8433 + 10.3134i −2.39202 + 0.589580i
\(307\) −10.5780 2.60725i −0.603719 0.148803i −0.0744034 0.997228i \(-0.523705\pi\)
−0.529316 + 0.848425i \(0.677551\pi\)
\(308\) 0.490215 4.03729i 0.0279326 0.230046i
\(309\) 15.1125 + 39.8485i 0.859722 + 2.26690i
\(310\) 0.00131305 0.000323638i 7.45762e−5 1.83814e-5i
\(311\) −25.7661 6.35078i −1.46106 0.360120i −0.572892 0.819631i \(-0.694178\pi\)
−0.888172 + 0.459511i \(0.848025\pi\)
\(312\) −25.4782 + 4.10905i −1.44242 + 0.232629i
\(313\) −18.7422 + 4.61954i −1.05937 + 0.261112i −0.730254 0.683176i \(-0.760598\pi\)
−0.329120 + 0.944288i \(0.606752\pi\)
\(314\) 14.8995 7.81986i 0.840827 0.441300i
\(315\) −0.982828 −0.0553761
\(316\) 5.16571 0.290594
\(317\) −1.10622 + 0.580591i −0.0621317 + 0.0326092i −0.495503 0.868606i \(-0.665016\pi\)
0.433371 + 0.901216i \(0.357324\pi\)
\(318\) −5.49587 4.86892i −0.308193 0.273035i
\(319\) 5.51687 0.308885
\(320\) −0.134931 + 0.119538i −0.00754287 + 0.00668240i
\(321\) 41.7922 + 21.9342i 2.33261 + 1.22425i
\(322\) 2.81848 23.2123i 0.157068 1.29357i
\(323\) −22.6861 11.9066i −1.26229 0.662501i
\(324\) 1.12269 9.24617i 0.0623716 0.513676i
\(325\) −17.9620 1.47187i −0.996354 0.0816449i
\(326\) −2.98127 24.5530i −0.165118 1.35987i
\(327\) 13.5471 35.7207i 0.749154 1.97536i
\(328\) −17.3535 + 9.10783i −0.958188 + 0.502896i
\(329\) −15.0237 39.6141i −0.828281 2.18400i
\(330\) 0.333051 + 0.174799i 0.0183339 + 0.00962235i
\(331\) 14.0077 + 7.35179i 0.769931 + 0.404091i 0.803469 0.595347i \(-0.202985\pi\)
−0.0335383 + 0.999437i \(0.510678\pi\)
\(332\) −4.09764 1.00998i −0.224887 0.0554297i
\(333\) 7.91093 + 65.1524i 0.433516 + 3.57033i
\(334\) 8.81561 7.80995i 0.482368 0.427341i
\(335\) 0.0604938 0.0876404i 0.00330513 0.00478831i
\(336\) 19.8205 + 52.2624i 1.08130 + 2.85115i
\(337\) −13.5445 −0.737818 −0.368909 0.929465i \(-0.620269\pi\)
−0.368909 + 0.929465i \(0.620269\pi\)
\(338\) 5.84690 20.0050i 0.318030 1.08813i
\(339\) 54.5234 2.96130
\(340\) −0.0315319 0.0831427i −0.00171005 0.00450904i
\(341\) 0.0234735 0.0340072i 0.00127116 0.00184159i
\(342\) 52.1415 46.1933i 2.81949 2.49785i
\(343\) 0.0822417 + 0.677321i 0.00444063 + 0.0365719i
\(344\) 10.9869 + 2.70802i 0.592372 + 0.146007i
\(345\) 0.424887 + 0.222998i 0.0228751 + 0.0120058i
\(346\) 11.9369 + 6.26497i 0.641732 + 0.336807i
\(347\) −2.86896 7.56483i −0.154014 0.406101i 0.835696 0.549193i \(-0.185065\pi\)
−0.989709 + 0.143092i \(0.954296\pi\)
\(348\) 4.53501 2.38015i 0.243102 0.127590i
\(349\) −1.33694 + 3.52523i −0.0715650 + 0.188701i −0.966026 0.258444i \(-0.916790\pi\)
0.894461 + 0.447146i \(0.147559\pi\)
\(350\) 3.59044 + 29.5700i 0.191917 + 1.58058i
\(351\) −35.6757 22.6203i −1.90423 1.20738i
\(352\) 0.725163 5.97226i 0.0386513 0.318322i
\(353\) −7.98851 4.19269i −0.425185 0.223154i 0.238537 0.971133i \(-0.423332\pi\)
−0.663723 + 0.747979i \(0.731024\pi\)
\(354\) 1.09659 9.03123i 0.0582831 0.480005i
\(355\) −0.0720864 0.0378339i −0.00382595 0.00200801i
\(356\) 1.74031 1.54178i 0.0922361 0.0817141i
\(357\) 46.2126 2.44583
\(358\) −22.6983 20.1089i −1.19964 1.06279i
\(359\) −2.60889 + 1.36925i −0.137692 + 0.0722663i −0.532162 0.846642i \(-0.678620\pi\)
0.394470 + 0.918909i \(0.370928\pi\)
\(360\) −0.606053 −0.0319418
\(361\) 22.4139 1.17968
\(362\) −5.41269 + 2.84080i −0.284485 + 0.149309i
\(363\) −22.1934 + 5.47017i −1.16485 + 0.287110i
\(364\) −7.61798 0.624245i −0.399290 0.0327193i
\(365\) 0.221622 + 0.0546250i 0.0116002 + 0.00285920i
\(366\) −3.71537 + 0.915755i −0.194205 + 0.0478673i
\(367\) 5.37095 + 14.1620i 0.280361 + 0.739252i 0.999036 + 0.0439055i \(0.0139801\pi\)
−0.718674 + 0.695347i \(0.755251\pi\)
\(368\) 2.27747 18.7567i 0.118721 0.977759i
\(369\) −56.0533 13.8159i −2.91802 0.719226i
\(370\) −0.592569 + 0.146055i −0.0308062 + 0.00759305i
\(371\) 3.09669 + 4.48634i 0.160772 + 0.232919i
\(372\) 0.00462399 0.0380820i 0.000239743 0.00197446i
\(373\) 4.18305 11.0298i 0.216590 0.571101i −0.782051 0.623214i \(-0.785826\pi\)
0.998641 + 0.0521133i \(0.0165957\pi\)
\(374\) −10.8425 5.69057i −0.560651 0.294252i
\(375\) −1.18722 0.292622i −0.0613076 0.0151110i
\(376\) −9.26422 24.4277i −0.477766 1.25976i
\(377\) −0.404991 10.3606i −0.0208581 0.533600i
\(378\) −24.7580 + 65.2815i −1.27341 + 3.35772i
\(379\) −16.9143 + 24.5046i −0.868829 + 1.25872i 0.0958783 + 0.995393i \(0.469434\pi\)
−0.964708 + 0.263323i \(0.915181\pi\)
\(380\) 0.107586 + 0.0953128i 0.00551904 + 0.00488944i
\(381\) 25.8394 6.36884i 1.32379 0.326286i
\(382\) 9.83662 + 25.9370i 0.503285 + 1.32705i
\(383\) 17.6480 9.26239i 0.901772 0.473286i 0.0509262 0.998702i \(-0.483783\pi\)
0.850845 + 0.525416i \(0.176090\pi\)
\(384\) 15.1173 + 39.8611i 0.771452 + 2.03415i
\(385\) −0.209028 0.185183i −0.0106530 0.00943777i
\(386\) −32.3198 28.6328i −1.64503 1.45737i
\(387\) 18.9350 + 27.4321i 0.962521 + 1.39445i
\(388\) 0.971163 + 1.40697i 0.0493033 + 0.0714282i
\(389\) 16.8604 8.84900i 0.854854 0.448662i 0.0204342 0.999791i \(-0.493495\pi\)
0.834420 + 0.551129i \(0.185803\pi\)
\(390\) 0.303821 0.638299i 0.0153846 0.0323215i
\(391\) −13.8322 7.25969i −0.699523 0.367138i
\(392\) −1.88325 15.5100i −0.0951185 0.783371i
\(393\) 41.8055 + 10.3041i 2.10881 + 0.519775i
\(394\) −7.34432 10.6401i −0.370001 0.536040i
\(395\) 0.201496 0.291917i 0.0101384 0.0146880i
\(396\) 5.52950 4.89871i 0.277868 0.246169i
\(397\) 1.26140 + 10.3885i 0.0633077 + 0.521386i 0.989521 + 0.144387i \(0.0461209\pi\)
−0.926214 + 0.376999i \(0.876956\pi\)
\(398\) 38.3408 9.45016i 1.92185 0.473694i
\(399\) −66.1424 + 34.7142i −3.31126 + 1.73788i
\(400\) 2.90126 + 23.8940i 0.145063 + 1.19470i
\(401\) 2.02071 16.6420i 0.100909 0.831063i −0.851102 0.525000i \(-0.824065\pi\)
0.952011 0.306062i \(-0.0990117\pi\)
\(402\) −7.73367 11.2042i −0.385720 0.558812i
\(403\) −0.0655884 0.0415865i −0.00326719 0.00207157i
\(404\) −0.531269 + 0.769677i −0.0264316 + 0.0382928i
\(405\) −0.478714 0.424104i −0.0237875 0.0210739i
\(406\) −16.6392 + 4.10118i −0.825788 + 0.203538i
\(407\) −10.5934 + 15.3472i −0.525095 + 0.760731i
\(408\) 28.4966 1.41079
\(409\) 6.62677 9.60054i 0.327673 0.474716i −0.624176 0.781284i \(-0.714565\pi\)
0.951849 + 0.306568i \(0.0991806\pi\)
\(410\) 0.0647089 0.532926i 0.00319575 0.0263193i
\(411\) 16.5937 43.7541i 0.818509 2.15823i
\(412\) 0.938195 + 7.72673i 0.0462215 + 0.380669i
\(413\) −2.39515 + 6.31548i −0.117857 + 0.310764i
\(414\) 31.7917 28.1650i 1.56248 1.38423i
\(415\) −0.216909 + 0.192164i −0.0106476 + 0.00943297i
\(416\) −11.2691 0.923429i −0.552512 0.0452749i
\(417\) 12.9883 + 11.5067i 0.636042 + 0.563484i
\(418\) 19.7931 0.968112
\(419\) −3.05362 + 2.70527i −0.149179 + 0.132161i −0.734411 0.678704i \(-0.762542\pi\)
0.585232 + 0.810866i \(0.301003\pi\)
\(420\) −0.251720 0.0620434i −0.0122827 0.00302741i
\(421\) −9.52303 13.7965i −0.464124 0.672400i 0.519118 0.854702i \(-0.326260\pi\)
−0.983243 + 0.182302i \(0.941645\pi\)
\(422\) −11.3775 + 30.0000i −0.553848 + 1.46038i
\(423\) 27.2895 71.9565i 1.32686 3.49865i
\(424\) 1.90955 + 2.76646i 0.0927360 + 0.134351i
\(425\) 19.3219 + 4.76243i 0.937251 + 0.231012i
\(426\) −7.79039 + 6.90168i −0.377446 + 0.334388i
\(427\) 2.84099 0.137485
\(428\) 6.45220 + 5.71615i 0.311879 + 0.276300i
\(429\) −5.98453 20.7547i −0.288936 1.00205i
\(430\) −0.232008 + 0.205541i −0.0111884 + 0.00991207i
\(431\) 18.2047 16.1280i 0.876890 0.776857i −0.0990074 0.995087i \(-0.531567\pi\)
0.975897 + 0.218230i \(0.0700283\pi\)
\(432\) −20.0057 + 52.7508i −0.962526 + 2.53797i
\(433\) 1.29610 + 10.6743i 0.0622865 + 0.512976i 0.990145 + 0.140044i \(0.0447244\pi\)
−0.927859 + 0.372932i \(0.878353\pi\)
\(434\) −0.0455166 + 0.120017i −0.00218487 + 0.00576102i
\(435\) 0.0423905 0.349117i 0.00203247 0.0167389i
\(436\) 3.96350 5.74213i 0.189817 0.274998i
\(437\) 25.2509 1.20791
\(438\) 16.5765 24.0152i 0.792055 1.14749i
\(439\) 5.34781 1.31812i 0.255237 0.0629103i −0.109621 0.993973i \(-0.534964\pi\)
0.364858 + 0.931063i \(0.381118\pi\)
\(440\) −0.128895 0.114191i −0.00614484 0.00544386i
\(441\) 26.1441 37.8763i 1.24496 1.80363i
\(442\) −9.89089 + 20.7798i −0.470462 + 0.988394i
\(443\) 5.70056 + 8.25869i 0.270842 + 0.392382i 0.934678 0.355496i \(-0.115688\pi\)
−0.663836 + 0.747878i \(0.731073\pi\)
\(444\) −2.08677 + 17.1861i −0.0990337 + 0.815616i
\(445\) −0.0192436 0.158485i −0.000912233 0.00751291i
\(446\) 16.4921 8.65570i 0.780921 0.409859i
\(447\) 11.9012 2.93338i 0.562906 0.138744i
\(448\) −2.06239 16.9853i −0.0974385 0.802479i
\(449\) −7.14011 + 6.32559i −0.336963 + 0.298523i −0.814587 0.580041i \(-0.803036\pi\)
0.477624 + 0.878564i \(0.341498\pi\)
\(450\) −30.7360 + 44.5287i −1.44891 + 2.09910i
\(451\) −9.31824 13.4998i −0.438779 0.635681i
\(452\) 9.66845 + 2.38306i 0.454766 + 0.112090i
\(453\) −3.53002 29.0723i −0.165855 1.36594i
\(454\) −8.73378 4.58384i −0.409896 0.215130i
\(455\) −0.332426 + 0.406146i −0.0155844 + 0.0190404i
\(456\) −40.7862 + 21.4062i −1.90999 + 1.00244i
\(457\) 8.36900 + 12.1246i 0.391485 + 0.567164i 0.968325 0.249693i \(-0.0803297\pi\)
−0.576840 + 0.816857i \(0.695714\pi\)
\(458\) 10.9296 + 15.8342i 0.510705 + 0.739884i
\(459\) 34.9138 + 30.9310i 1.62964 + 1.44373i
\(460\) 0.0655972 + 0.0581141i 0.00305849 + 0.00270958i
\(461\) 0.623521 + 1.64409i 0.0290403 + 0.0765729i 0.948752 0.316021i \(-0.102347\pi\)
−0.919712 + 0.392594i \(0.871578\pi\)
\(462\) −31.6117 + 16.5911i −1.47071 + 0.771888i
\(463\) −9.35213 24.6595i −0.434630 1.14603i −0.956173 0.292801i \(-0.905413\pi\)
0.521543 0.853225i \(-0.325357\pi\)
\(464\) −13.4453 + 3.31396i −0.624181 + 0.153847i
\(465\) −0.00197167 0.00174675i −9.14339e−5 8.10034e-5i
\(466\) 10.9440 15.8551i 0.506970 0.734473i
\(467\) 3.13865 8.27593i 0.145239 0.382965i −0.842580 0.538572i \(-0.818964\pi\)
0.987819 + 0.155607i \(0.0497334\pi\)
\(468\) −9.60565 10.0247i −0.444021 0.463394i
\(469\) 3.58422 + 9.45081i 0.165504 + 0.436398i
\(470\) 0.694835 + 0.171261i 0.0320503 + 0.00789970i
\(471\) −29.0215 15.2316i −1.33724 0.701837i
\(472\) −1.47695 + 3.89439i −0.0679820 + 0.179254i
\(473\) −1.14160 + 9.40195i −0.0524910 + 0.432302i
\(474\) −25.7597 37.3194i −1.18318 1.71414i
\(475\) −31.2322 + 7.69805i −1.43303 + 0.353211i
\(476\) 8.19473 + 2.01982i 0.375605 + 0.0925783i
\(477\) −1.19355 + 9.82975i −0.0546488 + 0.450073i
\(478\) −8.44664 22.2719i −0.386340 1.01870i
\(479\) −5.95175 + 1.46697i −0.271942 + 0.0670278i −0.372929 0.927860i \(-0.621646\pi\)
0.100986 + 0.994888i \(0.467800\pi\)
\(480\) −0.372363 0.0917792i −0.0169960 0.00418913i
\(481\) 29.5995 + 18.7677i 1.34962 + 0.855732i
\(482\) −13.7173 + 3.38101i −0.624806 + 0.154001i
\(483\) −40.3283 + 21.1659i −1.83500 + 0.963084i
\(484\) −4.17456 −0.189753
\(485\) 0.117390 0.00533042
\(486\) −22.5014 + 11.8097i −1.02069 + 0.535697i
\(487\) −17.7365 15.7132i −0.803719 0.712033i 0.157590 0.987505i \(-0.449627\pi\)
−0.961309 + 0.275472i \(0.911166\pi\)
\(488\) 1.75188 0.0793037
\(489\) −36.0602 + 31.9466i −1.63070 + 1.44467i
\(490\) 0.378948 + 0.198887i 0.0171191 + 0.00898482i
\(491\) −3.52027 + 28.9920i −0.158868 + 1.30839i 0.667224 + 0.744857i \(0.267482\pi\)
−0.826092 + 0.563535i \(0.809441\pi\)
\(492\) −13.4841 7.07699i −0.607909 0.319055i
\(493\) −1.38002 + 11.3655i −0.0621530 + 0.511876i
\(494\) −1.45300 37.1713i −0.0653737 1.67241i
\(495\) −0.0611428 0.503556i −0.00274816 0.0226332i
\(496\) −0.0367797 + 0.0969801i −0.00165146 + 0.00435453i
\(497\) 6.84211 3.59102i 0.306911 0.161079i
\(498\) 13.1371 + 34.6396i 0.588685 + 1.55224i
\(499\) −3.45829 1.81505i −0.154815 0.0812529i 0.385537 0.922693i \(-0.374016\pi\)
−0.540351 + 0.841440i \(0.681709\pi\)
\(500\) −0.197736 0.103780i −0.00884300 0.00464116i
\(501\) −22.2738 5.49001i −0.995122 0.245276i
\(502\) −5.59914 46.1131i −0.249902 2.05813i
\(503\) 16.0883 14.2530i 0.717341 0.635509i −0.223364 0.974735i \(-0.571704\pi\)
0.940705 + 0.339227i \(0.110165\pi\)
\(504\) 32.6772 47.3411i 1.45556 2.10874i
\(505\) 0.0227719 + 0.0600447i 0.00101334 + 0.00267195i
\(506\) 12.0682 0.536499
\(507\) −38.5379 + 12.7625i −1.71153 + 0.566802i
\(508\) 4.86038 0.215645
\(509\) 5.07939 + 13.3933i 0.225140 + 0.593646i 0.999222 0.0394397i \(-0.0125573\pi\)
−0.774082 + 0.633086i \(0.781788\pi\)
\(510\) −0.443420 + 0.642405i −0.0196350 + 0.0284462i
\(511\) −16.2164 + 14.3665i −0.717372 + 0.635536i
\(512\) −0.840590 6.92288i −0.0371492 0.305951i
\(513\) −73.2057 18.0436i −3.23211 0.796644i
\(514\) 4.63398 + 2.43210i 0.204396 + 0.107275i
\(515\) 0.473237 + 0.248374i 0.0208533 + 0.0109447i
\(516\) 3.11788 + 8.22117i 0.137257 + 0.361917i
\(517\) 19.3618 10.1619i 0.851533 0.446919i
\(518\) 20.5413 54.1629i 0.902532 2.37978i
\(519\) −3.16513 26.0672i −0.138934 1.14422i
\(520\) −0.204988 + 0.250447i −0.00898932 + 0.0109828i
\(521\) −3.68616 + 30.3583i −0.161494 + 1.33002i 0.656296 + 0.754504i \(0.272122\pi\)
−0.817790 + 0.575517i \(0.804801\pi\)
\(522\) −27.5629 14.4661i −1.20640 0.633166i
\(523\) 0.602059 4.95840i 0.0263262 0.216816i −0.973609 0.228224i \(-0.926708\pi\)
0.999935 + 0.0114078i \(0.00363131\pi\)
\(524\) 6.96287 + 3.65440i 0.304174 + 0.159643i
\(525\) 43.4285 38.4743i 1.89538 1.67916i
\(526\) −38.6090 −1.68343
\(527\) 0.0641876 + 0.0568653i 0.00279606 + 0.00247709i
\(528\) −25.5438 + 13.4064i −1.11165 + 0.583440i
\(529\) −7.60405 −0.330611
\(530\) −0.0920784 −0.00399963
\(531\) −10.8636 + 5.70166i −0.471441 + 0.247431i
\(532\) −13.2461 + 3.26486i −0.574290 + 0.141550i
\(533\) −24.6685 + 18.4906i −1.06851 + 0.800916i
\(534\) −19.8168 4.88441i −0.857558 0.211369i
\(535\) 0.574700 0.141651i 0.0248464 0.00612410i
\(536\) 2.21018 + 5.82777i 0.0954652 + 0.251721i
\(537\) −7.11971 + 58.6361i −0.307238 + 2.53033i
\(538\) 44.7880 + 11.0393i 1.93095 + 0.475936i
\(539\) 12.6969 3.12950i 0.546894 0.134797i
\(540\) −0.148649 0.215355i −0.00639682 0.00926740i
\(541\) 2.96614 24.4284i 0.127525 1.05026i −0.778681 0.627420i \(-0.784111\pi\)
0.906205 0.422838i \(-0.138966\pi\)
\(542\) −12.0454 + 31.7611i −0.517393 + 1.36425i
\(543\) 10.5429 + 5.53335i 0.452440 + 0.237459i
\(544\) 12.1223 + 2.98787i 0.519738 + 0.128104i
\(545\) −0.169889 0.447960i −0.00727723 0.0191885i
\(546\) 33.4785 + 58.1485i 1.43275 + 2.48853i
\(547\) 13.1155 34.5826i 0.560776 1.47865i −0.292026 0.956411i \(-0.594329\pi\)
0.852802 0.522235i \(-0.174902\pi\)
\(548\) 4.85488 7.03351i 0.207390 0.300457i
\(549\) 3.86268 + 3.42203i 0.164855 + 0.146049i
\(550\) −14.9269 + 3.67916i −0.636487 + 0.156880i
\(551\) −6.56241 17.3037i −0.279568 0.737161i
\(552\) −24.8681 + 13.0518i −1.05846 + 0.555522i
\(553\) 11.9385 + 31.4793i 0.507677 + 1.33863i
\(554\) −8.99423 7.96820i −0.382128 0.338536i
\(555\) 0.889798 + 0.788293i 0.0377698 + 0.0334612i
\(556\) 1.80026 + 2.60812i 0.0763479 + 0.110609i
\(557\) 11.7132 + 16.9696i 0.496306 + 0.719023i 0.988460 0.151485i \(-0.0484056\pi\)
−0.492154 + 0.870508i \(0.663790\pi\)
\(558\) −0.206449 + 0.108353i −0.00873967 + 0.00458693i
\(559\) 17.7406 + 1.45373i 0.750347 + 0.0614862i
\(560\) 0.620665 + 0.325750i 0.0262279 + 0.0137654i
\(561\) 2.87494 + 23.6772i 0.121380 + 0.999654i
\(562\) 15.0798 + 3.71684i 0.636103 + 0.156785i
\(563\) 0.768892 + 1.11393i 0.0324049 + 0.0469467i 0.838852 0.544360i \(-0.183228\pi\)
−0.806447 + 0.591307i \(0.798612\pi\)
\(564\) 11.5318 16.7066i 0.485575 0.703476i
\(565\) 0.511800 0.453415i 0.0215316 0.0190753i
\(566\) 3.48113 + 28.6697i 0.146323 + 1.20508i
\(567\) 58.9398 14.5274i 2.47524 0.610091i
\(568\) 4.21913 2.21437i 0.177031 0.0929130i
\(569\) 1.69319 + 13.9447i 0.0709824 + 0.584593i 0.984192 + 0.177103i \(0.0566726\pi\)
−0.913210 + 0.407489i \(0.866404\pi\)
\(570\) 0.152086 1.25254i 0.00637018 0.0524632i
\(571\) 7.11512 + 10.3080i 0.297758 + 0.431378i 0.943096 0.332520i \(-0.107899\pi\)
−0.645338 + 0.763897i \(0.723283\pi\)
\(572\) −0.154088 3.94194i −0.00644274 0.164821i
\(573\) 30.6935 44.4672i 1.28224 1.85765i
\(574\) 38.1399 + 33.7890i 1.59193 + 1.41033i
\(575\) −19.0429 + 4.69365i −0.794144 + 0.195739i
\(576\) 17.6550 25.5777i 0.735626 1.06574i
\(577\) −1.34830 −0.0561306 −0.0280653 0.999606i \(-0.508935\pi\)
−0.0280653 + 0.999606i \(0.508935\pi\)
\(578\) −1.04696 + 1.51678i −0.0435476 + 0.0630897i
\(579\) −10.1377 + 83.4911i −0.421307 + 3.46977i
\(580\) 0.0227759 0.0600550i 0.000945717 0.00249365i
\(581\) −3.31539 27.3047i −0.137546 1.13279i
\(582\) 5.32172 14.0322i 0.220592 0.581654i
\(583\) −2.10595 + 1.86570i −0.0872193 + 0.0772696i
\(584\) −9.99972 + 8.85898i −0.413791 + 0.366587i
\(585\) −0.941186 + 0.151791i −0.0389132 + 0.00627580i
\(586\) 18.4003 + 16.3013i 0.760111 + 0.673400i
\(587\) 8.17767 0.337528 0.168764 0.985656i \(-0.446022\pi\)
0.168764 + 0.985656i \(0.446022\pi\)
\(588\) 9.08700 8.05038i 0.374742 0.331992i
\(589\) −0.134586 0.0331724i −0.00554551 0.00136684i
\(590\) −0.0648100 0.0938936i −0.00266819 0.00386554i
\(591\) −8.92989 + 23.5462i −0.367327 + 0.968561i
\(592\) 16.5984 43.7663i 0.682189 1.79879i
\(593\) −16.3223 23.6469i −0.670275 0.971061i −0.999639 0.0268580i \(-0.991450\pi\)
0.329364 0.944203i \(-0.393166\pi\)
\(594\) −34.9875 8.62364i −1.43555 0.353832i
\(595\) 0.433788 0.384303i 0.0177836 0.0157549i
\(596\) 2.23861 0.0916969
\(597\) −57.5723 51.0046i −2.35628 2.08748i
\(598\) −0.885924 22.6640i −0.0362281 0.926802i
\(599\) −6.93469 + 6.14360i −0.283344 + 0.251020i −0.792808 0.609471i \(-0.791382\pi\)
0.509465 + 0.860492i \(0.329843\pi\)
\(600\) 26.7798 23.7249i 1.09328 0.968563i
\(601\) −10.5609 + 27.8467i −0.430786 + 1.13589i 0.527368 + 0.849637i \(0.323179\pi\)
−0.958154 + 0.286253i \(0.907590\pi\)
\(602\) −3.54618 29.2054i −0.144532 1.19032i
\(603\) −6.51050 + 17.1668i −0.265128 + 0.699086i
\(604\) 0.644701 5.30959i 0.0262325 0.216044i
\(605\) −0.162835 + 0.235907i −0.00662018 + 0.00959098i
\(606\) 8.20975 0.333498
\(607\) 16.6149 24.0709i 0.674379 0.977006i −0.325130 0.945669i \(-0.605408\pi\)
0.999509 0.0313371i \(-0.00997654\pi\)
\(608\) −19.5946 + 4.82963i −0.794665 + 0.195867i
\(609\) 24.9853 + 22.1350i 1.01245 + 0.896956i
\(610\) −0.0272600 + 0.0394929i −0.00110372 + 0.00159902i
\(611\) −20.5053 35.6154i −0.829554 1.44084i
\(612\) 8.70882 + 12.6169i 0.352033 + 0.510008i
\(613\) −2.10030 + 17.2975i −0.0848302 + 0.698639i 0.886803 + 0.462147i \(0.152921\pi\)
−0.971633 + 0.236492i \(0.924002\pi\)
\(614\) 2.10535 + 17.3391i 0.0849650 + 0.699750i
\(615\) −0.925891 + 0.485945i −0.0373355 + 0.0195952i
\(616\) 15.8697 3.91153i 0.639409 0.157600i
\(617\) 4.09804 + 33.7504i 0.164981 + 1.35874i 0.806319 + 0.591482i \(0.201457\pi\)
−0.641338 + 0.767259i \(0.721620\pi\)
\(618\) 51.1428 45.3086i 2.05727 1.82258i
\(619\) −10.0760 + 14.5976i −0.404988 + 0.586727i −0.971416 0.237385i \(-0.923710\pi\)
0.566427 + 0.824112i \(0.308325\pi\)
\(620\) −0.000273284 0 0.000395921i −1.09754e−5 0 1.59006e-5i
\(621\) −44.6350 11.0015i −1.79114 0.441476i
\(622\) 5.12825 + 42.2350i 0.205624 + 1.69347i
\(623\) 13.4175 + 7.04202i 0.537559 + 0.282133i
\(624\) 27.0523 + 46.9869i 1.08296 + 1.88098i
\(625\) 22.1160 11.6074i 0.884641 0.464296i
\(626\) 17.5800 + 25.4691i 0.702640 + 1.01795i
\(627\) −21.9008 31.7287i −0.874633 1.26712i
\(628\) −4.48055 3.96942i −0.178793 0.158397i
\(629\) −28.9674 25.6628i −1.15500 1.02324i
\(630\) 0.558748 + 1.47330i 0.0222611 + 0.0586976i
\(631\) −21.5676 + 11.3196i −0.858594 + 0.450625i −0.835747 0.549114i \(-0.814965\pi\)
−0.0228467 + 0.999739i \(0.507273\pi\)
\(632\) 7.36179 + 19.4114i 0.292836 + 0.772146i
\(633\) 60.6797 14.9562i 2.41180 0.594456i
\(634\) 1.49923 + 1.32820i 0.0595420 + 0.0527496i
\(635\) 0.189586 0.274663i 0.00752349 0.0108997i
\(636\) −0.926215 + 2.44223i −0.0367268 + 0.0968407i
\(637\) −6.80925 23.6149i −0.269792 0.935657i
\(638\) −3.13640 8.27001i −0.124171 0.327413i
\(639\) 13.6281 + 3.35903i 0.539121 + 0.132881i
\(640\) 0.473387 + 0.248453i 0.0187123 + 0.00982096i
\(641\) 6.42381 16.9382i 0.253725 0.669018i −0.746269 0.665644i \(-0.768157\pi\)
0.999994 0.00337388i \(-0.00107394\pi\)
\(642\) 9.12098 75.1181i 0.359977 2.96467i
\(643\) −17.9492 26.0039i −0.707848 1.02549i −0.997657 0.0684101i \(-0.978207\pi\)
0.289810 0.957084i \(-0.406408\pi\)
\(644\) −8.07639 + 1.99065i −0.318254 + 0.0784427i
\(645\) 0.586200 + 0.144485i 0.0230816 + 0.00568911i
\(646\) −4.95116 + 40.7765i −0.194801 + 1.60433i
\(647\) 5.04736 + 13.3088i 0.198432 + 0.523222i 0.996888 0.0788309i \(-0.0251187\pi\)
−0.798456 + 0.602053i \(0.794349\pi\)
\(648\) 36.3447 8.95817i 1.42776 0.351910i
\(649\) −3.38477 0.834271i −0.132864 0.0327480i
\(650\) 8.00521 + 27.7626i 0.313990 + 1.08894i
\(651\) 0.242754 0.0598334i 0.00951427 0.00234506i
\(652\) −7.79074 + 4.08890i −0.305109 + 0.160134i
\(653\) −18.3202 −0.716925 −0.358462 0.933544i \(-0.616699\pi\)
−0.358462 + 0.933544i \(0.616699\pi\)
\(654\) −61.2484 −2.39500
\(655\) 0.478109 0.250931i 0.0186812 0.00980468i
\(656\) 30.8190 + 27.3032i 1.20328 + 1.06601i
\(657\) −39.3529 −1.53530
\(658\) −50.8421 + 45.0421i −1.98203 + 1.75593i
\(659\) −2.58290 1.35561i −0.100615 0.0528070i 0.413665 0.910429i \(-0.364249\pi\)
−0.514280 + 0.857622i \(0.671941\pi\)
\(660\) 0.0161284 0.132830i 0.000627798 0.00517038i
\(661\) 8.78984 + 4.61326i 0.341885 + 0.179435i 0.626923 0.779081i \(-0.284314\pi\)
−0.285038 + 0.958516i \(0.592006\pi\)
\(662\) 3.05712 25.1776i 0.118818 0.978556i
\(663\) 44.2546 7.13724i 1.71871 0.277187i
\(664\) −2.04441 16.8372i −0.0793384 0.653411i
\(665\) −0.332183 + 0.875894i −0.0128815 + 0.0339657i
\(666\) 93.1686 48.8987i 3.61021 1.89478i
\(667\) −4.00123 10.5504i −0.154928 0.408513i
\(668\) −3.70980 1.94705i −0.143536 0.0753337i
\(669\) −32.1235 16.8597i −1.24197 0.651834i
\(670\) −0.165768 0.0408581i −0.00640417 0.00157849i
\(671\) 0.176741 + 1.45560i 0.00682303 + 0.0561927i
\(672\) 27.2463 24.1381i 1.05105 0.931149i
\(673\) 10.9511 15.8654i 0.422135 0.611568i −0.553000 0.833181i \(-0.686517\pi\)
0.975135 + 0.221614i \(0.0711324\pi\)
\(674\) 7.70022 + 20.3038i 0.296601 + 0.782074i
\(675\) 58.5620 2.25405
\(676\) −7.39161 + 0.578752i −0.284293 + 0.0222597i
\(677\) −44.5338 −1.71157 −0.855786 0.517330i \(-0.826926\pi\)
−0.855786 + 0.517330i \(0.826926\pi\)
\(678\) −30.9971 81.7327i −1.19044 3.13893i
\(679\) −6.32947 + 9.16982i −0.242903 + 0.351905i
\(680\) 0.267492 0.236977i 0.0102579 0.00908767i
\(681\) 2.31581 + 19.0724i 0.0887419 + 0.730855i
\(682\) −0.0643231 0.0158542i −0.00246306 0.000607089i
\(683\) 18.8907 + 9.91462i 0.722833 + 0.379372i 0.785665 0.618652i \(-0.212321\pi\)
−0.0628318 + 0.998024i \(0.520013\pi\)
\(684\) −21.9422 11.5162i −0.838983 0.440332i
\(685\) −0.208096 0.548704i −0.00795094 0.0209649i
\(686\) 0.968576 0.508348i 0.0369804 0.0194088i
\(687\) 13.2892 35.0406i 0.507013 1.33688i
\(688\) −2.86549 23.5995i −0.109246 0.899721i
\(689\) 3.65837 + 3.81799i 0.139373 + 0.145454i
\(690\) 0.0927299 0.763699i 0.00353017 0.0290735i
\(691\) −30.5451 16.0313i −1.16199 0.609860i −0.230302 0.973119i \(-0.573972\pi\)
−0.931688 + 0.363260i \(0.881664\pi\)
\(692\) 0.578060 4.76075i 0.0219745 0.180977i
\(693\) 42.6314 + 22.3747i 1.61943 + 0.849945i
\(694\) −9.70894 + 8.60137i −0.368546 + 0.326504i
\(695\) 0.217608 0.00825435
\(696\) 15.4070 + 13.6494i 0.583999 + 0.517378i
\(697\) 30.1423 15.8199i 1.14172 0.599222i
\(698\) 6.04453 0.228789
\(699\) −37.5254 −1.41934
\(700\) 9.38264 4.92439i 0.354630 0.186124i
\(701\) 32.9144 8.11267i 1.24316 0.306411i 0.437732 0.899105i \(-0.355782\pi\)
0.805428 + 0.592694i \(0.201936\pi\)
\(702\) −13.6267 + 66.3393i −0.514307 + 2.50381i
\(703\) 60.7375 + 14.9704i 2.29076 + 0.564621i
\(704\) 8.57418 2.11334i 0.323151 0.0796497i
\(705\) −0.494289 1.30333i −0.0186160 0.0490863i
\(706\) −1.74346 + 14.3587i −0.0656160 + 0.540396i
\(707\) −5.91814 1.45869i −0.222575 0.0548597i
\(708\) −3.14230 + 0.774507i −0.118095 + 0.0291077i
\(709\) −2.02339 2.93139i −0.0759900 0.110091i 0.783146 0.621838i \(-0.213614\pi\)
−0.859136 + 0.511747i \(0.828998\pi\)
\(710\) −0.0157326 + 0.129569i −0.000590433 + 0.00486265i
\(711\) −21.6855 + 57.1801i −0.813271 + 2.14442i
\(712\) 8.27377 + 4.34241i 0.310073 + 0.162739i
\(713\) −0.0820595 0.0202259i −0.00307315 0.000757464i
\(714\) −26.2724 69.2745i −0.983219 2.59253i
\(715\) −0.228772 0.145053i −0.00855557 0.00542469i
\(716\) −3.82533 + 10.0866i −0.142959 + 0.376953i
\(717\) −26.3563 + 38.1837i −0.984295 + 1.42600i
\(718\) 3.53574 + 3.13240i 0.131953 + 0.116900i
\(719\) 4.94832 1.21965i 0.184541 0.0454853i −0.145962 0.989290i \(-0.546628\pi\)
0.330503 + 0.943805i \(0.392782\pi\)
\(720\) 0.451497 + 1.19050i 0.0168263 + 0.0443673i
\(721\) −44.9175 + 23.5745i −1.67282 + 0.877962i
\(722\) −12.7425 33.5993i −0.474228 1.25044i
\(723\) 20.5978 + 18.2481i 0.766042 + 0.678654i
\(724\) 1.62770 + 1.44201i 0.0604928 + 0.0535920i
\(725\) 8.16546 + 11.8297i 0.303258 + 0.439344i
\(726\) 20.8172 + 30.1589i 0.772598 + 1.11930i
\(727\) 27.8842 14.6348i 1.03417 0.542773i 0.139834 0.990175i \(-0.455343\pi\)
0.894333 + 0.447402i \(0.147651\pi\)
\(728\) −8.51081 29.5160i −0.315432 1.09394i
\(729\) 0.447070 + 0.234641i 0.0165582 + 0.00869039i
\(730\) −0.0441096 0.363275i −0.00163257 0.0134454i
\(731\) −19.0837 4.70372i −0.705837 0.173973i
\(732\) 0.773277 + 1.12029i 0.0285811 + 0.0414069i
\(733\) 13.0617 18.9232i 0.482446 0.698943i −0.503876 0.863776i \(-0.668093\pi\)
0.986322 + 0.164833i \(0.0527085\pi\)
\(734\) 18.1760 16.1025i 0.670889 0.594356i
\(735\) −0.100480 0.827528i −0.00370626 0.0305238i
\(736\) −11.9472 + 2.94472i −0.440380 + 0.108544i
\(737\) −4.61919 + 2.42434i −0.170150 + 0.0893016i
\(738\) 11.1563 + 91.8806i 0.410670 + 3.38217i
\(739\) 0.350804 2.88913i 0.0129045 0.106278i −0.984833 0.173503i \(-0.944491\pi\)
0.997738 + 0.0672247i \(0.0214144\pi\)
\(740\) 0.123331 + 0.178676i 0.00453374 + 0.00656826i
\(741\) −57.9786 + 43.4586i −2.12990 + 1.59649i
\(742\) 4.96469 7.19260i 0.182260 0.264049i
\(743\) −33.5872 29.7557i −1.23220 1.09163i −0.992685 0.120737i \(-0.961474\pi\)
−0.239511 0.970894i \(-0.576987\pi\)
\(744\) 0.149692 0.0368958i 0.00548798 0.00135267i
\(745\) 0.0873200 0.126505i 0.00319916 0.00463478i
\(746\) −18.9122 −0.692425
\(747\) 28.3814 41.1175i 1.03842 1.50441i
\(748\) −0.525061 + 4.32426i −0.0191981 + 0.158111i
\(749\) −19.9218 + 52.5296i −0.727928 + 1.91939i
\(750\) 0.236292 + 1.94604i 0.00862818 + 0.0710595i
\(751\) 14.9297 39.3664i 0.544792 1.43650i −0.326247 0.945285i \(-0.605784\pi\)
0.871039 0.491214i \(-0.163447\pi\)
\(752\) −41.0829 + 36.3963i −1.49814 + 1.32724i
\(753\) −67.7248 + 59.9990i −2.46803 + 2.18648i
\(754\) −15.3008 + 6.49723i −0.557221 + 0.236615i
\(755\) −0.274900 0.243541i −0.0100047 0.00886335i
\(756\) 24.8371 0.903315
\(757\) 35.1875 31.1734i 1.27891 1.13302i 0.294780 0.955565i \(-0.404754\pi\)
0.984130 0.177450i \(-0.0567850\pi\)
\(758\) 46.3493 + 11.4241i 1.68348 + 0.414941i
\(759\) −13.3533 19.3456i −0.484695 0.702202i
\(760\) −0.204838 + 0.540113i −0.00743025 + 0.0195920i
\(761\) 2.06509 5.44520i 0.0748596 0.197388i −0.892363 0.451318i \(-0.850954\pi\)
0.967223 + 0.253930i \(0.0817232\pi\)
\(762\) −24.2371 35.1135i −0.878018 1.27203i
\(763\) 44.1519 + 10.8825i 1.59841 + 0.393972i
\(764\) 7.38632 6.54371i 0.267228 0.236743i
\(765\) 1.05269 0.0380600
\(766\) −23.9178 21.1893i −0.864185 0.765601i
\(767\) −1.31828 + 6.41781i −0.04