Properties

Label 169.2.g.a.27.1
Level $169$
Weight $2$
Character 169.27
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 27.1
Character \(\chi\) \(=\) 169.27
Dual form 169.2.g.a.144.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.952850 - 2.51246i) q^{2} +(-0.297229 + 0.430610i) q^{3} +(-3.90751 + 3.46175i) q^{4} +(0.365684 + 3.01168i) q^{5} +(1.36511 + 0.336468i) q^{6} +(-2.17334 - 1.14066i) q^{7} +(7.66220 + 4.02143i) q^{8} +(0.966734 + 2.54907i) q^{9} +O(q^{10})\) \(q+(-0.952850 - 2.51246i) q^{2} +(-0.297229 + 0.430610i) q^{3} +(-3.90751 + 3.46175i) q^{4} +(0.365684 + 3.01168i) q^{5} +(1.36511 + 0.336468i) q^{6} +(-2.17334 - 1.14066i) q^{7} +(7.66220 + 4.02143i) q^{8} +(0.966734 + 2.54907i) q^{9} +(7.21828 - 3.78845i) q^{10} +(-0.241580 + 0.636994i) q^{11} +(-0.329241 - 2.71155i) q^{12} +(-0.756816 + 3.52523i) q^{13} +(-0.794988 + 6.54731i) q^{14} +(-1.40555 - 0.737691i) q^{15} +(1.54427 - 12.7182i) q^{16} +(-3.05039 - 1.60097i) q^{17} +(5.48328 - 4.85776i) q^{18} +4.57811 q^{19} +(-11.8546 - 10.5023i) q^{20} +(1.13716 - 0.596827i) q^{21} +1.83061 q^{22} -8.26888 q^{23} +(-4.00910 + 2.10414i) q^{24} +(-4.08178 + 1.00607i) q^{25} +(9.57812 - 1.45754i) q^{26} +(-2.90908 - 0.717023i) q^{27} +(12.4410 - 3.06644i) q^{28} +(2.79395 + 7.36704i) q^{29} +(-0.514137 + 4.23430i) q^{30} +(3.45540 + 0.851679i) q^{31} +(-16.6215 + 4.09682i) q^{32} +(-0.202492 - 0.293360i) q^{33} +(-1.11580 + 9.18946i) q^{34} +(2.64054 - 6.96253i) q^{35} +(-12.6018 - 6.61392i) q^{36} +(7.28687 + 1.79605i) q^{37} +(-4.36226 - 11.5023i) q^{38} +(-1.29305 - 1.37369i) q^{39} +(-9.30932 + 24.5467i) q^{40} +(-0.114022 + 0.165189i) q^{41} +(-2.58305 - 2.28838i) q^{42} +(0.943264 - 0.232494i) q^{43} +(-1.26114 - 3.32535i) q^{44} +(-7.32346 + 3.84365i) q^{45} +(7.87900 + 20.7752i) q^{46} +(4.26700 + 3.78023i) q^{47} +(5.01758 + 4.44518i) q^{48} +(-0.554136 - 0.802805i) q^{49} +(6.41703 + 9.29667i) q^{50} +(1.59606 - 0.837675i) q^{51} +(-9.24619 - 16.3948i) q^{52} +(-8.33843 - 4.37635i) q^{53} +(0.970423 + 7.99215i) q^{54} +(-2.00676 - 0.494623i) q^{55} +(-12.0655 - 17.4799i) q^{56} +(-1.36075 + 1.97138i) q^{57} +(15.8472 - 14.0394i) q^{58} +(-0.616927 - 5.08085i) q^{59} +(8.04591 - 1.98314i) q^{60} +(4.02471 - 2.11233i) q^{61} +(-1.15267 - 9.49307i) q^{62} +(0.806571 - 6.64271i) q^{63} +(11.5752 + 16.7696i) q^{64} +(-10.8936 - 0.990168i) q^{65} +(-0.544111 + 0.788280i) q^{66} +(-5.10800 - 4.52529i) q^{67} +(17.4616 - 4.30389i) q^{68} +(2.45775 - 3.56067i) q^{69} -20.0091 q^{70} +(1.92369 - 2.78694i) q^{71} +(-2.84360 + 23.4191i) q^{72} +(2.71442 - 7.15733i) q^{73} +(-2.43079 - 20.0193i) q^{74} +(0.779999 - 2.05669i) q^{75} +(-17.8890 + 15.8483i) q^{76} +(1.25163 - 1.10885i) q^{77} +(-2.21926 + 4.55766i) q^{78} +(8.54797 + 7.57284i) q^{79} +38.8678 q^{80} +(-4.94842 + 4.38392i) q^{81} +(0.523676 + 0.129075i) q^{82} +(9.48405 + 13.7400i) q^{83} +(-2.37739 + 6.26867i) q^{84} +(3.70612 - 9.77224i) q^{85} +(-1.48292 - 2.14838i) q^{86} +(-4.00276 - 0.986593i) q^{87} +(-4.41267 + 3.90928i) q^{88} -11.3874 q^{89} +(16.6352 + 14.7375i) q^{90} +(5.66590 - 6.79826i) q^{91} +(32.3107 - 28.6248i) q^{92} +(-1.39379 + 1.23479i) q^{93} +(5.43187 - 14.3227i) q^{94} +(1.67414 + 13.7878i) q^{95} +(3.17624 - 8.37507i) q^{96} +(0.552586 - 4.55096i) q^{97} +(-1.48901 + 2.15720i) q^{98} -1.85729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.952850 2.51246i −0.673767 1.77658i −0.628772 0.777590i \(-0.716442\pi\)
−0.0449953 0.998987i \(-0.514327\pi\)
\(3\) −0.297229 + 0.430610i −0.171605 + 0.248613i −0.899344 0.437241i \(-0.855956\pi\)
0.727739 + 0.685854i \(0.240571\pi\)
\(4\) −3.90751 + 3.46175i −1.95375 + 1.73088i
\(5\) 0.365684 + 3.01168i 0.163539 + 1.34686i 0.811126 + 0.584872i \(0.198855\pi\)
−0.647587 + 0.761992i \(0.724222\pi\)
\(6\) 1.36511 + 0.336468i 0.557302 + 0.137363i
\(7\) −2.17334 1.14066i −0.821446 0.431128i 0.000980315 1.00000i \(-0.499688\pi\)
−0.822427 + 0.568871i \(0.807380\pi\)
\(8\) 7.66220 + 4.02143i 2.70900 + 1.42179i
\(9\) 0.966734 + 2.54907i 0.322245 + 0.849690i
\(10\) 7.21828 3.78845i 2.28262 1.19801i
\(11\) −0.241580 + 0.636994i −0.0728391 + 0.192061i −0.966491 0.256699i \(-0.917365\pi\)
0.893652 + 0.448760i \(0.148134\pi\)
\(12\) −0.329241 2.71155i −0.0950438 0.782756i
\(13\) −0.756816 + 3.52523i −0.209903 + 0.977722i
\(14\) −0.794988 + 6.54731i −0.212469 + 1.74984i
\(15\) −1.40555 0.737691i −0.362912 0.190471i
\(16\) 1.54427 12.7182i 0.386066 3.17954i
\(17\) −3.05039 1.60097i −0.739828 0.388292i 0.0523125 0.998631i \(-0.483341\pi\)
−0.792140 + 0.610339i \(0.791033\pi\)
\(18\) 5.48328 4.85776i 1.29242 1.14499i
\(19\) 4.57811 1.05029 0.525146 0.851012i \(-0.324011\pi\)
0.525146 + 0.851012i \(0.324011\pi\)
\(20\) −11.8546 10.5023i −2.65077 2.34838i
\(21\) 1.13716 0.596827i 0.248148 0.130238i
\(22\) 1.83061 0.390288
\(23\) −8.26888 −1.72418 −0.862090 0.506755i \(-0.830845\pi\)
−0.862090 + 0.506755i \(0.830845\pi\)
\(24\) −4.00910 + 2.10414i −0.818354 + 0.429505i
\(25\) −4.08178 + 1.00607i −0.816355 + 0.201213i
\(26\) 9.57812 1.45754i 1.87842 0.285848i
\(27\) −2.90908 0.717023i −0.559852 0.137991i
\(28\) 12.4410 3.06644i 2.35113 0.579502i
\(29\) 2.79395 + 7.36704i 0.518823 + 1.36802i 0.896893 + 0.442247i \(0.145819\pi\)
−0.378070 + 0.925777i \(0.623412\pi\)
\(30\) −0.514137 + 4.23430i −0.0938682 + 0.773074i
\(31\) 3.45540 + 0.851679i 0.620608 + 0.152966i 0.537069 0.843538i \(-0.319532\pi\)
0.0835390 + 0.996505i \(0.473378\pi\)
\(32\) −16.6215 + 4.09682i −2.93829 + 0.724223i
\(33\) −0.202492 0.293360i −0.0352493 0.0510674i
\(34\) −1.11580 + 9.18946i −0.191358 + 1.57598i
\(35\) 2.64054 6.96253i 0.446333 1.17688i
\(36\) −12.6018 6.61392i −2.10029 1.10232i
\(37\) 7.28687 + 1.79605i 1.19795 + 0.295269i 0.787328 0.616534i \(-0.211464\pi\)
0.410626 + 0.911804i \(0.365310\pi\)
\(38\) −4.36226 11.5023i −0.707652 1.86592i
\(39\) −1.29305 1.37369i −0.207054 0.219967i
\(40\) −9.30932 + 24.5467i −1.47193 + 3.88117i
\(41\) −0.114022 + 0.165189i −0.0178072 + 0.0257982i −0.831786 0.555096i \(-0.812682\pi\)
0.813979 + 0.580894i \(0.197297\pi\)
\(42\) −2.58305 2.28838i −0.398573 0.353105i
\(43\) 0.943264 0.232494i 0.143846 0.0354550i −0.166735 0.986002i \(-0.553322\pi\)
0.310581 + 0.950547i \(0.399476\pi\)
\(44\) −1.26114 3.32535i −0.190124 0.501315i
\(45\) −7.32346 + 3.84365i −1.09172 + 0.572977i
\(46\) 7.87900 + 20.7752i 1.16170 + 3.06314i
\(47\) 4.26700 + 3.78023i 0.622406 + 0.551404i 0.914295 0.405048i \(-0.132745\pi\)
−0.291889 + 0.956452i \(0.594284\pi\)
\(48\) 5.01758 + 4.44518i 0.724225 + 0.641607i
\(49\) −0.554136 0.802805i −0.0791623 0.114686i
\(50\) 6.41703 + 9.29667i 0.907504 + 1.31475i
\(51\) 1.59606 0.837675i 0.223493 0.117298i
\(52\) −9.24619 16.3948i −1.28222 2.27354i
\(53\) −8.33843 4.37635i −1.14537 0.601137i −0.218248 0.975893i \(-0.570034\pi\)
−0.927123 + 0.374756i \(0.877726\pi\)
\(54\) 0.970423 + 7.99215i 0.132058 + 1.08759i
\(55\) −2.00676 0.494623i −0.270592 0.0666949i
\(56\) −12.0655 17.4799i −1.61232 2.33585i
\(57\) −1.36075 + 1.97138i −0.180235 + 0.261116i
\(58\) 15.8472 14.0394i 2.08084 1.84346i
\(59\) −0.616927 5.08085i −0.0803171 0.661471i −0.976153 0.217085i \(-0.930345\pi\)
0.895836 0.444386i \(-0.146578\pi\)
\(60\) 8.04591 1.98314i 1.03872 0.256022i
\(61\) 4.02471 2.11233i 0.515311 0.270456i −0.186958 0.982368i \(-0.559863\pi\)
0.702269 + 0.711912i \(0.252171\pi\)
\(62\) −1.15267 9.49307i −0.146389 1.20562i
\(63\) 0.806571 6.64271i 0.101618 0.836903i
\(64\) 11.5752 + 16.7696i 1.44691 + 2.09620i
\(65\) −10.8936 0.990168i −1.35119 0.122815i
\(66\) −0.544111 + 0.788280i −0.0669754 + 0.0970306i
\(67\) −5.10800 4.52529i −0.624042 0.552853i 0.290740 0.956802i \(-0.406099\pi\)
−0.914781 + 0.403950i \(0.867637\pi\)
\(68\) 17.4616 4.30389i 2.11753 0.521923i
\(69\) 2.45775 3.56067i 0.295878 0.428654i
\(70\) −20.0091 −2.39155
\(71\) 1.92369 2.78694i 0.228300 0.330749i −0.692047 0.721852i \(-0.743291\pi\)
0.920347 + 0.391103i \(0.127906\pi\)
\(72\) −2.84360 + 23.4191i −0.335121 + 2.75997i
\(73\) 2.71442 7.15733i 0.317699 0.837703i −0.677105 0.735887i \(-0.736766\pi\)
0.994803 0.101816i \(-0.0324652\pi\)
\(74\) −2.43079 20.0193i −0.282573 2.32720i
\(75\) 0.779999 2.05669i 0.0900665 0.237486i
\(76\) −17.8890 + 15.8483i −2.05201 + 1.81792i
\(77\) 1.25163 1.10885i 0.142636 0.126365i
\(78\) −2.21926 + 4.55766i −0.251282 + 0.516054i
\(79\) 8.54797 + 7.57284i 0.961722 + 0.852011i 0.989045 0.147616i \(-0.0471599\pi\)
−0.0273232 + 0.999627i \(0.508698\pi\)
\(80\) 38.8678 4.34555
\(81\) −4.94842 + 4.38392i −0.549824 + 0.487102i
\(82\) 0.523676 + 0.129075i 0.0578303 + 0.0142539i
\(83\) 9.48405 + 13.7400i 1.04101 + 1.50816i 0.850146 + 0.526547i \(0.176514\pi\)
0.190864 + 0.981617i \(0.438871\pi\)
\(84\) −2.37739 + 6.26867i −0.259395 + 0.683968i
\(85\) 3.70612 9.77224i 0.401985 1.05995i
\(86\) −1.48292 2.14838i −0.159907 0.231666i
\(87\) −4.00276 0.986593i −0.429141 0.105774i
\(88\) −4.41267 + 3.90928i −0.470392 + 0.416731i
\(89\) −11.3874 −1.20707 −0.603533 0.797338i \(-0.706241\pi\)
−0.603533 + 0.797338i \(0.706241\pi\)
\(90\) 16.6352 + 14.7375i 1.75350 + 1.55347i
\(91\) 5.66590 6.79826i 0.593948 0.712651i
\(92\) 32.3107 28.6248i 3.36863 2.98434i
\(93\) −1.39379 + 1.23479i −0.144529 + 0.128041i
\(94\) 5.43187 14.3227i 0.560255 1.47727i
\(95\) 1.67414 + 13.7878i 0.171763 + 1.41460i
\(96\) 3.17624 8.37507i 0.324174 0.854777i
\(97\) 0.552586 4.55096i 0.0561066 0.462080i −0.937396 0.348267i \(-0.886770\pi\)
0.993502 0.113813i \(-0.0363065\pi\)
\(98\) −1.48901 + 2.15720i −0.150412 + 0.217910i
\(99\) −1.85729 −0.186664
\(100\) 12.4668 18.0613i 1.24668 1.80613i
\(101\) 0.867962 0.213933i 0.0863654 0.0212872i −0.195896 0.980625i \(-0.562762\pi\)
0.282262 + 0.959337i \(0.408915\pi\)
\(102\) −3.62543 3.21185i −0.358971 0.318020i
\(103\) 3.12548 4.52805i 0.307963 0.446162i −0.638191 0.769878i \(-0.720317\pi\)
0.946154 + 0.323716i \(0.104932\pi\)
\(104\) −19.9754 + 23.9675i −1.95874 + 2.35021i
\(105\) 2.21329 + 3.20651i 0.215995 + 0.312923i
\(106\) −3.05012 + 25.1200i −0.296254 + 2.43987i
\(107\) −0.263890 2.17333i −0.0255112 0.210104i 0.974379 0.224912i \(-0.0722094\pi\)
−0.999890 + 0.0148080i \(0.995286\pi\)
\(108\) 13.8494 7.26872i 1.33266 0.699433i
\(109\) 4.52333 1.11490i 0.433257 0.106788i −0.0166548 0.999861i \(-0.505302\pi\)
0.449912 + 0.893073i \(0.351455\pi\)
\(110\) 0.669426 + 5.51322i 0.0638272 + 0.525664i
\(111\) −2.93927 + 2.60396i −0.278983 + 0.247157i
\(112\) −17.8633 + 25.8795i −1.68792 + 2.44538i
\(113\) 8.88874 + 12.8776i 0.836183 + 1.21142i 0.975243 + 0.221136i \(0.0709764\pi\)
−0.139060 + 0.990284i \(0.544408\pi\)
\(114\) 6.24961 + 1.54039i 0.585330 + 0.144271i
\(115\) −3.02380 24.9032i −0.281971 2.32224i
\(116\) −36.4202 19.1148i −3.38153 1.77477i
\(117\) −9.71769 + 1.47878i −0.898401 + 0.136713i
\(118\) −12.1776 + 6.39130i −1.12104 + 0.588367i
\(119\) 4.80338 + 6.95890i 0.440325 + 0.637921i
\(120\) −7.80305 11.3047i −0.712318 1.03197i
\(121\) 7.88622 + 6.98658i 0.716929 + 0.635144i
\(122\) −9.14208 8.09918i −0.827685 0.733265i
\(123\) −0.0372415 0.0981978i −0.00335795 0.00885420i
\(124\) −16.4503 + 8.63378i −1.47728 + 0.775336i
\(125\) 0.856407 + 2.25816i 0.0765994 + 0.201976i
\(126\) −17.4581 + 4.30303i −1.55529 + 0.383345i
\(127\) 5.92531 + 5.24937i 0.525786 + 0.465806i 0.883770 0.467922i \(-0.154997\pi\)
−0.357983 + 0.933728i \(0.616536\pi\)
\(128\) 11.6543 16.8841i 1.03010 1.49236i
\(129\) −0.180251 + 0.475283i −0.0158702 + 0.0418464i
\(130\) 7.89222 + 28.3132i 0.692194 + 2.48324i
\(131\) −4.07142 10.7354i −0.355721 0.937960i −0.986757 0.162206i \(-0.948139\pi\)
0.631036 0.775754i \(-0.282630\pi\)
\(132\) 1.80678 + 0.445331i 0.157260 + 0.0387610i
\(133\) −9.94981 5.22206i −0.862758 0.452810i
\(134\) −6.50246 + 17.1456i −0.561727 + 1.48115i
\(135\) 1.09564 9.02341i 0.0942977 0.776611i
\(136\) −16.9345 24.5339i −1.45212 2.10376i
\(137\) 18.3408 4.52059i 1.56696 0.386220i 0.642126 0.766599i \(-0.278053\pi\)
0.924831 + 0.380379i \(0.124207\pi\)
\(138\) −11.2879 2.78222i −0.960889 0.236838i
\(139\) 1.93333 15.9224i 0.163983 1.35052i −0.645673 0.763614i \(-0.723423\pi\)
0.809656 0.586905i \(-0.199654\pi\)
\(140\) 13.7846 + 36.3470i 1.16501 + 3.07189i
\(141\) −2.89608 + 0.713821i −0.243894 + 0.0601145i
\(142\) −8.83507 2.17765i −0.741423 0.182744i
\(143\) −2.06272 1.33371i −0.172493 0.111531i
\(144\) 33.9124 8.35866i 2.82603 0.696555i
\(145\) −21.1654 + 11.1085i −1.75769 + 0.922509i
\(146\) −20.5689 −1.70230
\(147\) 0.510402 0.0420972
\(148\) −34.6910 + 18.2072i −2.85158 + 1.49663i
\(149\) 5.27855 + 4.67639i 0.432436 + 0.383105i 0.851072 0.525049i \(-0.175953\pi\)
−0.418636 + 0.908154i \(0.637492\pi\)
\(150\) −5.91057 −0.482596
\(151\) −6.31854 + 5.59774i −0.514196 + 0.455538i −0.879876 0.475203i \(-0.842375\pi\)
0.365681 + 0.930740i \(0.380836\pi\)
\(152\) 35.0784 + 18.4106i 2.84524 + 1.49330i
\(153\) 1.13206 9.32336i 0.0915217 0.753749i
\(154\) −3.97855 2.08810i −0.320600 0.168264i
\(155\) −1.30140 + 10.7180i −0.104531 + 0.860890i
\(156\) 9.80799 + 0.891492i 0.785268 + 0.0713765i
\(157\) −0.0922946 0.760115i −0.00736591 0.0606638i 0.988562 0.150812i \(-0.0481889\pi\)
−0.995928 + 0.0901485i \(0.971266\pi\)
\(158\) 10.8815 28.6922i 0.865687 2.28263i
\(159\) 4.36292 2.28984i 0.346002 0.181596i
\(160\) −18.4165 48.5604i −1.45595 3.83903i
\(161\) 17.9711 + 9.43197i 1.41632 + 0.743343i
\(162\) 15.7295 + 8.25549i 1.23583 + 0.648612i
\(163\) 18.3481 + 4.52241i 1.43714 + 0.354222i 0.879514 0.475873i \(-0.157868\pi\)
0.557622 + 0.830095i \(0.311714\pi\)
\(164\) −0.126302 1.04019i −0.00986254 0.0812253i
\(165\) 0.809458 0.717117i 0.0630162 0.0558275i
\(166\) 25.4844 36.9205i 1.97797 2.86559i
\(167\) −1.82658 4.81630i −0.141345 0.372696i 0.845586 0.533839i \(-0.179251\pi\)
−0.986931 + 0.161143i \(0.948482\pi\)
\(168\) 11.1132 0.857406
\(169\) −11.8545 5.33590i −0.911881 0.410454i
\(170\) −28.0837 −2.15392
\(171\) 4.42582 + 11.6699i 0.338451 + 0.892422i
\(172\) −2.88098 + 4.17382i −0.219673 + 0.318251i
\(173\) −7.97824 + 7.06811i −0.606575 + 0.537378i −0.909536 0.415624i \(-0.863563\pi\)
0.302962 + 0.953003i \(0.402025\pi\)
\(174\) 1.33526 + 10.9969i 0.101226 + 0.833670i
\(175\) 10.0187 + 2.46938i 0.757341 + 0.186668i
\(176\) 7.72834 + 4.05615i 0.582545 + 0.305743i
\(177\) 2.37124 + 1.24452i 0.178233 + 0.0935439i
\(178\) 10.8505 + 28.6105i 0.813282 + 2.14445i
\(179\) 2.42435 1.27240i 0.181205 0.0951035i −0.371682 0.928360i \(-0.621219\pi\)
0.552886 + 0.833257i \(0.313526\pi\)
\(180\) 15.3107 40.3711i 1.14119 3.00908i
\(181\) 2.29585 + 18.9080i 0.170649 + 1.40542i 0.786515 + 0.617571i \(0.211883\pi\)
−0.615866 + 0.787851i \(0.711194\pi\)
\(182\) −22.4791 7.75762i −1.66626 0.575033i
\(183\) −0.286668 + 2.36092i −0.0211911 + 0.174525i
\(184\) −63.3578 33.2528i −4.67080 2.45143i
\(185\) −2.74444 + 22.6025i −0.201775 + 1.66177i
\(186\) 4.43042 + 2.32526i 0.324854 + 0.170497i
\(187\) 1.75672 1.55632i 0.128464 0.113809i
\(188\) −29.7596 −2.17044
\(189\) 5.50454 + 4.87660i 0.400396 + 0.354720i
\(190\) 33.0461 17.3439i 2.39742 1.25826i
\(191\) −5.44285 −0.393830 −0.196915 0.980421i \(-0.563092\pi\)
−0.196915 + 0.980421i \(0.563092\pi\)
\(192\) −10.6617 −0.769440
\(193\) 5.44804 2.85935i 0.392159 0.205821i −0.257106 0.966383i \(-0.582769\pi\)
0.649265 + 0.760562i \(0.275077\pi\)
\(194\) −11.9606 + 2.94803i −0.858723 + 0.211656i
\(195\) 3.66427 4.39659i 0.262404 0.314847i
\(196\) 4.94440 + 1.21869i 0.353172 + 0.0870490i
\(197\) 13.2517 3.26625i 0.944143 0.232710i 0.262946 0.964810i \(-0.415306\pi\)
0.681197 + 0.732100i \(0.261460\pi\)
\(198\) 1.76972 + 4.66636i 0.125768 + 0.331623i
\(199\) −0.585634 + 4.82313i −0.0415145 + 0.341903i 0.957121 + 0.289687i \(0.0935513\pi\)
−0.998636 + 0.0522154i \(0.983372\pi\)
\(200\) −35.3212 8.70590i −2.49759 0.615600i
\(201\) 3.46688 0.854510i 0.244535 0.0602725i
\(202\) −1.36454 1.97687i −0.0960085 0.139092i
\(203\) 2.33106 19.1980i 0.163609 1.34744i
\(204\) −3.33678 + 8.79837i −0.233621 + 0.616009i
\(205\) −0.539192 0.282990i −0.0376588 0.0197649i
\(206\) −14.3546 3.53810i −1.00014 0.246511i
\(207\) −7.99381 21.0779i −0.555608 1.46502i
\(208\) 43.6657 + 15.0692i 3.02767 + 1.04486i
\(209\) −1.10598 + 2.91623i −0.0765023 + 0.201720i
\(210\) 5.94729 8.61613i 0.410402 0.594570i
\(211\) 13.5413 + 11.9966i 0.932223 + 0.825877i 0.984969 0.172731i \(-0.0552590\pi\)
−0.0527463 + 0.998608i \(0.516797\pi\)
\(212\) 47.7323 11.7650i 3.27827 0.808020i
\(213\) 0.628311 + 1.65672i 0.0430512 + 0.113517i
\(214\) −5.20896 + 2.73387i −0.356077 + 0.186884i
\(215\) 1.04513 + 2.75579i 0.0712775 + 0.187943i
\(216\) −19.4065 17.1926i −1.32044 1.16981i
\(217\) −6.53829 5.79242i −0.443848 0.393215i
\(218\) −7.11121 10.3024i −0.481632 0.697764i
\(219\) 2.27522 + 3.29622i 0.153745 + 0.222738i
\(220\) 9.55371 5.01417i 0.644111 0.338055i
\(221\) 7.95236 9.54167i 0.534933 0.641842i
\(222\) 9.34303 + 4.90360i 0.627063 + 0.329108i
\(223\) −0.863529 7.11180i −0.0578261 0.476241i −0.992640 0.121103i \(-0.961357\pi\)
0.934814 0.355138i \(-0.115566\pi\)
\(224\) 40.7972 + 10.0556i 2.72588 + 0.671868i
\(225\) −6.51053 9.43213i −0.434035 0.628809i
\(226\) 23.8847 34.6030i 1.58879 2.30176i
\(227\) −18.3215 + 16.2315i −1.21604 + 1.07732i −0.221269 + 0.975213i \(0.571020\pi\)
−0.994773 + 0.102107i \(0.967442\pi\)
\(228\) −1.50730 12.4138i −0.0998237 0.822122i
\(229\) −8.85652 + 2.18294i −0.585255 + 0.144252i −0.520816 0.853669i \(-0.674372\pi\)
−0.0644396 + 0.997922i \(0.520526\pi\)
\(230\) −59.6871 + 31.3262i −3.93565 + 2.06559i
\(231\) 0.105461 + 0.868545i 0.00693879 + 0.0571461i
\(232\) −8.21826 + 67.6834i −0.539555 + 4.44363i
\(233\) 8.33640 + 12.0774i 0.546136 + 0.791214i 0.994731 0.102521i \(-0.0326909\pi\)
−0.448595 + 0.893735i \(0.648076\pi\)
\(234\) 12.9749 + 23.0062i 0.848195 + 1.50397i
\(235\) −9.82448 + 14.2332i −0.640878 + 0.928472i
\(236\) 19.9993 + 17.7178i 1.30184 + 1.15333i
\(237\) −5.80165 + 1.42998i −0.376857 + 0.0928870i
\(238\) 12.9071 18.6991i 0.836640 1.21208i
\(239\) −11.5632 −0.747964 −0.373982 0.927436i \(-0.622008\pi\)
−0.373982 + 0.927436i \(0.622008\pi\)
\(240\) −11.5526 + 16.7369i −0.745719 + 1.08036i
\(241\) −1.88540 + 15.5277i −0.121449 + 1.00023i 0.796806 + 0.604236i \(0.206521\pi\)
−0.918255 + 0.395990i \(0.870402\pi\)
\(242\) 10.0391 26.4710i 0.645339 1.70162i
\(243\) −1.50038 12.3567i −0.0962495 0.792686i
\(244\) −8.41422 + 22.1865i −0.538665 + 1.42034i
\(245\) 2.21515 1.96245i 0.141521 0.125377i
\(246\) −0.211232 + 0.187136i −0.0134677 + 0.0119313i
\(247\) −3.46479 + 16.1389i −0.220459 + 1.02689i
\(248\) 23.0510 + 20.4214i 1.46374 + 1.29676i
\(249\) −8.73553 −0.553592
\(250\) 4.85751 4.30338i 0.307216 0.272169i
\(251\) −15.0781 3.71642i −0.951721 0.234578i −0.267257 0.963625i \(-0.586117\pi\)
−0.684464 + 0.729047i \(0.739964\pi\)
\(252\) 19.8437 + 28.7486i 1.25004 + 1.81099i
\(253\) 1.99760 5.26723i 0.125588 0.331148i
\(254\) 7.54289 19.8890i 0.473283 1.24794i
\(255\) 3.10646 + 4.50048i 0.194534 + 0.281831i
\(256\) −13.9564 3.43994i −0.872275 0.214996i
\(257\) −5.39152 + 4.77647i −0.336314 + 0.297948i −0.814329 0.580404i \(-0.802895\pi\)
0.478015 + 0.878351i \(0.341356\pi\)
\(258\) 1.36588 0.0850361
\(259\) −13.7882 12.2153i −0.856756 0.759020i
\(260\) 45.9946 33.8419i 2.85246 2.09878i
\(261\) −16.0781 + 14.2439i −0.995208 + 0.881678i
\(262\) −23.0929 + 20.4585i −1.42669 + 1.26393i
\(263\) −0.564641 + 1.48884i −0.0348172 + 0.0918055i −0.951297 0.308275i \(-0.900248\pi\)
0.916480 + 0.400080i \(0.131018\pi\)
\(264\) −0.371805 3.06209i −0.0228830 0.188459i
\(265\) 10.1309 26.7130i 0.622337 1.64097i
\(266\) −3.63954 + 29.9743i −0.223155 + 1.83785i
\(267\) 3.38468 4.90355i 0.207139 0.300092i
\(268\) 35.6250 2.17614
\(269\) 7.39844 10.7185i 0.451091 0.653518i −0.529790 0.848129i \(-0.677729\pi\)
0.980880 + 0.194611i \(0.0623446\pi\)
\(270\) −23.7149 + 5.84520i −1.44324 + 0.355728i
\(271\) −2.71084 2.40159i −0.164672 0.145886i 0.576763 0.816912i \(-0.304316\pi\)
−0.741434 + 0.671025i \(0.765854\pi\)
\(272\) −25.0720 + 36.3230i −1.52021 + 2.20241i
\(273\) 1.24333 + 4.46043i 0.0752498 + 0.269958i
\(274\) −28.8338 41.7730i −1.74191 2.52360i
\(275\) 0.345216 2.84311i 0.0208173 0.171446i
\(276\) 2.72246 + 22.4214i 0.163873 + 1.34961i
\(277\) −3.13801 + 1.64696i −0.188545 + 0.0989560i −0.556354 0.830945i \(-0.687800\pi\)
0.367809 + 0.929901i \(0.380108\pi\)
\(278\) −41.8465 + 10.3142i −2.50979 + 0.618607i
\(279\) 1.16946 + 9.63140i 0.0700139 + 0.576617i
\(280\) 48.2317 42.7296i 2.88240 2.55358i
\(281\) 18.0685 26.1767i 1.07788 1.56157i 0.278795 0.960351i \(-0.410065\pi\)
0.799082 0.601223i \(-0.205319\pi\)
\(282\) 4.55298 + 6.59613i 0.271126 + 0.392794i
\(283\) −12.7489 3.14232i −0.757843 0.186791i −0.158583 0.987346i \(-0.550692\pi\)
−0.599260 + 0.800554i \(0.704539\pi\)
\(284\) 2.13087 + 17.5493i 0.126444 + 1.04136i
\(285\) −6.43478 3.37723i −0.381163 0.200050i
\(286\) −1.38544 + 6.45332i −0.0819226 + 0.381593i
\(287\) 0.436232 0.228952i 0.0257500 0.0135146i
\(288\) −26.5116 38.4087i −1.56221 2.26325i
\(289\) −2.91533 4.22359i −0.171490 0.248446i
\(290\) 48.0771 + 42.5926i 2.82319 + 2.50112i
\(291\) 1.79544 + 1.59062i 0.105251 + 0.0932441i
\(292\) 14.1703 + 37.3640i 0.829254 + 2.18656i
\(293\) 15.1728 7.96330i 0.886404 0.465221i 0.0408836 0.999164i \(-0.486983\pi\)
0.845520 + 0.533943i \(0.179290\pi\)
\(294\) −0.486336 1.28236i −0.0283637 0.0747889i
\(295\) 15.0763 3.71597i 0.877776 0.216352i
\(296\) 48.6108 + 43.0654i 2.82544 + 2.50313i
\(297\) 1.15951 1.67985i 0.0672818 0.0974746i
\(298\) 6.71957 17.7181i 0.389254 1.02638i
\(299\) 6.25802 29.1497i 0.361911 1.68577i
\(300\) 4.07189 + 10.7367i 0.235090 + 0.619883i
\(301\) −2.31523 0.570654i −0.133448 0.0328919i
\(302\) 20.0847 + 10.5413i 1.15575 + 0.606582i
\(303\) −0.165861 + 0.437341i −0.00952849 + 0.0251246i
\(304\) 7.06983 58.2253i 0.405482 3.33945i
\(305\) 7.83343 + 11.3487i 0.448541 + 0.649823i
\(306\) −24.5032 + 6.03951i −1.40076 + 0.345256i
\(307\) −12.9102 3.18207i −0.736823 0.181610i −0.146992 0.989138i \(-0.546959\pi\)
−0.589830 + 0.807527i \(0.700805\pi\)
\(308\) −1.05220 + 8.66565i −0.0599547 + 0.493771i
\(309\) 1.02084 + 2.69173i 0.0580735 + 0.153127i
\(310\) 28.1686 6.94293i 1.59987 0.394332i
\(311\) −9.53011 2.34896i −0.540403 0.133197i −0.0403393 0.999186i \(-0.512844\pi\)
−0.500064 + 0.865989i \(0.666690\pi\)
\(312\) −4.38341 15.7254i −0.248162 0.890277i
\(313\) −13.0341 + 3.21261i −0.736730 + 0.181588i −0.589789 0.807558i \(-0.700789\pi\)
−0.146941 + 0.989145i \(0.546943\pi\)
\(314\) −1.82181 + 0.956162i −0.102811 + 0.0539593i
\(315\) 20.3007 1.14381
\(316\) −59.6165 −3.35369
\(317\) 5.72106 3.00265i 0.321327 0.168645i −0.296346 0.955081i \(-0.595768\pi\)
0.617673 + 0.786435i \(0.288076\pi\)
\(318\) −9.91034 8.77979i −0.555744 0.492346i
\(319\) −5.36772 −0.300535
\(320\) −46.2719 + 40.9933i −2.58668 + 2.29160i
\(321\) 1.01429 + 0.532343i 0.0566124 + 0.0297125i
\(322\) 6.57366 54.1389i 0.366336 3.01704i
\(323\) −13.9650 7.32941i −0.777035 0.407819i
\(324\) 4.15996 34.2604i 0.231109 1.90335i
\(325\) −0.457462 15.1506i −0.0253754 0.840404i
\(326\) −6.12065 50.4081i −0.338991 2.79185i
\(327\) −0.864377 + 2.27918i −0.0478002 + 0.126039i
\(328\) −1.53795 + 0.807180i −0.0849193 + 0.0445691i
\(329\) −4.96170 13.0829i −0.273547 0.721285i
\(330\) −2.57302 1.35043i −0.141640 0.0743385i
\(331\) −14.7236 7.72754i −0.809282 0.424744i 0.00871794 0.999962i \(-0.497225\pi\)
−0.818000 + 0.575218i \(0.804917\pi\)
\(332\) −84.6235 20.8578i −4.64432 1.14472i
\(333\) 2.46621 + 20.3110i 0.135147 + 1.11304i
\(334\) −10.3603 + 9.17842i −0.566890 + 0.502221i
\(335\) 11.7608 17.0385i 0.642562 0.930912i
\(336\) −5.83448 15.3842i −0.318297 0.839280i
\(337\) 2.35775 0.128435 0.0642174 0.997936i \(-0.479545\pi\)
0.0642174 + 0.997936i \(0.479545\pi\)
\(338\) −2.11071 + 34.8682i −0.114807 + 1.89658i
\(339\) −8.18721 −0.444668
\(340\) 19.3473 + 51.0148i 1.04926 + 2.76666i
\(341\) −1.37727 + 1.99532i −0.0745833 + 0.108053i
\(342\) 25.1031 22.2394i 1.35742 1.20257i
\(343\) 2.35959 + 19.4330i 0.127406 + 1.04928i
\(344\) 8.16244 + 2.01186i 0.440089 + 0.108472i
\(345\) 11.6223 + 6.09987i 0.625726 + 0.328406i
\(346\) 25.3604 + 13.3102i 1.36338 + 0.715559i
\(347\) −7.57742 19.9800i −0.406777 1.07258i −0.969317 0.245813i \(-0.920945\pi\)
0.562540 0.826770i \(-0.309824\pi\)
\(348\) 19.0562 10.0015i 1.02152 0.536134i
\(349\) 2.27701 6.00398i 0.121885 0.321386i −0.860162 0.510022i \(-0.829637\pi\)
0.982047 + 0.188636i \(0.0604066\pi\)
\(350\) −3.34208 27.5245i −0.178641 1.47124i
\(351\) 4.72931 9.71250i 0.252432 0.518415i
\(352\) 1.40576 11.5775i 0.0749273 0.617082i
\(353\) −23.5170 12.3427i −1.25169 0.656935i −0.297093 0.954849i \(-0.596017\pi\)
−0.954593 + 0.297913i \(0.903709\pi\)
\(354\) 0.867375 7.14348i 0.0461005 0.379672i
\(355\) 9.09684 + 4.77439i 0.482810 + 0.253398i
\(356\) 44.4965 39.4205i 2.35831 2.08928i
\(357\) −4.42428 −0.234158
\(358\) −5.50690 4.87868i −0.291048 0.257846i
\(359\) −13.1159 + 6.88377i −0.692232 + 0.363312i −0.773865 0.633351i \(-0.781679\pi\)
0.0816324 + 0.996663i \(0.473987\pi\)
\(360\) −71.5708 −3.77211
\(361\) 1.95913 0.103112
\(362\) 45.3181 23.7847i 2.38186 1.25010i
\(363\) −5.35250 + 1.31927i −0.280934 + 0.0692439i
\(364\) 1.39432 + 46.1782i 0.0730822 + 2.42039i
\(365\) 22.5482 + 5.55764i 1.18023 + 0.290900i
\(366\) 6.20488 1.52937i 0.324334 0.0799412i
\(367\) 13.0849 + 34.5021i 0.683028 + 1.80100i 0.593224 + 0.805037i \(0.297855\pi\)
0.0898037 + 0.995959i \(0.471376\pi\)
\(368\) −12.7693 + 105.165i −0.665648 + 5.48211i
\(369\) −0.531307 0.130955i −0.0276587 0.00681726i
\(370\) 59.4029 14.6415i 3.08821 0.761176i
\(371\) 13.1303 + 19.0226i 0.681694 + 0.987604i
\(372\) 1.17171 9.64988i 0.0607502 0.500323i
\(373\) −9.29785 + 24.5164i −0.481425 + 1.26941i 0.445876 + 0.895095i \(0.352892\pi\)
−0.927301 + 0.374318i \(0.877877\pi\)
\(374\) −5.58408 2.93075i −0.288746 0.151545i
\(375\) −1.22694 0.302412i −0.0633587 0.0156165i
\(376\) 17.4927 + 46.1244i 0.902116 + 2.37868i
\(377\) −28.0850 + 4.27381i −1.44645 + 0.220112i
\(378\) 7.00725 18.4766i 0.360414 0.950334i
\(379\) 13.9448 20.2026i 0.716299 1.03774i −0.280660 0.959807i \(-0.590553\pi\)
0.996959 0.0779306i \(-0.0248312\pi\)
\(380\) −54.2717 48.0805i −2.78408 2.46648i
\(381\) −4.02161 + 0.991237i −0.206033 + 0.0507826i
\(382\) 5.18622 + 13.6749i 0.265350 + 0.699670i
\(383\) 8.93410 4.68898i 0.456511 0.239595i −0.220761 0.975328i \(-0.570854\pi\)
0.677272 + 0.735732i \(0.263162\pi\)
\(384\) 3.80649 + 10.0369i 0.194249 + 0.512193i
\(385\) 3.79719 + 3.36402i 0.193523 + 0.171446i
\(386\) −12.3752 10.9634i −0.629880 0.558025i
\(387\) 1.50453 + 2.17969i 0.0764795 + 0.110800i
\(388\) 13.5950 + 19.6958i 0.690184 + 0.999904i
\(389\) 4.38026 2.29894i 0.222088 0.116561i −0.350010 0.936746i \(-0.613822\pi\)
0.572098 + 0.820185i \(0.306130\pi\)
\(390\) −14.5378 5.01704i −0.736148 0.254048i
\(391\) 25.2233 + 13.2382i 1.27560 + 0.669485i
\(392\) −1.01748 8.37968i −0.0513904 0.423238i
\(393\) 5.83294 + 1.43769i 0.294233 + 0.0725218i
\(394\) −20.8332 30.1821i −1.04956 1.52055i
\(395\) −19.6811 + 28.5130i −0.990264 + 1.43464i
\(396\) 7.25736 6.42946i 0.364696 0.323093i
\(397\) −3.58494 29.5246i −0.179923 1.48180i −0.750673 0.660674i \(-0.770271\pi\)
0.570751 0.821123i \(-0.306652\pi\)
\(398\) 12.6759 3.12434i 0.635388 0.156609i
\(399\) 5.20605 2.73234i 0.260628 0.136788i
\(400\) 6.49199 + 53.4664i 0.324600 + 2.67332i
\(401\) −2.51184 + 20.6869i −0.125435 + 1.03305i 0.785027 + 0.619461i \(0.212649\pi\)
−0.910463 + 0.413591i \(0.864274\pi\)
\(402\) −5.45034 7.89619i −0.271838 0.393826i
\(403\) −5.61746 + 11.5365i −0.279826 + 0.574674i
\(404\) −2.65098 + 3.84061i −0.131891 + 0.191078i
\(405\) −15.0125 13.2999i −0.745977 0.660878i
\(406\) −50.4554 + 12.4362i −2.50406 + 0.617196i
\(407\) −2.90444 + 4.20780i −0.143968 + 0.208573i
\(408\) 15.5980 0.772214
\(409\) 14.2740 20.6794i 0.705803 1.02253i −0.292008 0.956416i \(-0.594324\pi\)
0.997812 0.0661170i \(-0.0210611\pi\)
\(410\) −0.197231 + 1.62434i −0.00974055 + 0.0802207i
\(411\) −3.50479 + 9.24137i −0.172878 + 0.455843i
\(412\) 3.46211 + 28.5130i 0.170566 + 1.40474i
\(413\) −4.45472 + 11.7461i −0.219203 + 0.577990i
\(414\) −45.3406 + 40.1683i −2.22837 + 1.97416i
\(415\) −37.9124 + 33.5874i −1.86104 + 1.64874i
\(416\) −1.86284 61.6950i −0.0913331 3.02484i
\(417\) 6.28171 + 5.56511i 0.307616 + 0.272524i
\(418\) 8.38075 0.409916
\(419\) 0.537094 0.475823i 0.0262387 0.0232455i −0.649901 0.760019i \(-0.725190\pi\)
0.676140 + 0.736773i \(0.263651\pi\)
\(420\) −19.7486 4.86759i −0.963633 0.237514i
\(421\) −4.04410 5.85889i −0.197098 0.285545i 0.711956 0.702224i \(-0.247809\pi\)
−0.909054 + 0.416679i \(0.863194\pi\)
\(422\) 17.2380 45.4529i 0.839134 2.21261i
\(423\) −5.51102 + 14.5314i −0.267955 + 0.706539i
\(424\) −46.2916 67.0649i −2.24812 3.25696i
\(425\) 14.0617 + 3.46589i 0.682092 + 0.168120i
\(426\) 3.56376 3.15721i 0.172665 0.152967i
\(427\) −11.1565 −0.539901
\(428\) 8.55468 + 7.57879i 0.413506 + 0.366334i
\(429\) 1.18741 0.491810i 0.0573287 0.0237448i
\(430\) 5.92796 5.25171i 0.285871 0.253260i
\(431\) −11.4026 + 10.1018i −0.549244 + 0.486588i −0.891501 0.453018i \(-0.850347\pi\)
0.342257 + 0.939606i \(0.388809\pi\)
\(432\) −13.6116 + 35.8909i −0.654889 + 1.72680i
\(433\) −1.01581 8.36599i −0.0488169 0.402044i −0.996551 0.0829824i \(-0.973555\pi\)
0.947734 0.319061i \(-0.103368\pi\)
\(434\) −8.32321 + 21.9465i −0.399527 + 1.05347i
\(435\) 1.50755 12.4158i 0.0722817 0.595293i
\(436\) −13.8155 + 20.0151i −0.661640 + 0.958551i
\(437\) −37.8559 −1.81089
\(438\) 6.11369 8.85720i 0.292123 0.423213i
\(439\) 5.05476 1.24589i 0.241251 0.0594629i −0.116836 0.993151i \(-0.537275\pi\)
0.358087 + 0.933688i \(0.383429\pi\)
\(440\) −13.3871 11.8600i −0.638207 0.565402i
\(441\) 1.51070 2.18863i 0.0719382 0.104221i
\(442\) −31.5505 10.8882i −1.50070 0.517898i
\(443\) −6.91823 10.0228i −0.328695 0.476197i 0.623442 0.781870i \(-0.285734\pi\)
−0.952137 + 0.305673i \(0.901119\pi\)
\(444\) 2.47094 20.3500i 0.117266 0.965769i
\(445\) −4.16421 34.2953i −0.197402 1.62575i
\(446\) −17.0453 + 8.94606i −0.807118 + 0.423608i
\(447\) −3.58264 + 0.883042i −0.169453 + 0.0417664i
\(448\) −6.02855 49.6496i −0.284822 2.34572i
\(449\) 11.8384 10.4879i 0.558689 0.494955i −0.335868 0.941909i \(-0.609030\pi\)
0.894557 + 0.446954i \(0.147491\pi\)
\(450\) −17.4943 + 25.3448i −0.824688 + 1.19477i
\(451\) −0.0776790 0.112537i −0.00365776 0.00529918i
\(452\) −79.3118 19.5486i −3.73051 0.919489i
\(453\) −0.532392 4.38464i −0.0250139 0.206008i
\(454\) 58.2386 + 30.5660i 2.73327 + 1.43453i
\(455\) 22.5461 + 14.5779i 1.05698 + 0.683421i
\(456\) −18.3541 + 9.63298i −0.859510 + 0.451106i
\(457\) 5.07686 + 7.35511i 0.237486 + 0.344057i 0.923546 0.383487i \(-0.125277\pi\)
−0.686061 + 0.727544i \(0.740662\pi\)
\(458\) 13.9235 + 20.1716i 0.650601 + 0.942559i
\(459\) 7.72588 + 6.84453i 0.360613 + 0.319475i
\(460\) 98.0242 + 86.8419i 4.57040 + 4.04902i
\(461\) −2.41605 6.37061i −0.112527 0.296709i 0.866908 0.498467i \(-0.166104\pi\)
−0.979435 + 0.201758i \(0.935334\pi\)
\(462\) 2.08170 1.09256i 0.0968493 0.0508304i
\(463\) 6.28520 + 16.5727i 0.292098 + 0.770199i 0.998078 + 0.0619674i \(0.0197375\pi\)
−0.705980 + 0.708232i \(0.749493\pi\)
\(464\) 98.0099 24.1573i 4.54999 1.12147i
\(465\) −4.22847 3.74609i −0.196090 0.173721i
\(466\) 22.4005 32.4528i 1.03768 1.50335i
\(467\) 6.68848 17.6361i 0.309506 0.816099i −0.686526 0.727105i \(-0.740865\pi\)
0.996032 0.0889946i \(-0.0283654\pi\)
\(468\) 32.8528 39.4186i 1.51862 1.82212i
\(469\) 5.93962 + 15.6615i 0.274266 + 0.723181i
\(470\) 45.1216 + 11.1215i 2.08131 + 0.512996i
\(471\) 0.354746 + 0.186185i 0.0163458 + 0.00857895i
\(472\) 15.7053 41.4115i 0.722895 1.90612i
\(473\) −0.0797766 + 0.657020i −0.00366813 + 0.0302098i
\(474\) 9.12086 + 13.2138i 0.418935 + 0.606932i
\(475\) −18.6868 + 4.60589i −0.857411 + 0.211333i
\(476\) −42.8592 10.5639i −1.96445 0.484193i
\(477\) 3.09456 25.4860i 0.141690 1.16692i
\(478\) 11.0180 + 29.0522i 0.503954 + 1.32882i
\(479\) 31.5996 7.78861i 1.44382 0.355871i 0.561878 0.827220i \(-0.310079\pi\)
0.881947 + 0.471349i \(0.156233\pi\)
\(480\) 26.3845 + 6.50320i 1.20428 + 0.296829i
\(481\) −11.8463 + 24.3286i −0.540146 + 1.10929i
\(482\) 40.8092 10.0586i 1.85881 0.458155i
\(483\) −9.40303 + 4.93509i −0.427853 + 0.224554i
\(484\) −55.0013 −2.50006
\(485\) 13.9081 0.631534
\(486\) −29.6162 + 15.5438i −1.34342 + 0.705080i
\(487\) 2.08951 + 1.85115i 0.0946849 + 0.0838835i 0.709137 0.705070i \(-0.249085\pi\)
−0.614452 + 0.788954i \(0.710623\pi\)
\(488\) 39.3327 1.78051
\(489\) −7.40098 + 6.55670i −0.334684 + 0.296504i
\(490\) −7.04130 3.69556i −0.318093 0.166948i
\(491\) −4.56515 + 37.5974i −0.206022 + 1.69675i 0.412482 + 0.910966i \(0.364662\pi\)
−0.618504 + 0.785782i \(0.712261\pi\)
\(492\) 0.485458 + 0.254788i 0.0218861 + 0.0114867i
\(493\) 3.27176 26.9453i 0.147352 1.21356i
\(494\) 43.8498 6.67280i 1.97289 0.300224i
\(495\) −0.679180 5.59355i −0.0305269 0.251411i
\(496\) 16.1679 42.6311i 0.725958 1.91419i
\(497\) −7.35978 + 3.86271i −0.330131 + 0.173266i
\(498\) 8.32365 + 21.9477i 0.372992 + 0.983498i
\(499\) −5.30215 2.78278i −0.237357 0.124574i 0.341852 0.939754i \(-0.388946\pi\)
−0.579208 + 0.815179i \(0.696638\pi\)
\(500\) −11.1636 5.85911i −0.499251 0.262027i
\(501\) 2.61686 + 0.644998i 0.116913 + 0.0288164i
\(502\) 5.02982 + 41.4243i 0.224492 + 1.84886i
\(503\) 16.0747 14.2410i 0.716737 0.634974i −0.223812 0.974632i \(-0.571850\pi\)
0.940549 + 0.339659i \(0.110312\pi\)
\(504\) 32.8934 47.6543i 1.46519 2.12269i
\(505\) 0.961698 + 2.53579i 0.0427950 + 0.112841i
\(506\) −15.1371 −0.672927
\(507\) 5.82118 3.51867i 0.258528 0.156270i
\(508\) −41.3252 −1.83351
\(509\) 5.53466 + 14.5937i 0.245320 + 0.646855i 0.999957 0.00928744i \(-0.00295633\pi\)
−0.754637 + 0.656142i \(0.772187\pi\)
\(510\) 8.34729 12.0931i 0.369624 0.535493i
\(511\) −14.0634 + 12.4591i −0.622130 + 0.551159i
\(512\) −0.290157 2.38966i −0.0128233 0.105609i
\(513\) −13.3181 3.28261i −0.588008 0.144931i
\(514\) 17.1380 + 8.99471i 0.755924 + 0.396740i
\(515\) 14.7800 + 7.75712i 0.651283 + 0.341820i
\(516\) −0.940979 2.48116i −0.0414243 0.109227i
\(517\) −3.43881 + 1.80483i −0.151239 + 0.0793762i
\(518\) −17.5523 + 46.2816i −0.771203 + 2.03350i
\(519\) −0.672236 5.53636i −0.0295079 0.243019i
\(520\) −79.4872 51.3948i −3.48574 2.25381i
\(521\) −0.905787 + 7.45983i −0.0396833 + 0.326821i 0.959325 + 0.282303i \(0.0910983\pi\)
−0.999009 + 0.0445181i \(0.985825\pi\)
\(522\) 51.1073 + 26.8232i 2.23691 + 1.17402i
\(523\) 2.30011 18.9431i 0.100577 0.828326i −0.851898 0.523708i \(-0.824548\pi\)
0.952475 0.304618i \(-0.0985287\pi\)
\(524\) 53.0725 + 27.8546i 2.31848 + 1.21683i
\(525\) −4.04118 + 3.58017i −0.176372 + 0.156252i
\(526\) 4.27866 0.186558
\(527\) −9.17679 8.12993i −0.399747 0.354145i
\(528\) −4.04370 + 2.12230i −0.175980 + 0.0923612i
\(529\) 45.3744 1.97280
\(530\) −76.7687 −3.33462
\(531\) 12.3550 6.48443i 0.536163 0.281400i
\(532\) 56.9565 14.0385i 2.46938 0.608646i
\(533\) −0.496035 0.526970i −0.0214857 0.0228256i
\(534\) −15.5451 3.83151i −0.672701 0.165806i
\(535\) 6.44887 1.58950i 0.278809 0.0687203i
\(536\) −20.9404 55.2152i −0.904486 2.38493i
\(537\) −0.172680 + 1.42214i −0.00745168 + 0.0613701i
\(538\) −33.9794 8.37516i −1.46495 0.361079i
\(539\) 0.645251 0.159040i 0.0277929 0.00685034i
\(540\) 26.9556 + 39.0519i 1.15998 + 1.68053i
\(541\) 0.728698 6.00137i 0.0313292 0.258019i −0.968626 0.248524i \(-0.920055\pi\)
0.999955 0.00949494i \(-0.00302238\pi\)
\(542\) −3.45088 + 9.09923i −0.148228 + 0.390845i
\(543\) −8.82438 4.63139i −0.378691 0.198752i
\(544\) 57.2608 + 14.1135i 2.45504 + 0.605112i
\(545\) 5.01184 + 13.2151i 0.214684 + 0.566074i
\(546\) 10.0220 7.37394i 0.428900 0.315576i
\(547\) 8.50983 22.4386i 0.363854 0.959405i −0.620657 0.784082i \(-0.713134\pi\)
0.984511 0.175322i \(-0.0560968\pi\)
\(548\) −56.0175 + 81.1553i −2.39295 + 3.46678i
\(549\) 9.27529 + 8.21719i 0.395860 + 0.350701i
\(550\) −7.47215 + 1.84172i −0.318613 + 0.0785312i
\(551\) 12.7910 + 33.7271i 0.544916 + 1.43682i
\(552\) 33.1508 17.3989i 1.41099 0.740545i
\(553\) −9.93964 26.2087i −0.422677 1.11451i
\(554\) 7.12797 + 6.31483i 0.302838 + 0.268291i
\(555\) −8.91715 7.89990i −0.378512 0.335332i
\(556\) 47.5648 + 68.9096i 2.01720 + 2.92242i
\(557\) 8.33074 + 12.0692i 0.352985 + 0.511387i 0.958748 0.284259i \(-0.0917474\pi\)
−0.605763 + 0.795645i \(0.707132\pi\)
\(558\) 23.0842 12.1155i 0.977231 0.512890i
\(559\) 0.105716 + 3.50118i 0.00447130 + 0.148084i
\(560\) −84.4730 44.3348i −3.56963 1.87349i
\(561\) 0.148019 + 1.21904i 0.00624936 + 0.0514681i
\(562\) −82.9846 20.4539i −3.50049 0.862794i
\(563\) −4.37097 6.33244i −0.184214 0.266881i 0.719986 0.693988i \(-0.244148\pi\)
−0.904201 + 0.427107i \(0.859533\pi\)
\(564\) 8.84540 12.8148i 0.372459 0.539600i
\(565\) −35.5326 + 31.4792i −1.49487 + 1.32434i
\(566\) 4.25283 + 35.0252i 0.178760 + 1.47222i
\(567\) 15.7552 3.88330i 0.661654 0.163083i
\(568\) 25.9472 13.6181i 1.08872 0.571405i
\(569\) −0.151545 1.24809i −0.00635311 0.0523225i 0.989188 0.146656i \(-0.0468511\pi\)
−0.995541 + 0.0943335i \(0.969928\pi\)
\(570\) −2.35378 + 19.3851i −0.0985890 + 0.811953i
\(571\) 12.6401 + 18.3124i 0.528973 + 0.766350i 0.992827 0.119562i \(-0.0381491\pi\)
−0.463854 + 0.885912i \(0.653534\pi\)
\(572\) 12.6771 1.92912i 0.530055 0.0806607i
\(573\) 1.61777 2.34375i 0.0675833 0.0979114i
\(574\) −0.990897 0.877858i −0.0413593 0.0366411i
\(575\) 33.7517 8.31905i 1.40754 0.346928i
\(576\) −31.5568 + 45.7179i −1.31487 + 1.90491i
\(577\) −5.15901 −0.214773 −0.107386 0.994217i \(-0.534248\pi\)
−0.107386 + 0.994217i \(0.534248\pi\)
\(578\) −7.83372 + 11.3491i −0.325840 + 0.472060i
\(579\) −0.388048 + 3.19586i −0.0161267 + 0.132816i
\(580\) 44.2494 116.676i 1.83735 4.84471i
\(581\) −4.93943 40.6798i −0.204922 1.68768i
\(582\) 2.28559 6.02661i 0.0947408 0.249811i
\(583\) 4.80210 4.25429i 0.198883 0.176195i
\(584\) 49.5812 43.9251i 2.05168 1.81763i
\(585\) −8.00722 28.7258i −0.331058 1.18767i
\(586\) −34.4649 30.5332i −1.42373 1.26131i
\(587\) −42.2942 −1.74567 −0.872834 0.488017i \(-0.837720\pi\)
−0.872834 + 0.488017i \(0.837720\pi\)
\(588\) −1.99440 + 1.76688i −0.0822476 + 0.0728650i
\(589\) 15.8192 + 3.89908i 0.651819 + 0.160659i
\(590\) −23.7017 34.3378i −0.975783 1.41367i
\(591\) −2.53230 + 6.67713i −0.104165 + 0.274661i
\(592\) 34.0954 89.9021i 1.40131 3.69495i
\(593\) 15.1904 + 22.0071i 0.623796 + 0.903725i 0.999737 0.0229186i \(-0.00729585\pi\)
−0.375941 + 0.926644i \(0.622680\pi\)
\(594\) −5.32539 1.31259i −0.218503 0.0538562i
\(595\) −19.2015 + 17.0110i −0.787183 + 0.697383i
\(596\) −36.8145 −1.50798
\(597\) −1.90282 1.68575i −0.0778773 0.0689933i
\(598\) −79.2004 + 12.0523i −3.23874 + 0.492853i
\(599\) −1.61190 + 1.42802i −0.0658605 + 0.0583473i −0.695411 0.718612i \(-0.744778\pi\)
0.629550 + 0.776960i \(0.283239\pi\)
\(600\) 14.2473 12.6220i 0.581645 0.515293i
\(601\) 6.45417 17.0183i 0.263271 0.694189i −0.736570 0.676362i \(-0.763556\pi\)
0.999841 0.0178278i \(-0.00567506\pi\)
\(602\) 0.772326 + 6.36068i 0.0314777 + 0.259242i
\(603\) 6.59721 17.3954i 0.268659 0.708396i
\(604\) 5.31178 43.7464i 0.216133 1.78002i
\(605\) −18.1575 + 26.3056i −0.738206 + 1.06948i
\(606\) 1.25684 0.0510557
\(607\) −15.7717 + 22.8492i −0.640152 + 0.927420i −0.999984 0.00559715i \(-0.998218\pi\)
0.359833 + 0.933017i \(0.382834\pi\)
\(608\) −76.0949 + 18.7557i −3.08606 + 0.760645i
\(609\) 7.57401 + 6.70999i 0.306914 + 0.271903i
\(610\) 21.0490 30.4948i 0.852249 1.23470i
\(611\) −16.5555 + 12.1812i −0.669765 + 0.492799i
\(612\) 27.8516 + 40.3500i 1.12583 + 1.63105i
\(613\) 2.29621 18.9110i 0.0927429 0.763807i −0.869937 0.493163i \(-0.835840\pi\)
0.962680 0.270643i \(-0.0872364\pi\)
\(614\) 4.30663 + 35.4683i 0.173802 + 1.43139i
\(615\) 0.282122 0.148069i 0.0113762 0.00597071i
\(616\) 14.0494 3.46286i 0.566066 0.139523i
\(617\) −0.170683 1.40570i −0.00687144 0.0565914i 0.988870 0.148783i \(-0.0475357\pi\)
−0.995741 + 0.0921920i \(0.970613\pi\)
\(618\) 5.79016 5.12963i 0.232914 0.206344i
\(619\) 1.88353 2.72876i 0.0757053 0.109678i −0.783302 0.621641i \(-0.786466\pi\)
0.859007 + 0.511963i \(0.171082\pi\)
\(620\) −32.0178 46.3858i −1.28587 1.86290i
\(621\) 24.0548 + 5.92898i 0.965286 + 0.237922i
\(622\) 3.17910 + 26.1822i 0.127470 + 1.04981i
\(623\) 24.7488 + 12.9892i 0.991541 + 0.520401i
\(624\) −19.4677 + 14.3239i −0.779331 + 0.573415i
\(625\) −25.0997 + 13.1733i −1.00399 + 0.526933i
\(626\) 20.4911 + 29.6865i 0.818989 + 1.18651i
\(627\) −0.927030 1.34304i −0.0370220 0.0536357i
\(628\) 2.99197 + 2.65065i 0.119393 + 0.105773i
\(629\) −19.3524 17.1447i −0.771629 0.683604i
\(630\) −19.3435 51.0046i −0.770663 2.03207i
\(631\) −11.2187 + 5.88804i −0.446610 + 0.234399i −0.673007 0.739636i \(-0.734998\pi\)
0.226397 + 0.974035i \(0.427305\pi\)
\(632\) 35.0426 + 92.3997i 1.39392 + 3.67546i
\(633\) −9.19071 + 2.26531i −0.365298 + 0.0900379i
\(634\) −12.9953 11.5129i −0.516111 0.457235i
\(635\) −13.6426 + 19.7647i −0.541391 + 0.784340i
\(636\) −9.12131 + 24.0509i −0.361683 + 0.953680i
\(637\) 3.24945 1.34588i 0.128748 0.0533257i
\(638\) 5.11464 + 13.4862i 0.202490 + 0.533923i
\(639\) 8.96381 + 2.20938i 0.354603 + 0.0874017i
\(640\) 55.1113 + 28.9247i 2.17847 + 1.14335i
\(641\) 0.502519 1.32503i 0.0198483 0.0523356i −0.924726 0.380634i \(-0.875706\pi\)
0.944574 + 0.328298i \(0.106475\pi\)
\(642\) 0.371019 3.05562i 0.0146430 0.120596i
\(643\) −18.4665 26.7534i −0.728249 1.05505i −0.995804 0.0915081i \(-0.970831\pi\)
0.267555 0.963542i \(-0.413784\pi\)
\(644\) −102.873 + 25.3560i −4.05378 + 0.999167i
\(645\) −1.49732 0.369055i −0.0589567 0.0145315i
\(646\) −5.10827 + 42.0704i −0.200982 + 1.65524i
\(647\) 6.09033 + 16.0589i 0.239435 + 0.631339i 0.999836 0.0181151i \(-0.00576652\pi\)
−0.760400 + 0.649455i \(0.774997\pi\)
\(648\) −55.5454 + 13.6907i −2.18203 + 0.537822i
\(649\) 3.38551 + 0.834454i 0.132893 + 0.0327552i
\(650\) −37.6294 + 15.5856i −1.47595 + 0.611318i
\(651\) 4.43764 1.09378i 0.173925 0.0428686i
\(652\) −87.3509 + 45.8453i −3.42092 + 1.79544i
\(653\) 40.8704 1.59938 0.799691 0.600411i \(-0.204996\pi\)
0.799691 + 0.600411i \(0.204996\pi\)
\(654\) 6.54996 0.256124
\(655\) 30.8429 16.1876i 1.20513 0.632501i
\(656\) 1.92482 + 1.70524i 0.0751516 + 0.0665785i
\(657\) 20.8687 0.814164
\(658\) −28.1426 + 24.9322i −1.09711 + 0.971957i
\(659\) −20.9109 10.9749i −0.814574 0.427521i 0.00535583 0.999986i \(-0.498295\pi\)
−0.819930 + 0.572464i \(0.805987\pi\)
\(660\) −0.680483 + 5.60428i −0.0264878 + 0.218146i
\(661\) −24.3942 12.8030i −0.948823 0.497981i −0.0820196 0.996631i \(-0.526137\pi\)
−0.866803 + 0.498650i \(0.833829\pi\)
\(662\) −5.38575 + 44.3556i −0.209323 + 1.72393i
\(663\) 1.74507 + 6.26043i 0.0677730 + 0.243135i
\(664\) 17.4141 + 143.418i 0.675800 + 5.56571i
\(665\) 12.0887 31.8753i 0.468779 1.23607i
\(666\) 48.6808 25.5496i 1.88634 0.990028i
\(667\) −23.1028 60.9171i −0.894545 2.35872i
\(668\) 23.8102 + 12.4966i 0.921244 + 0.483506i
\(669\) 3.31908 + 1.74199i 0.128323 + 0.0673491i
\(670\) −54.0148 13.3135i −2.08677 0.514344i
\(671\) 0.373252 + 3.07401i 0.0144093 + 0.118671i
\(672\) −16.4562 + 14.5789i −0.634810 + 0.562392i
\(673\) 9.13442 13.2335i 0.352106 0.510114i −0.606410 0.795152i \(-0.707391\pi\)
0.958516 + 0.285038i \(0.0920063\pi\)
\(674\) −2.24658 5.92375i −0.0865351 0.228174i
\(675\) 12.5956 0.484804
\(676\) 64.7929 20.1871i 2.49204 0.776427i
\(677\) 37.2856 1.43300 0.716501 0.697586i \(-0.245742\pi\)
0.716501 + 0.697586i \(0.245742\pi\)
\(678\) 7.80118 + 20.5700i 0.299603 + 0.789987i
\(679\) −6.39205 + 9.26048i −0.245304 + 0.355384i
\(680\) 67.6955 59.9729i 2.59600 2.29986i
\(681\) −1.54375 12.7139i −0.0591565 0.487198i
\(682\) 6.32549 + 1.55909i 0.242216 + 0.0597008i
\(683\) 7.34152 + 3.85313i 0.280916 + 0.147436i 0.599297 0.800527i \(-0.295447\pi\)
−0.318381 + 0.947963i \(0.603139\pi\)
\(684\) −57.6923 30.2793i −2.20592 1.15776i
\(685\) 20.3215 + 53.5833i 0.776444 + 2.04731i
\(686\) 46.5763 24.4451i 1.77829 0.933319i
\(687\) 1.69242 4.46254i 0.0645698 0.170257i
\(688\) −1.50025 12.3556i −0.0571963 0.471054i
\(689\) 21.7383 26.0828i 0.828162 0.993674i
\(690\) 4.25134 35.0129i 0.161846 1.33292i
\(691\) 45.6331 + 23.9501i 1.73597 + 0.911105i 0.959849 + 0.280516i \(0.0905056\pi\)
0.776117 + 0.630589i \(0.217187\pi\)
\(692\) 6.70703 55.2374i 0.254963 2.09981i
\(693\) 4.03652 + 2.11853i 0.153335 + 0.0804762i
\(694\) −42.9788 + 38.0759i −1.63145 + 1.44534i
\(695\) 48.6601 1.84578
\(696\) −26.7025 23.6563i −1.01215 0.896691i
\(697\) 0.612272 0.321345i 0.0231915 0.0121718i
\(698\) −17.2544 −0.653089
\(699\) −7.67845 −0.290426
\(700\) −47.6964 + 25.0330i −1.80276 + 0.946159i
\(701\) 43.1966 10.6470i 1.63151 0.402132i 0.685970 0.727630i \(-0.259378\pi\)
0.945543 + 0.325498i \(0.105532\pi\)
\(702\) −28.9086 2.62763i −1.09108 0.0991735i
\(703\) 33.3601 + 8.22253i 1.25820 + 0.310119i
\(704\) −13.4785 + 3.32215i −0.507990 + 0.125208i
\(705\) −3.20885 8.46104i −0.120852 0.318661i
\(706\) −8.60230 + 70.8464i −0.323752 + 2.66634i
\(707\) −2.13040 0.525097i −0.0801221 0.0197483i
\(708\) −13.5738 + 3.34565i −0.510136 + 0.125737i
\(709\) −11.1495 16.1529i −0.418730 0.606635i 0.555685 0.831393i \(-0.312456\pi\)
−0.974415 + 0.224758i \(0.927841\pi\)
\(710\) 3.32754 27.4047i 0.124880 1.02848i
\(711\) −11.0401 + 29.1103i −0.414035 + 1.09172i
\(712\) −87.2529 45.7939i −3.26994 1.71620i
\(713\) −28.5723 7.04243i −1.07004 0.263741i
\(714\) 4.21567 + 11.1158i 0.157768 + 0.415999i
\(715\) 3.26241 6.69996i 0.122007 0.250564i
\(716\) −5.06845 + 13.3644i −0.189417 + 0.499452i
\(717\) 3.43693 4.97925i 0.128355 0.185954i
\(718\) 29.7927 + 26.3940i 1.11185 + 0.985017i
\(719\) −19.1707 + 4.72514i −0.714945 + 0.176218i −0.579978 0.814632i \(-0.696939\pi\)
−0.134967 + 0.990850i \(0.543093\pi\)
\(720\) 37.5748 + 99.0766i 1.40033 + 3.69237i
\(721\) −11.9577 + 6.27588i −0.445328 + 0.233726i
\(722\) −1.86676 4.92224i −0.0694737 0.183187i
\(723\) −6.12598 5.42715i −0.227828 0.201838i
\(724\) −74.4259 65.9356i −2.76602 2.45048i
\(725\) −18.8160 27.2597i −0.698809 1.01240i
\(726\) 8.41476 + 12.1909i 0.312301 + 0.452446i
\(727\) −22.5136 + 11.8160i −0.834982 + 0.438232i −0.827315 0.561738i \(-0.810133\pi\)
−0.00766681 + 0.999971i \(0.502440\pi\)
\(728\) 70.7520 29.3046i 2.62224 1.08610i
\(729\) −11.7944 6.19018i −0.436830 0.229266i
\(730\) −7.52174 61.9471i −0.278392 2.29276i
\(731\) −3.24954 0.800939i −0.120188 0.0296238i
\(732\) −7.05277 10.2177i −0.260678 0.377657i
\(733\) 21.4374 31.0574i 0.791809 1.14713i −0.194286 0.980945i \(-0.562239\pi\)
0.986094 0.166188i \(-0.0531458\pi\)
\(734\) 74.2172 65.7507i 2.73941 2.42690i
\(735\) 0.186646 + 1.53717i 0.00688453 + 0.0566992i
\(736\) 137.441 33.8761i 5.06614 1.24869i
\(737\) 4.11658 2.16055i 0.151636 0.0795848i
\(738\) 0.177236 + 1.45967i 0.00652414 + 0.0537311i
\(739\) 1.11097 9.14966i 0.0408677 0.336576i −0.957907 0.287080i \(-0.907315\pi\)
0.998774 0.0494958i \(-0.0157614\pi\)
\(740\) −67.5203 97.8201i −2.48210 3.59594i
\(741\) −5.91974 6.28892i −0.217467 0.231029i
\(742\) 35.2822 51.1152i 1.29525 1.87650i
\(743\) −24.2689 21.5004i −0.890340 0.788772i 0.0879259 0.996127i \(-0.471976\pi\)
−0.978266 + 0.207355i \(0.933515\pi\)
\(744\) −15.6451 + 3.85617i −0.573577 + 0.141374i
\(745\) −12.1535 + 17.6074i −0.445270 + 0.645085i
\(746\) 70.4560 2.57958
\(747\) −25.8557 + 37.4585i −0.946011 + 1.37053i
\(748\) −1.47681 + 12.1626i −0.0539976 + 0.444710i
\(749\) −1.90550 + 5.02440i −0.0696256 + 0.183588i
\(750\) 0.409287 + 3.37078i 0.0149450 + 0.123083i
\(751\) 6.39054 16.8505i 0.233194 0.614883i −0.766429 0.642329i \(-0.777968\pi\)
0.999623 + 0.0274464i \(0.00873756\pi\)
\(752\) 54.6671 48.4308i 1.99350 1.76609i
\(753\) 6.08197 5.38816i 0.221639 0.196355i
\(754\) 37.4986 + 66.4901i 1.36562 + 2.42143i
\(755\) −19.1692 16.9824i −0.697638 0.618053i
\(756\) −38.3906 −1.39625
\(757\) −38.1260 + 33.7767i −1.38571 + 1.22763i −0.441936 + 0.897046i \(0.645708\pi\)
−0.943775 + 0.330587i \(0.892753\pi\)
\(758\) −64.0456 15.7858i −2.32624 0.573367i
\(759\) 1.67438 + 2.42576i 0.0607761 + 0.0880494i
\(760\) −42.6192 + 112.377i −1.54596 + 4.07636i
\(761\) 16.0813 42.4029i 0.582947 1.53711i −0.241050 0.970513i \(-0.577492\pi\)
0.823998 0.566593i \(-0.191739\pi\)
\(762\) 6.32243 + 9.15962i 0.229037 + 0.331818i
\(763\) −11.1025 2.73651i −0.401937 0.0990685i
\(764\) 21.2680 18.8418i 0.769448 0.681671i
\(765\) 28.4929 1.03016
\(766\) −20.2937 17.9787i −0.733242 0.649596i
\(767\) 18.3781 + 1.67046i 0.663593 + 0.0603169i
\(768\)