Properties

Label 169.2.g.a.14.8
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.8
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0291084 - 0.0421708i) q^{2} +(2.28283 - 1.19812i) q^{3} +(0.708279 + 1.86758i) q^{4} +(-2.44658 - 2.16748i) q^{5} +(0.0159238 - 0.131144i) q^{6} +(1.95389 + 0.481590i) q^{7} +(0.198879 + 0.0490192i) q^{8} +(2.07162 - 3.00127i) q^{9} +O(q^{10})\) \(q+(0.0291084 - 0.0421708i) q^{2} +(2.28283 - 1.19812i) q^{3} +(0.708279 + 1.86758i) q^{4} +(-2.44658 - 2.16748i) q^{5} +(0.0159238 - 0.131144i) q^{6} +(1.95389 + 0.481590i) q^{7} +(0.198879 + 0.0490192i) q^{8} +(2.07162 - 3.00127i) q^{9} +(-0.162620 + 0.0400823i) q^{10} +(-0.973026 - 1.40967i) q^{11} +(3.85447 + 3.41476i) q^{12} +(0.791320 + 3.51764i) q^{13} +(0.0771835 - 0.0683786i) q^{14} +(-8.18203 - 2.01669i) q^{15} +(-2.98226 + 2.64205i) q^{16} +(-3.06904 - 0.756451i) q^{17} +(-0.0662641 - 0.174724i) q^{18} -3.47634 q^{19} +(2.31508 - 6.10435i) q^{20} +(5.03740 - 1.24161i) q^{21} -0.0877702 q^{22} +5.13219 q^{23} +(0.512737 - 0.126378i) q^{24} +(0.685095 + 5.64227i) q^{25} +(0.171376 + 0.0690223i) q^{26} +(0.201003 - 1.65541i) q^{27} +(0.484490 + 3.99014i) q^{28} +(-4.23710 + 6.13850i) q^{29} +(-0.323211 + 0.286340i) q^{30} +(0.953821 - 7.85543i) q^{31} +(0.0739878 + 0.609344i) q^{32} +(-3.91021 - 2.05224i) q^{33} +(-0.121235 + 0.107405i) q^{34} +(-3.73650 - 5.41326i) q^{35} +(7.07239 + 1.74319i) q^{36} +(-0.254397 + 2.09515i) q^{37} +(-0.101191 + 0.146600i) q^{38} +(6.02101 + 7.08209i) q^{39} +(-0.380324 - 0.550995i) q^{40} +(-6.52287 + 3.42347i) q^{41} +(0.0942710 - 0.248572i) q^{42} +(-0.847945 - 6.98346i) q^{43} +(1.94350 - 2.81564i) q^{44} +(-11.5736 + 2.85263i) q^{45} +(0.149390 - 0.216428i) q^{46} +(-1.14272 + 3.01309i) q^{47} +(-3.64249 + 9.60445i) q^{48} +(-2.61245 - 1.37112i) q^{49} +(0.257881 + 0.135346i) q^{50} +(-7.91243 + 1.95024i) q^{51} +(-6.00900 + 3.96932i) q^{52} +(2.86347 + 0.705782i) q^{53} +(-0.0639591 - 0.0566628i) q^{54} +(-0.674849 + 5.55788i) q^{55} +(0.364979 + 0.191556i) q^{56} +(-7.93591 + 4.16508i) q^{57} +(0.135530 + 0.357364i) q^{58} +(4.47563 + 3.96506i) q^{59} +(-2.02883 - 16.7089i) q^{60} +(13.2261 - 3.25994i) q^{61} +(-0.303505 - 0.268882i) q^{62} +(5.49310 - 4.86646i) q^{63} +(-7.02791 - 3.68853i) q^{64} +(5.68839 - 10.3214i) q^{65} +(-0.200364 + 0.105159i) q^{66} +(-2.93446 + 7.73754i) q^{67} +(-0.761007 - 6.26745i) q^{68} +(11.7159 - 6.14899i) q^{69} -0.337045 q^{70} +(8.57507 - 4.50054i) q^{71} +(0.559122 - 0.495339i) q^{72} +(-4.85564 - 7.03461i) q^{73} +(0.0809489 + 0.0717145i) q^{74} +(8.32408 + 12.0595i) q^{75} +(-2.46222 - 6.49234i) q^{76} +(-1.22230 - 3.22294i) q^{77} +(0.473919 - 0.0477628i) q^{78} +(2.94795 - 7.77311i) q^{79} +13.0229 q^{80} +(2.35500 + 6.20963i) q^{81} +(-0.0455000 + 0.374726i) q^{82} +(-10.8397 - 5.68913i) q^{83} +(5.88668 + 8.52832i) q^{84} +(5.86906 + 8.50280i) q^{85} +(-0.319180 - 0.167519i) q^{86} +(-2.31791 + 19.0897i) q^{87} +(-0.124413 - 0.328051i) q^{88} +15.2083 q^{89} +(-0.216590 + 0.571102i) q^{90} +(-0.147912 + 7.25417i) q^{91} +(3.63502 + 9.58476i) q^{92} +(-7.23435 - 19.0754i) q^{93} +(0.0938019 + 0.135895i) q^{94} +(8.50515 + 7.53490i) q^{95} +(0.898970 + 1.30238i) q^{96} +(11.1691 - 9.89497i) q^{97} +(-0.133865 + 0.0702579i) q^{98} -6.24655 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0291084 0.0421708i 0.0205827 0.0298192i −0.812557 0.582881i \(-0.801925\pi\)
0.833140 + 0.553062i \(0.186541\pi\)
\(3\) 2.28283 1.19812i 1.31799 0.691736i 0.348605 0.937270i \(-0.386656\pi\)
0.969388 + 0.245534i \(0.0789632\pi\)
\(4\) 0.708279 + 1.86758i 0.354139 + 0.933789i
\(5\) −2.44658 2.16748i −1.09414 0.969326i −0.0944861 0.995526i \(-0.530121\pi\)
−0.999657 + 0.0262002i \(0.991659\pi\)
\(6\) 0.0159238 0.131144i 0.00650086 0.0535394i
\(7\) 1.95389 + 0.481590i 0.738500 + 0.182024i 0.590584 0.806976i \(-0.298897\pi\)
0.147916 + 0.989000i \(0.452744\pi\)
\(8\) 0.198879 + 0.0490192i 0.0703142 + 0.0173309i
\(9\) 2.07162 3.00127i 0.690542 1.00042i
\(10\) −0.162620 + 0.0400823i −0.0514250 + 0.0126751i
\(11\) −0.973026 1.40967i −0.293378 0.425032i 0.648383 0.761315i \(-0.275446\pi\)
−0.941761 + 0.336283i \(0.890830\pi\)
\(12\) 3.85447 + 3.41476i 1.11269 + 0.985756i
\(13\) 0.791320 + 3.51764i 0.219473 + 0.975619i
\(14\) 0.0771835 0.0683786i 0.0206282 0.0182750i
\(15\) −8.18203 2.01669i −2.11259 0.520707i
\(16\) −2.98226 + 2.64205i −0.745564 + 0.660512i
\(17\) −3.06904 0.756451i −0.744352 0.183466i −0.151140 0.988512i \(-0.548294\pi\)
−0.593212 + 0.805046i \(0.702141\pi\)
\(18\) −0.0662641 0.174724i −0.0156186 0.0411829i
\(19\) −3.47634 −0.797528 −0.398764 0.917054i \(-0.630561\pi\)
−0.398764 + 0.917054i \(0.630561\pi\)
\(20\) 2.31508 6.10435i 0.517667 1.36497i
\(21\) 5.03740 1.24161i 1.09925 0.270941i
\(22\) −0.0877702 −0.0187127
\(23\) 5.13219 1.07014 0.535068 0.844809i \(-0.320286\pi\)
0.535068 + 0.844809i \(0.320286\pi\)
\(24\) 0.512737 0.126378i 0.104662 0.0257969i
\(25\) 0.685095 + 5.64227i 0.137019 + 1.12845i
\(26\) 0.171376 + 0.0690223i 0.0336096 + 0.0135364i
\(27\) 0.201003 1.65541i 0.0386831 0.318584i
\(28\) 0.484490 + 3.99014i 0.0915600 + 0.754065i
\(29\) −4.23710 + 6.13850i −0.786810 + 1.13989i 0.200283 + 0.979738i \(0.435814\pi\)
−0.987092 + 0.160153i \(0.948801\pi\)
\(30\) −0.323211 + 0.286340i −0.0590100 + 0.0522783i
\(31\) 0.953821 7.85543i 0.171311 1.41088i −0.612791 0.790245i \(-0.709953\pi\)
0.784103 0.620631i \(-0.213124\pi\)
\(32\) 0.0739878 + 0.609344i 0.0130793 + 0.107718i
\(33\) −3.91021 2.05224i −0.680681 0.357249i
\(34\) −0.121235 + 0.107405i −0.0207916 + 0.0184198i
\(35\) −3.73650 5.41326i −0.631584 0.915007i
\(36\) 7.07239 + 1.74319i 1.17873 + 0.290531i
\(37\) −0.254397 + 2.09515i −0.0418226 + 0.344440i 0.956745 + 0.290929i \(0.0939643\pi\)
−0.998567 + 0.0535111i \(0.982959\pi\)
\(38\) −0.101191 + 0.146600i −0.0164153 + 0.0237817i
\(39\) 6.02101 + 7.08209i 0.964134 + 1.13404i
\(40\) −0.380324 0.550995i −0.0601345 0.0871199i
\(41\) −6.52287 + 3.42347i −1.01870 + 0.534656i −0.889487 0.456961i \(-0.848938\pi\)
−0.129215 + 0.991617i \(0.541246\pi\)
\(42\) 0.0942710 0.248572i 0.0145463 0.0383555i
\(43\) −0.847945 6.98346i −0.129310 1.06497i −0.902469 0.430755i \(-0.858247\pi\)
0.773159 0.634213i \(-0.218676\pi\)
\(44\) 1.94350 2.81564i 0.292993 0.424474i
\(45\) −11.5736 + 2.85263i −1.72529 + 0.425245i
\(46\) 0.149390 0.216428i 0.0220263 0.0319106i
\(47\) −1.14272 + 3.01309i −0.166682 + 0.439505i −0.992167 0.124920i \(-0.960133\pi\)
0.825485 + 0.564425i \(0.190902\pi\)
\(48\) −3.64249 + 9.60445i −0.525748 + 1.38628i
\(49\) −2.61245 1.37112i −0.373207 0.195874i
\(50\) 0.257881 + 0.135346i 0.0364698 + 0.0191409i
\(51\) −7.91243 + 1.95024i −1.10796 + 0.273088i
\(52\) −6.00900 + 3.96932i −0.833298 + 0.550446i
\(53\) 2.86347 + 0.705782i 0.393328 + 0.0969466i 0.431019 0.902343i \(-0.358154\pi\)
−0.0376912 + 0.999289i \(0.512000\pi\)
\(54\) −0.0639591 0.0566628i −0.00870373 0.00771083i
\(55\) −0.674849 + 5.55788i −0.0909967 + 0.749425i
\(56\) 0.364979 + 0.191556i 0.0487724 + 0.0255977i
\(57\) −7.93591 + 4.16508i −1.05114 + 0.551679i
\(58\) 0.135530 + 0.357364i 0.0177960 + 0.0469241i
\(59\) 4.47563 + 3.96506i 0.582677 + 0.516207i 0.902169 0.431382i \(-0.141974\pi\)
−0.319492 + 0.947589i \(0.603512\pi\)
\(60\) −2.02883 16.7089i −0.261921 2.15712i
\(61\) 13.2261 3.25994i 1.69343 0.417392i 0.729590 0.683885i \(-0.239711\pi\)
0.963837 + 0.266493i \(0.0858649\pi\)
\(62\) −0.303505 0.268882i −0.0385452 0.0341481i
\(63\) 5.49310 4.86646i 0.692066 0.613117i
\(64\) −7.02791 3.68853i −0.878489 0.461067i
\(65\) 5.68839 10.3214i 0.705558 1.28021i
\(66\) −0.200364 + 0.105159i −0.0246632 + 0.0129442i
\(67\) −2.93446 + 7.73754i −0.358501 + 0.945291i 0.627509 + 0.778609i \(0.284074\pi\)
−0.986011 + 0.166682i \(0.946695\pi\)
\(68\) −0.761007 6.26745i −0.0922856 0.760040i
\(69\) 11.7159 6.14899i 1.41043 0.740251i
\(70\) −0.337045 −0.0402845
\(71\) 8.57507 4.50054i 1.01767 0.534116i 0.128511 0.991708i \(-0.458980\pi\)
0.889162 + 0.457592i \(0.151288\pi\)
\(72\) 0.559122 0.495339i 0.0658931 0.0583762i
\(73\) −4.85564 7.03461i −0.568309 0.823338i 0.428468 0.903557i \(-0.359054\pi\)
−0.996777 + 0.0802187i \(0.974438\pi\)
\(74\) 0.0809489 + 0.0717145i 0.00941012 + 0.00833664i
\(75\) 8.32408 + 12.0595i 0.961182 + 1.39251i
\(76\) −2.46222 6.49234i −0.282436 0.744723i
\(77\) −1.22230 3.22294i −0.139294 0.367288i
\(78\) 0.473919 0.0477628i 0.0536608 0.00540807i
\(79\) 2.94795 7.77311i 0.331670 0.874543i −0.660633 0.750709i \(-0.729712\pi\)
0.992303 0.123834i \(-0.0395189\pi\)
\(80\) 13.0229 1.45601
\(81\) 2.35500 + 6.20963i 0.261667 + 0.689959i
\(82\) −0.0455000 + 0.374726i −0.00502464 + 0.0413816i
\(83\) −10.8397 5.68913i −1.18982 0.624463i −0.250700 0.968065i \(-0.580661\pi\)
−0.939116 + 0.343601i \(0.888353\pi\)
\(84\) 5.88668 + 8.52832i 0.642289 + 0.930517i
\(85\) 5.86906 + 8.50280i 0.636589 + 0.922258i
\(86\) −0.319180 0.167519i −0.0344181 0.0180640i
\(87\) −2.31791 + 19.0897i −0.248506 + 2.04663i
\(88\) −0.124413 0.328051i −0.0132625 0.0349703i
\(89\) 15.2083 1.61208 0.806038 0.591863i \(-0.201607\pi\)
0.806038 + 0.591863i \(0.201607\pi\)
\(90\) −0.216590 + 0.571102i −0.0228306 + 0.0601994i
\(91\) −0.147912 + 7.25417i −0.0155053 + 0.760444i
\(92\) 3.63502 + 9.58476i 0.378977 + 0.999281i
\(93\) −7.23435 19.0754i −0.750167 1.97803i
\(94\) 0.0938019 + 0.135895i 0.00967492 + 0.0140165i
\(95\) 8.50515 + 7.53490i 0.872610 + 0.773065i
\(96\) 0.898970 + 1.30238i 0.0917508 + 0.132924i
\(97\) 11.1691 9.89497i 1.13405 1.00468i 0.134146 0.990962i \(-0.457171\pi\)
0.999906 0.0137205i \(-0.00436751\pi\)
\(98\) −0.133865 + 0.0702579i −0.0135224 + 0.00709712i
\(99\) −6.24655 −0.627801
\(100\) −10.0521 + 5.27576i −1.00521 + 0.527576i
\(101\) −1.47123 12.1166i −0.146393 1.20565i −0.861912 0.507058i \(-0.830733\pi\)
0.715519 0.698593i \(-0.246190\pi\)
\(102\) −0.148075 + 0.390441i −0.0146616 + 0.0386595i
\(103\) 10.6432 5.58597i 1.04870 0.550402i 0.149876 0.988705i \(-0.452112\pi\)
0.898828 + 0.438303i \(0.144420\pi\)
\(104\) −0.0150554 + 0.738374i −0.00147630 + 0.0724035i
\(105\) −15.0155 7.88076i −1.46537 0.769084i
\(106\) 0.113114 0.100211i 0.0109866 0.00973331i
\(107\) 8.99305 + 7.96715i 0.869391 + 0.770213i 0.974533 0.224244i \(-0.0719912\pi\)
−0.105142 + 0.994457i \(0.533530\pi\)
\(108\) 3.23397 0.797103i 0.311189 0.0767013i
\(109\) 1.48178 + 12.2036i 0.141929 + 1.16889i 0.873395 + 0.487013i \(0.161913\pi\)
−0.731466 + 0.681878i \(0.761163\pi\)
\(110\) 0.214737 + 0.190240i 0.0204743 + 0.0181387i
\(111\) 1.92950 + 5.08766i 0.183140 + 0.482900i
\(112\) −7.09938 + 3.72604i −0.670828 + 0.352078i
\(113\) −13.6566 7.16752i −1.28470 0.674263i −0.322492 0.946572i \(-0.604520\pi\)
−0.962210 + 0.272309i \(0.912213\pi\)
\(114\) −0.0553566 + 0.455902i −0.00518462 + 0.0426992i
\(115\) −12.5563 11.1239i −1.17088 1.03731i
\(116\) −14.4652 3.56534i −1.34306 0.331034i
\(117\) 12.1967 + 4.91227i 1.12759 + 0.454140i
\(118\) 0.297488 0.0733242i 0.0273860 0.00675004i
\(119\) −5.63226 2.95604i −0.516309 0.270980i
\(120\) −1.52837 0.802153i −0.139521 0.0732262i
\(121\) 2.86026 7.54188i 0.260024 0.685626i
\(122\) 0.247516 0.652646i 0.0224090 0.0590878i
\(123\) −10.7889 + 15.6304i −0.972801 + 1.40935i
\(124\) 15.3462 3.78250i 1.37813 0.339678i
\(125\) 1.26949 1.83917i 0.113546 0.164500i
\(126\) −0.0453272 0.373303i −0.00403807 0.0332565i
\(127\) −3.82809 + 10.0939i −0.339688 + 0.895684i 0.650944 + 0.759126i \(0.274373\pi\)
−0.990632 + 0.136558i \(0.956396\pi\)
\(128\) −1.44714 + 0.759518i −0.127910 + 0.0671325i
\(129\) −10.3028 14.9261i −0.907107 1.31417i
\(130\) −0.269680 0.540322i −0.0236525 0.0473894i
\(131\) 8.68094 12.5765i 0.758458 1.09882i −0.233514 0.972353i \(-0.575022\pi\)
0.991971 0.126462i \(-0.0403622\pi\)
\(132\) 1.06319 8.75618i 0.0925390 0.762128i
\(133\) −6.79239 1.67417i −0.588975 0.145169i
\(134\) 0.240881 + 0.348976i 0.0208089 + 0.0301469i
\(135\) −4.07984 + 3.61442i −0.351137 + 0.311080i
\(136\) −0.573287 0.300884i −0.0491589 0.0258006i
\(137\) −1.57337 12.9579i −0.134422 1.10707i −0.891270 0.453474i \(-0.850184\pi\)
0.756847 0.653592i \(-0.226739\pi\)
\(138\) 0.0817239 0.673057i 0.00695680 0.0572944i
\(139\) −10.0227 + 8.87938i −0.850118 + 0.753139i −0.970886 0.239542i \(-0.923003\pi\)
0.120768 + 0.992681i \(0.461464\pi\)
\(140\) 7.46319 10.8123i 0.630755 0.913806i
\(141\) 1.00143 + 8.24749i 0.0843354 + 0.694564i
\(142\) 0.0598150 0.492621i 0.00501957 0.0413398i
\(143\) 4.18875 4.53826i 0.350281 0.379508i
\(144\) 1.75138 + 14.4239i 0.145948 + 1.20199i
\(145\) 23.6715 5.83449i 1.96581 0.484528i
\(146\) −0.437995 −0.0362487
\(147\) −7.60654 −0.627377
\(148\) −4.09303 + 1.00884i −0.336445 + 0.0829263i
\(149\) −3.60740 + 9.51192i −0.295529 + 0.779247i 0.702205 + 0.711975i \(0.252199\pi\)
−0.997735 + 0.0672725i \(0.978570\pi\)
\(150\) 0.750859 0.0613074
\(151\) 4.20103 + 11.0772i 0.341875 + 0.901449i 0.990146 + 0.140040i \(0.0447230\pi\)
−0.648271 + 0.761409i \(0.724508\pi\)
\(152\) −0.691371 0.170408i −0.0560776 0.0138219i
\(153\) −8.62822 + 7.64393i −0.697550 + 0.617975i
\(154\) −0.171493 0.0422692i −0.0138193 0.00340615i
\(155\) −19.3601 + 17.1515i −1.55504 + 1.37764i
\(156\) −8.96179 + 16.2608i −0.717517 + 1.30191i
\(157\) −9.34712 8.28083i −0.745982 0.660882i 0.201936 0.979399i \(-0.435277\pi\)
−0.947917 + 0.318517i \(0.896815\pi\)
\(158\) −0.241988 0.350580i −0.0192515 0.0278906i
\(159\) 7.38243 1.81961i 0.585465 0.144304i
\(160\) 1.13972 1.65118i 0.0901031 0.130537i
\(161\) 10.0277 + 2.47161i 0.790295 + 0.194790i
\(162\) 0.330415 + 0.0814401i 0.0259599 + 0.00639854i
\(163\) −1.50104 + 12.3622i −0.117571 + 0.968281i 0.807863 + 0.589371i \(0.200624\pi\)
−0.925433 + 0.378910i \(0.876299\pi\)
\(164\) −11.0136 9.75720i −0.860018 0.761910i
\(165\) 5.11846 + 13.4963i 0.398471 + 1.05068i
\(166\) −0.555442 + 0.291519i −0.0431107 + 0.0226262i
\(167\) 2.45113 3.55108i 0.189674 0.274791i −0.716597 0.697488i \(-0.754301\pi\)
0.906271 + 0.422697i \(0.138917\pi\)
\(168\) 1.06269 0.0819886
\(169\) −11.7476 + 5.56716i −0.903663 + 0.428243i
\(170\) 0.529409 0.0406038
\(171\) −7.20168 + 10.4334i −0.550726 + 0.797865i
\(172\) 12.4416 6.52984i 0.948661 0.497896i
\(173\) −0.745801 1.96652i −0.0567022 0.149511i 0.903672 0.428225i \(-0.140861\pi\)
−0.960374 + 0.278714i \(0.910092\pi\)
\(174\) 0.737557 + 0.653419i 0.0559141 + 0.0495356i
\(175\) −1.37866 + 11.3543i −0.104217 + 0.858303i
\(176\) 6.62623 + 1.63322i 0.499471 + 0.123109i
\(177\) 14.9677 + 3.68921i 1.12504 + 0.277298i
\(178\) 0.442689 0.641346i 0.0331810 0.0480709i
\(179\) −8.76364 + 2.16004i −0.655025 + 0.161449i −0.552803 0.833312i \(-0.686442\pi\)
−0.102223 + 0.994762i \(0.532595\pi\)
\(180\) −13.5248 19.5941i −1.00808 1.46046i
\(181\) 12.5001 + 11.0741i 0.929126 + 0.823134i 0.984509 0.175331i \(-0.0560997\pi\)
−0.0553836 + 0.998465i \(0.517638\pi\)
\(182\) 0.301608 + 0.217395i 0.0223567 + 0.0161144i
\(183\) 26.2871 23.2883i 1.94320 1.72152i
\(184\) 1.02068 + 0.251576i 0.0752458 + 0.0185464i
\(185\) 5.16359 4.57454i 0.379635 0.336327i
\(186\) −1.01500 0.250176i −0.0744237 0.0183438i
\(187\) 1.91991 + 5.06239i 0.140398 + 0.370199i
\(188\) −6.43655 −0.469433
\(189\) 1.18997 3.13769i 0.0865574 0.228233i
\(190\) 0.565324 0.139340i 0.0410129 0.0101088i
\(191\) −16.2634 −1.17678 −0.588388 0.808579i \(-0.700237\pi\)
−0.588388 + 0.808579i \(0.700237\pi\)
\(192\) −20.4628 −1.47678
\(193\) 2.71363 0.668851i 0.195332 0.0481449i −0.140436 0.990090i \(-0.544850\pi\)
0.335768 + 0.941945i \(0.391004\pi\)
\(194\) −0.0921638 0.759037i −0.00661697 0.0544957i
\(195\) 0.619389 30.3773i 0.0443554 2.17536i
\(196\) 0.710328 5.85008i 0.0507377 0.417863i
\(197\) 0.945956 + 7.79065i 0.0673966 + 0.555061i 0.986824 + 0.161800i \(0.0517299\pi\)
−0.919427 + 0.393261i \(0.871347\pi\)
\(198\) −0.181827 + 0.263422i −0.0129219 + 0.0187206i
\(199\) 2.34615 2.07851i 0.166314 0.147342i −0.575860 0.817548i \(-0.695333\pi\)
0.742175 + 0.670206i \(0.233794\pi\)
\(200\) −0.140329 + 1.15571i −0.00992273 + 0.0817210i
\(201\) 2.57164 + 21.1793i 0.181389 + 1.49387i
\(202\) −0.553793 0.290653i −0.0389648 0.0204503i
\(203\) −11.2351 + 9.95339i −0.788546 + 0.698591i
\(204\) −9.24642 13.3958i −0.647379 0.937890i
\(205\) 23.3790 + 5.76241i 1.63286 + 0.402464i
\(206\) 0.0742410 0.611430i 0.00517262 0.0426003i
\(207\) 10.6320 15.4031i 0.738973 1.07059i
\(208\) −11.6537 8.39981i −0.808039 0.582422i
\(209\) 3.38257 + 4.90050i 0.233978 + 0.338975i
\(210\) −0.769416 + 0.403821i −0.0530947 + 0.0278663i
\(211\) −3.86656 + 10.1953i −0.266185 + 0.701873i 0.733567 + 0.679617i \(0.237854\pi\)
−0.999752 + 0.0222558i \(0.992915\pi\)
\(212\) 0.710032 + 5.84764i 0.0487652 + 0.401618i
\(213\) 14.1832 20.5480i 0.971819 1.40792i
\(214\) 0.597754 0.147333i 0.0408616 0.0100715i
\(215\) −13.0619 + 18.9235i −0.890817 + 1.29057i
\(216\) 0.121122 0.319373i 0.00824132 0.0217306i
\(217\) 5.64675 14.8893i 0.383327 1.01075i
\(218\) 0.557767 + 0.292738i 0.0377767 + 0.0198268i
\(219\) −19.5129 10.2412i −1.31856 0.692034i
\(220\) −10.8578 + 2.67620i −0.732030 + 0.180429i
\(221\) 0.232330 11.3944i 0.0156282 0.766470i
\(222\) 0.270715 + 0.0667253i 0.0181692 + 0.00447831i
\(223\) −9.55007 8.46063i −0.639520 0.566565i 0.279809 0.960056i \(-0.409729\pi\)
−0.919329 + 0.393490i \(0.871267\pi\)
\(224\) −0.148890 + 1.22622i −0.00994815 + 0.0819304i
\(225\) 18.3532 + 9.63250i 1.22355 + 0.642167i
\(226\) −0.699780 + 0.367273i −0.0465487 + 0.0244306i
\(227\) 4.94423 + 13.0369i 0.328160 + 0.865287i 0.992980 + 0.118283i \(0.0377391\pi\)
−0.664820 + 0.747004i \(0.731492\pi\)
\(228\) −13.3995 11.8709i −0.887400 0.786168i
\(229\) −1.15497 9.51206i −0.0763227 0.628574i −0.979806 0.199951i \(-0.935922\pi\)
0.903483 0.428624i \(-0.141001\pi\)
\(230\) −0.834598 + 0.205710i −0.0550317 + 0.0135641i
\(231\) −6.65178 5.89296i −0.437655 0.387728i
\(232\) −1.14357 + 1.01312i −0.0750793 + 0.0665144i
\(233\) 5.24980 + 2.75531i 0.343926 + 0.180506i 0.627838 0.778344i \(-0.283940\pi\)
−0.283912 + 0.958850i \(0.591632\pi\)
\(234\) 0.562181 0.371356i 0.0367509 0.0242763i
\(235\) 9.32656 4.89495i 0.608398 0.319312i
\(236\) −4.23506 + 11.1669i −0.275679 + 0.726906i
\(237\) −2.58346 21.2767i −0.167814 1.38207i
\(238\) −0.288605 + 0.151471i −0.0187075 + 0.00981843i
\(239\) −4.88638 −0.316073 −0.158037 0.987433i \(-0.550516\pi\)
−0.158037 + 0.987433i \(0.550516\pi\)
\(240\) 29.7291 15.6030i 1.91900 1.00717i
\(241\) −13.0923 + 11.5987i −0.843347 + 0.747141i −0.969558 0.244863i \(-0.921257\pi\)
0.126210 + 0.992004i \(0.459719\pi\)
\(242\) −0.234790 0.340151i −0.0150928 0.0218658i
\(243\) 16.5606 + 14.6714i 1.06236 + 0.941169i
\(244\) 15.4559 + 22.3918i 0.989465 + 1.43349i
\(245\) 3.41968 + 9.01697i 0.218476 + 0.576073i
\(246\) 0.345099 + 0.909951i 0.0220027 + 0.0580164i
\(247\) −2.75090 12.2285i −0.175036 0.778083i
\(248\) 0.574762 1.51552i 0.0364974 0.0962357i
\(249\) −31.5616 −2.00013
\(250\) −0.0406065 0.107071i −0.00256818 0.00677174i
\(251\) −1.80105 + 14.8330i −0.113681 + 0.936251i 0.818562 + 0.574418i \(0.194772\pi\)
−0.932243 + 0.361832i \(0.882151\pi\)
\(252\) 12.9791 + 6.81198i 0.817609 + 0.429114i
\(253\) −4.99375 7.23470i −0.313955 0.454842i
\(254\) 0.314236 + 0.455249i 0.0197169 + 0.0285649i
\(255\) 23.5855 + 12.3786i 1.47698 + 0.775178i
\(256\) 1.90332 15.6752i 0.118957 0.979702i
\(257\) −1.92618 5.07893i −0.120152 0.316815i 0.861424 0.507886i \(-0.169573\pi\)
−0.981576 + 0.191072i \(0.938804\pi\)
\(258\) −0.929342 −0.0578583
\(259\) −1.50606 + 3.97117i −0.0935823 + 0.246756i
\(260\) 23.3049 + 3.31311i 1.44531 + 0.205471i
\(261\) 9.64559 + 25.4333i 0.597047 + 1.57428i
\(262\) −0.277673 0.732164i −0.0171547 0.0452333i
\(263\) 4.39580 + 6.36842i 0.271057 + 0.392694i 0.934747 0.355314i \(-0.115626\pi\)
−0.663690 + 0.748008i \(0.731011\pi\)
\(264\) −0.677059 0.599822i −0.0416701 0.0369165i
\(265\) −5.47593 7.93326i −0.336384 0.487336i
\(266\) −0.268317 + 0.237708i −0.0164515 + 0.0145748i
\(267\) 34.7180 18.2214i 2.12471 1.11513i
\(268\) −16.5289 −1.00966
\(269\) 16.0188 8.40729i 0.976681 0.512602i 0.100684 0.994918i \(-0.467897\pi\)
0.875997 + 0.482317i \(0.160205\pi\)
\(270\) 0.0336655 + 0.277260i 0.00204881 + 0.0168735i
\(271\) −5.97535 + 15.7557i −0.362977 + 0.957091i 0.621786 + 0.783187i \(0.286407\pi\)
−0.984763 + 0.173904i \(0.944362\pi\)
\(272\) 11.1513 5.85263i 0.676144 0.354868i
\(273\) 8.35372 + 16.7373i 0.505590 + 1.01298i
\(274\) −0.592242 0.310832i −0.0357786 0.0187781i
\(275\) 7.28713 6.45583i 0.439430 0.389301i
\(276\) 19.7818 + 17.5252i 1.19073 + 1.05489i
\(277\) −8.88048 + 2.18884i −0.533576 + 0.131515i −0.496892 0.867812i \(-0.665526\pi\)
−0.0366840 + 0.999327i \(0.511679\pi\)
\(278\) 0.0827043 + 0.681131i 0.00496027 + 0.0408515i
\(279\) −21.6003 19.1362i −1.29317 1.14565i
\(280\) −0.477757 1.25974i −0.0285514 0.0752840i
\(281\) −7.08249 + 3.71718i −0.422506 + 0.221748i −0.662556 0.749012i \(-0.730528\pi\)
0.240050 + 0.970760i \(0.422836\pi\)
\(282\) 0.376953 + 0.197840i 0.0224472 + 0.0117812i
\(283\) 0.653097 5.37874i 0.0388226 0.319733i −0.960341 0.278830i \(-0.910053\pi\)
0.999163 0.0409030i \(-0.0130234\pi\)
\(284\) 14.4787 + 12.8270i 0.859150 + 0.761141i
\(285\) 28.4435 + 7.01070i 1.68485 + 0.415278i
\(286\) −0.0694543 0.308744i −0.00410692 0.0182564i
\(287\) −14.3937 + 3.54772i −0.849631 + 0.209415i
\(288\) 1.98208 + 1.04028i 0.116795 + 0.0612988i
\(289\) −6.20595 3.25713i −0.365056 0.191596i
\(290\) 0.442993 1.16808i 0.0260134 0.0685918i
\(291\) 13.6418 35.9705i 0.799697 2.10863i
\(292\) 9.69853 14.0507i 0.567563 0.822257i
\(293\) −24.1987 + 5.96444i −1.41370 + 0.348447i −0.870919 0.491426i \(-0.836476\pi\)
−0.542784 + 0.839873i \(0.682630\pi\)
\(294\) −0.221414 + 0.320774i −0.0129131 + 0.0187079i
\(295\) −2.35579 19.4016i −0.137159 1.12961i
\(296\) −0.153297 + 0.404210i −0.00891018 + 0.0234942i
\(297\) −2.52917 + 1.32741i −0.146757 + 0.0770241i
\(298\) 0.296120 + 0.429003i 0.0171538 + 0.0248515i
\(299\) 4.06120 + 18.0532i 0.234866 + 1.04404i
\(300\) −16.6263 + 24.0874i −0.959920 + 1.39068i
\(301\) 1.70637 14.0533i 0.0983538 0.810016i
\(302\) 0.589419 + 0.145279i 0.0339172 + 0.00835985i
\(303\) −17.8758 25.8975i −1.02694 1.48777i
\(304\) 10.3674 9.18467i 0.594608 0.526777i
\(305\) −39.4245 20.6916i −2.25744 1.18480i
\(306\) 0.0711971 + 0.586361i 0.00407007 + 0.0335200i
\(307\) −0.382375 + 3.14914i −0.0218233 + 0.179731i −0.999545 0.0301762i \(-0.990393\pi\)
0.977721 + 0.209907i \(0.0673162\pi\)
\(308\) 5.15336 4.56548i 0.293640 0.260142i
\(309\) 17.6039 25.5037i 1.00145 1.45085i
\(310\) 0.159753 + 1.31568i 0.00907335 + 0.0747257i
\(311\) −0.350654 + 2.88790i −0.0198838 + 0.163758i −0.999268 0.0382472i \(-0.987823\pi\)
0.979385 + 0.202005i \(0.0647457\pi\)
\(312\) 0.850293 + 1.70362i 0.0481384 + 0.0964486i
\(313\) −2.81738 23.2032i −0.159248 1.31152i −0.824908 0.565267i \(-0.808773\pi\)
0.665661 0.746255i \(-0.268150\pi\)
\(314\) −0.621289 + 0.153134i −0.0350613 + 0.00864184i
\(315\) −23.9873 −1.35153
\(316\) 16.6049 0.934096
\(317\) −27.3623 + 6.74421i −1.53682 + 0.378792i −0.914702 0.404130i \(-0.867574\pi\)
−0.622119 + 0.782922i \(0.713728\pi\)
\(318\) 0.138156 0.364289i 0.00774743 0.0204283i
\(319\) 12.7761 0.715323
\(320\) 9.19952 + 24.2571i 0.514269 + 1.35601i
\(321\) 30.0752 + 7.41288i 1.67864 + 0.413747i
\(322\) 0.396120 0.350932i 0.0220749 0.0195567i
\(323\) 10.6691 + 2.62969i 0.593642 + 0.146320i
\(324\) −9.92897 + 8.79630i −0.551610 + 0.488683i
\(325\) −19.3053 + 6.87476i −1.07087 + 0.381343i
\(326\) 0.477630 + 0.423143i 0.0264535 + 0.0234357i
\(327\) 18.0040 + 26.0833i 0.995625 + 1.44241i
\(328\) −1.46508 + 0.361109i −0.0808953 + 0.0199389i
\(329\) −3.68381 + 5.33692i −0.203095 + 0.294234i
\(330\) 0.718138 + 0.177005i 0.0395322 + 0.00974381i
\(331\) 10.3507 + 2.55122i 0.568926 + 0.140228i 0.513278 0.858223i \(-0.328431\pi\)
0.0556487 + 0.998450i \(0.482277\pi\)
\(332\) 2.94734 24.2735i 0.161756 1.33218i
\(333\) 5.76108 + 5.10387i 0.315705 + 0.279690i
\(334\) −0.0784033 0.206732i −0.00429004 0.0113119i
\(335\) 23.9503 12.5701i 1.30855 0.686778i
\(336\) −11.7424 + 17.0118i −0.640602 + 0.928072i
\(337\) −3.26539 −0.177877 −0.0889385 0.996037i \(-0.528347\pi\)
−0.0889385 + 0.996037i \(0.528347\pi\)
\(338\) −0.107183 + 0.657458i −0.00582998 + 0.0357610i
\(339\) −39.7632 −2.15964
\(340\) −11.7227 + 16.9833i −0.635753 + 0.921048i
\(341\) −12.0017 + 6.29896i −0.649927 + 0.341108i
\(342\) 0.230357 + 0.607401i 0.0124563 + 0.0328445i
\(343\) −14.9880 13.2782i −0.809278 0.716958i
\(344\) 0.173685 1.43043i 0.00936448 0.0771235i
\(345\) −41.9917 10.3500i −2.26076 0.557227i
\(346\) −0.104639 0.0257911i −0.00562540 0.00138654i
\(347\) −5.93814 + 8.60289i −0.318776 + 0.461827i −0.949313 0.314332i \(-0.898219\pi\)
0.630537 + 0.776159i \(0.282835\pi\)
\(348\) −37.2932 + 9.19196i −1.99913 + 0.492741i
\(349\) 0.465781 + 0.674800i 0.0249327 + 0.0361212i 0.835252 0.549867i \(-0.185322\pi\)
−0.810319 + 0.585989i \(0.800706\pi\)
\(350\) 0.438688 + 0.388644i 0.0234489 + 0.0207739i
\(351\) 5.98220 0.602902i 0.319306 0.0321805i
\(352\) 0.786983 0.697206i 0.0419464 0.0371612i
\(353\) 7.84864 + 1.93452i 0.417741 + 0.102964i 0.442583 0.896727i \(-0.354062\pi\)
−0.0248421 + 0.999691i \(0.507908\pi\)
\(354\) 0.591263 0.523813i 0.0314253 0.0278404i
\(355\) −30.7344 7.57535i −1.63121 0.402058i
\(356\) 10.7717 + 28.4027i 0.570900 + 1.50534i
\(357\) −16.3992 −0.867938
\(358\) −0.164005 + 0.432445i −0.00866792 + 0.0228554i
\(359\) 26.3709 6.49984i 1.39180 0.343048i 0.529013 0.848613i \(-0.322562\pi\)
0.862788 + 0.505565i \(0.168716\pi\)
\(360\) −2.44157 −0.128682
\(361\) −6.91503 −0.363949
\(362\) 0.830863 0.204789i 0.0436692 0.0107635i
\(363\) −2.50661 20.6438i −0.131563 1.08352i
\(364\) −13.6525 + 4.86174i −0.715585 + 0.254824i
\(365\) −3.36766 + 27.7352i −0.176272 + 1.45173i
\(366\) −0.216912 1.78643i −0.0113382 0.0933784i
\(367\) −7.71738 + 11.1806i −0.402844 + 0.583620i −0.970934 0.239346i \(-0.923067\pi\)
0.568091 + 0.822966i \(0.307682\pi\)
\(368\) −15.3055 + 13.5595i −0.797855 + 0.706837i
\(369\) −3.23821 + 26.6690i −0.168574 + 1.38833i
\(370\) −0.0426082 0.350910i −0.00221509 0.0182429i
\(371\) 5.25500 + 2.75804i 0.272826 + 0.143190i
\(372\) 30.5009 27.0214i 1.58140 1.40099i
\(373\) 5.36910 + 7.77848i 0.278001 + 0.402754i 0.936967 0.349419i \(-0.113621\pi\)
−0.658965 + 0.752173i \(0.729006\pi\)
\(374\) 0.269370 + 0.0663938i 0.0139288 + 0.00343314i
\(375\) 0.694475 5.71951i 0.0358625 0.295354i
\(376\) −0.374961 + 0.543225i −0.0193371 + 0.0280147i
\(377\) −24.9460 10.0471i −1.28478 0.517451i
\(378\) −0.0976806 0.141515i −0.00502415 0.00727874i
\(379\) 13.6734 7.17637i 0.702357 0.368625i −0.0754319 0.997151i \(-0.524034\pi\)
0.777789 + 0.628526i \(0.216341\pi\)
\(380\) −8.04800 + 21.2208i −0.412854 + 1.08861i
\(381\) 3.35478 + 27.6291i 0.171870 + 1.41548i
\(382\) −0.473400 + 0.685839i −0.0242213 + 0.0350906i
\(383\) −4.15529 + 1.02419i −0.212326 + 0.0523336i −0.344044 0.938954i \(-0.611797\pi\)
0.131718 + 0.991287i \(0.457951\pi\)
\(384\) −2.39358 + 3.46770i −0.122147 + 0.176960i
\(385\) −3.99520 + 10.5345i −0.203614 + 0.536887i
\(386\) 0.0507835 0.133905i 0.00258481 0.00681560i
\(387\) −22.7158 11.9222i −1.15471 0.606039i
\(388\) 26.3905 + 13.8508i 1.33977 + 0.703167i
\(389\) 34.8144 8.58098i 1.76516 0.435073i 0.782831 0.622234i \(-0.213775\pi\)
0.982329 + 0.187161i \(0.0599286\pi\)
\(390\) −1.26300 0.910354i −0.0639547 0.0460976i
\(391\) −15.7509 3.88225i −0.796558 0.196334i
\(392\) −0.452349 0.400746i −0.0228471 0.0202407i
\(393\) 4.74892 39.1109i 0.239551 1.97288i
\(394\) 0.356073 + 0.186881i 0.0179387 + 0.00941495i
\(395\) −24.0604 + 12.6279i −1.21061 + 0.635378i
\(396\) −4.42429 11.6659i −0.222329 0.586234i
\(397\) 8.72191 + 7.72694i 0.437740 + 0.387804i 0.853010 0.521894i \(-0.174774\pi\)
−0.415270 + 0.909698i \(0.636313\pi\)
\(398\) −0.0193597 0.159441i −0.000970412 0.00799206i
\(399\) −17.5117 + 4.31625i −0.876683 + 0.216083i
\(400\) −16.9503 15.0166i −0.847513 0.750831i
\(401\) 9.69753 8.59126i 0.484272 0.429027i −0.385332 0.922778i \(-0.625913\pi\)
0.869603 + 0.493751i \(0.164375\pi\)
\(402\) 0.968005 + 0.508048i 0.0482797 + 0.0253391i
\(403\) 28.3874 2.86095i 1.41408 0.142514i
\(404\) 21.5867 11.3296i 1.07398 0.563668i
\(405\) 7.69755 20.2968i 0.382494 1.00855i
\(406\) 0.0927079 + 0.763518i 0.00460102 + 0.0378928i
\(407\) 3.20100 1.68002i 0.158668 0.0832753i
\(408\) −1.66921 −0.0826383
\(409\) 27.1453 14.2469i 1.34225 0.704466i 0.367975 0.929836i \(-0.380051\pi\)
0.974273 + 0.225370i \(0.0723590\pi\)
\(410\) 0.923531 0.818177i 0.0456099 0.0404069i
\(411\) −19.1168 27.6955i −0.942964 1.36612i
\(412\) 17.9706 + 15.9205i 0.885347 + 0.784349i
\(413\) 6.83534 + 9.90269i 0.336345 + 0.487280i
\(414\) −0.340080 0.896717i −0.0167140 0.0440712i
\(415\) 14.1892 + 37.4138i 0.696520 + 1.83657i
\(416\) −2.08491 + 0.742449i −0.102221 + 0.0364016i
\(417\) −12.2416 + 32.2786i −0.599476 + 1.58069i
\(418\) 0.305119 0.0149239
\(419\) −5.47164 14.4275i −0.267307 0.704831i −0.999713 0.0239627i \(-0.992372\pi\)
0.732406 0.680869i \(-0.238398\pi\)
\(420\) 4.08275 33.6245i 0.199218 1.64071i
\(421\) 17.6470 + 9.26187i 0.860063 + 0.451396i 0.836268 0.548321i \(-0.184733\pi\)
0.0237953 + 0.999717i \(0.492425\pi\)
\(422\) 0.317394 + 0.459825i 0.0154505 + 0.0223839i
\(423\) 6.67582 + 9.67159i 0.324589 + 0.470249i
\(424\) 0.534886 + 0.280730i 0.0259764 + 0.0136335i
\(425\) 2.16551 17.8346i 0.105043 0.865105i
\(426\) −0.453672 1.19624i −0.0219805 0.0579578i
\(427\) 27.4122 1.32657
\(428\) −8.50968 + 22.4382i −0.411331 + 1.08459i
\(429\) 4.12481 15.3787i 0.199148 0.742491i
\(430\) 0.417806 + 1.10166i 0.0201484 + 0.0531269i
\(431\) 8.39126 + 22.1259i 0.404193 + 1.06577i 0.970399 + 0.241505i \(0.0776412\pi\)
−0.566207 + 0.824263i \(0.691590\pi\)
\(432\) 3.77423 + 5.46792i 0.181588 + 0.263075i
\(433\) 1.49922 + 1.32819i 0.0720477 + 0.0638287i 0.698378 0.715729i \(-0.253905\pi\)
−0.626330 + 0.779558i \(0.715444\pi\)
\(434\) −0.463524 0.671530i −0.0222499 0.0322345i
\(435\) 47.0475 41.6804i 2.25575 1.99842i
\(436\) −21.7416 + 11.4109i −1.04123 + 0.546482i
\(437\) −17.8413 −0.853463
\(438\) −0.999867 + 0.524771i −0.0477755 + 0.0250745i
\(439\) −1.26677 10.4328i −0.0604596 0.497929i −0.991212 0.132280i \(-0.957770\pi\)
0.930753 0.365649i \(-0.119153\pi\)
\(440\) −0.406656 + 1.07226i −0.0193866 + 0.0511182i
\(441\) −9.52710 + 5.00021i −0.453671 + 0.238105i
\(442\) −0.473748 0.341470i −0.0225339 0.0162421i
\(443\) 9.75928 + 5.12206i 0.463677 + 0.243357i 0.680349 0.732888i \(-0.261828\pi\)
−0.216672 + 0.976244i \(0.569520\pi\)
\(444\) −8.13498 + 7.20697i −0.386069 + 0.342028i
\(445\) −37.2083 32.9637i −1.76384 1.56263i
\(446\) −0.634778 + 0.156459i −0.0300576 + 0.00740854i
\(447\) 3.16137 + 26.0362i 0.149528 + 1.23147i
\(448\) −11.9554 10.5915i −0.564839 0.500404i
\(449\) 0.315101 + 0.830852i 0.0148705 + 0.0392103i 0.942246 0.334922i \(-0.108710\pi\)
−0.927375 + 0.374132i \(0.877941\pi\)
\(450\) 0.940442 0.493582i 0.0443329 0.0232677i
\(451\) 11.1729 + 5.86399i 0.526111 + 0.276124i
\(452\) 3.71324 30.5813i 0.174656 1.43842i
\(453\) 22.8621 + 20.2540i 1.07415 + 0.951617i
\(454\) 0.693693 + 0.170980i 0.0325566 + 0.00802449i
\(455\) 16.0851 17.4273i 0.754083 0.817004i
\(456\) −1.78245 + 0.439335i −0.0834710 + 0.0205737i
\(457\) 4.11746 + 2.16101i 0.192607 + 0.101088i 0.558270 0.829659i \(-0.311465\pi\)
−0.365663 + 0.930747i \(0.619158\pi\)
\(458\) −0.434750 0.228174i −0.0203145 0.0106619i
\(459\) −1.86913 + 4.92848i −0.0872433 + 0.230042i
\(460\) 11.8814 31.3287i 0.553973 1.46071i
\(461\) −1.28579 + 1.86279i −0.0598854 + 0.0867590i −0.851783 0.523896i \(-0.824478\pi\)
0.791897 + 0.610655i \(0.209094\pi\)
\(462\) −0.442133 + 0.108976i −0.0205699 + 0.00507002i
\(463\) 8.23333 11.9280i 0.382635 0.554343i −0.583588 0.812050i \(-0.698352\pi\)
0.966223 + 0.257707i \(0.0829670\pi\)
\(464\) −3.58209 29.5012i −0.166295 1.36956i
\(465\) −23.6461 + 62.3497i −1.09656 + 2.89140i
\(466\) 0.269006 0.141185i 0.0124615 0.00654029i
\(467\) −9.05213 13.1143i −0.418882 0.606856i 0.555565 0.831473i \(-0.312502\pi\)
−0.974447 + 0.224617i \(0.927887\pi\)
\(468\) −0.535388 + 26.2575i −0.0247483 + 1.21376i
\(469\) −9.45993 + 13.7051i −0.436819 + 0.632841i
\(470\) 0.0650570 0.535792i 0.00300085 0.0247143i
\(471\) −31.2593 7.70473i −1.44035 0.355015i
\(472\) 0.695743 + 1.00796i 0.0320242 + 0.0463950i
\(473\) −9.01931 + 7.99041i −0.414708 + 0.367400i
\(474\) −0.972455 0.510384i −0.0446663 0.0234427i
\(475\) −2.38163 19.6145i −0.109277 0.899973i
\(476\) 1.53142 12.6124i 0.0701926 0.578088i
\(477\) 8.05027 7.13192i 0.368597 0.326548i
\(478\) −0.142234 + 0.206062i −0.00650565 + 0.00942507i
\(479\) 2.02795 + 16.7017i 0.0926594 + 0.763118i 0.962781 + 0.270282i \(0.0871169\pi\)
−0.870122 + 0.492837i \(0.835960\pi\)
\(480\) 0.623488 5.13488i 0.0284582 0.234374i
\(481\) −7.57129 + 0.763054i −0.345221 + 0.0347923i
\(482\) 0.108033 + 0.889732i 0.00492077 + 0.0405262i
\(483\) 25.8529 6.37216i 1.17635 0.289943i
\(484\) 16.1109 0.732314
\(485\) −48.7732 −2.21468
\(486\) 1.10075 0.271311i 0.0499312 0.0123069i
\(487\) 1.61906 4.26912i 0.0733668 0.193452i −0.893316 0.449429i \(-0.851628\pi\)
0.966683 + 0.255976i \(0.0823969\pi\)
\(488\) 2.79019 0.126306
\(489\) 11.3848 + 30.0192i 0.514837 + 1.35751i
\(490\) 0.479794 + 0.118259i 0.0216749 + 0.00534238i
\(491\) 18.9793 16.8142i 0.856525 0.758815i −0.115596 0.993296i \(-0.536878\pi\)
0.972121 + 0.234482i \(0.0753393\pi\)
\(492\) −36.8325 9.07840i −1.66054 0.409286i
\(493\) 17.6473 15.6342i 0.794795 0.704127i
\(494\) −0.595761 0.239945i −0.0268046 0.0107957i
\(495\) 15.2827 + 13.5393i 0.686904 + 0.608544i
\(496\) 17.9099 + 25.9469i 0.804177 + 1.16505i
\(497\) 18.9221 4.66389i 0.848774 0.209204i
\(498\) −0.918706 + 1.33098i −0.0411682 + 0.0596424i
\(499\) −2.27085 0.559714i −0.101657 0.0250562i 0.188159 0.982139i \(-0.439748\pi\)
−0.289816 + 0.957082i \(0.593594\pi\)
\(500\) 4.33394 + 1.06822i 0.193820 + 0.0477723i
\(501\) 1.34090 11.0433i 0.0599068 0.493377i
\(502\) 0.573093 + 0.507716i 0.0255784 + 0.0226605i
\(503\) 11.9929 + 31.6226i 0.534735 + 1.40998i 0.881570 + 0.472054i \(0.156487\pi\)
−0.346835 + 0.937926i \(0.612744\pi\)
\(504\) 1.33101 0.698568i 0.0592879 0.0311167i
\(505\) −22.6631 + 32.8332i −1.00849 + 1.46106i
\(506\) −0.450453 −0.0200251
\(507\) −20.1477 + 26.7840i −0.894791 + 1.18952i
\(508\) −21.5624 −0.956677
\(509\) −3.33365 + 4.82963i −0.147761 + 0.214069i −0.889875 0.456205i \(-0.849208\pi\)
0.742113 + 0.670275i \(0.233824\pi\)
\(510\) 1.20855 0.634296i 0.0535155 0.0280871i
\(511\) −6.09957 16.0833i −0.269829 0.711481i
\(512\) −3.05228 2.70409i −0.134893 0.119505i
\(513\) −0.698757 + 5.75478i −0.0308509 + 0.254080i
\(514\) −0.270250 0.0666107i −0.0119202 0.00293807i
\(515\) −38.1468 9.40235i −1.68095 0.414317i
\(516\) 20.5784 29.8130i 0.905916 1.31245i
\(517\) 5.35936 1.32096i 0.235705 0.0580960i
\(518\) 0.123628 + 0.179106i 0.00543190 + 0.00786947i
\(519\) −4.05866 3.59566i −0.178155 0.157832i
\(520\) 1.63724 1.77386i 0.0717979 0.0777888i
\(521\) 17.3790 15.3964i 0.761388 0.674531i −0.190256 0.981735i \(-0.560932\pi\)
0.951644 + 0.307204i \(0.0993934\pi\)
\(522\) 1.35331 + 0.333561i 0.0592328 + 0.0145996i
\(523\) 6.41277 5.68122i 0.280411 0.248423i −0.511180 0.859474i \(-0.670791\pi\)
0.791591 + 0.611051i \(0.209253\pi\)
\(524\) 29.6361 + 7.30465i 1.29466 + 0.319105i
\(525\) 10.4566 + 27.5717i 0.456362 + 1.20333i
\(526\) 0.396516 0.0172889
\(527\) −8.86957 + 23.3871i −0.386364 + 1.01876i
\(528\) 17.0834 4.21067i 0.743458 0.183246i
\(529\) 3.33937 0.145190
\(530\) −0.493947 −0.0214557
\(531\) 21.1720 5.21843i 0.918787 0.226461i
\(532\) −1.68425 13.8711i −0.0730217 0.601388i
\(533\) −17.2042 20.2361i −0.745198 0.876522i
\(534\) 0.242174 1.99448i 0.0104799 0.0863096i
\(535\) −4.73358 38.9845i −0.204650 1.68545i
\(536\) −0.962890 + 1.39499i −0.0415905 + 0.0602542i
\(537\) −17.4179 + 15.4309i −0.751639 + 0.665894i
\(538\) 0.111738 0.920246i 0.00481737 0.0396746i
\(539\) 0.609153 + 5.01682i 0.0262381 + 0.216090i
\(540\) −9.63988 5.05940i −0.414834 0.217722i
\(541\) −4.73982 + 4.19911i −0.203781 + 0.180534i −0.758841 0.651276i \(-0.774234\pi\)
0.555060 + 0.831810i \(0.312695\pi\)
\(542\) 0.490498 + 0.710609i 0.0210687 + 0.0305233i
\(543\) 41.8038 + 10.3037i 1.79397 + 0.442174i
\(544\) 0.233868 1.92607i 0.0100270 0.0825797i
\(545\) 22.8257 33.0687i 0.977745 1.41651i
\(546\) 0.948986 + 0.134912i 0.0406129 + 0.00577368i
\(547\) 6.06986 + 8.79371i 0.259528 + 0.375992i 0.930988 0.365049i \(-0.118948\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(548\) 23.0854 12.1162i 0.986161 0.517577i
\(549\) 17.6155 46.4484i 0.751813 1.98237i
\(550\) −0.0601309 0.495223i −0.00256399 0.0211164i
\(551\) 14.7296 21.3395i 0.627503 0.909095i
\(552\) 2.63147 0.648598i 0.112003 0.0276062i
\(553\) 9.50341 13.7681i 0.404126 0.585478i
\(554\) −0.166191 + 0.438210i −0.00706079 + 0.0186178i
\(555\) 6.30674 16.6295i 0.267706 0.705883i
\(556\) −23.6818 12.4292i −1.00433 0.527115i
\(557\) −25.0788 13.1624i −1.06262 0.557707i −0.159548 0.987190i \(-0.551004\pi\)
−0.903075 + 0.429483i \(0.858696\pi\)
\(558\) −1.43574 + 0.353877i −0.0607796 + 0.0149808i
\(559\) 23.8943 8.50892i 1.01062 0.359889i
\(560\) 25.4453 + 6.27170i 1.07526 + 0.265028i
\(561\) 10.4482 + 9.25629i 0.441123 + 0.390801i
\(562\) −0.0494036 + 0.406875i −0.00208396 + 0.0171630i
\(563\) −26.4346 13.8739i −1.11408 0.584716i −0.195802 0.980643i \(-0.562731\pi\)
−0.918282 + 0.395927i \(0.870423\pi\)
\(564\) −14.6935 + 7.71177i −0.618710 + 0.324724i
\(565\) 17.8764 + 47.1362i 0.752066 + 1.98303i
\(566\) −0.207815 0.184108i −0.00873511 0.00773863i
\(567\) 1.61091 + 13.2671i 0.0676520 + 0.557164i
\(568\) 1.92601 0.474719i 0.0808137 0.0199188i
\(569\) −2.88930 2.55970i −0.121126 0.107308i 0.600386 0.799711i \(-0.295014\pi\)
−0.721511 + 0.692403i \(0.756552\pi\)
\(570\) 1.12359 0.995416i 0.0470621 0.0416934i
\(571\) −41.5409 21.8024i −1.73843 0.912400i −0.957812 0.287395i \(-0.907211\pi\)
−0.780621 0.625005i \(-0.785097\pi\)
\(572\) 11.4424 + 4.60846i 0.478429 + 0.192689i
\(573\) −37.1265 + 19.4855i −1.55098 + 0.814018i
\(574\) −0.269366 + 0.710261i −0.0112431 + 0.0296457i
\(575\) 3.51604 + 28.9572i 0.146629 + 1.20760i
\(576\) −25.6295 + 13.4514i −1.06789 + 0.560474i
\(577\) 47.4624 1.97589 0.987943 0.154819i \(-0.0494794\pi\)
0.987943 + 0.154819i \(0.0494794\pi\)
\(578\) −0.318001 + 0.166900i −0.0132271 + 0.00694211i
\(579\) 5.39340 4.77814i 0.224142 0.198573i
\(580\) 27.6624 + 40.0758i 1.14862 + 1.66406i
\(581\) −18.4398 16.3362i −0.765011 0.677741i
\(582\) −1.11981 1.62233i −0.0464177 0.0672477i
\(583\) −1.79131 4.72330i −0.0741885 0.195619i
\(584\) −0.620852 1.63705i −0.0256910 0.0677417i
\(585\) −19.1929 38.4544i −0.793530 1.58989i
\(586\) −0.452860 + 1.19409i −0.0187075 + 0.0493275i
\(587\) −4.60901 −0.190234 −0.0951170 0.995466i \(-0.530323\pi\)
−0.0951170 + 0.995466i \(0.530323\pi\)
\(588\) −5.38755 14.2058i −0.222179 0.585837i
\(589\) −3.31581 + 27.3082i −0.136626 + 1.12521i
\(590\) −0.886756 0.465405i −0.0365072 0.0191604i
\(591\) 11.4936 + 16.6514i 0.472784 + 0.684945i
\(592\) −4.77680 6.92039i −0.196325 0.284426i
\(593\) −7.13185 3.74308i −0.292870 0.153710i 0.311889 0.950119i \(-0.399038\pi\)
−0.604759 + 0.796409i \(0.706731\pi\)
\(594\) −0.0176421 + 0.145296i −0.000723864 + 0.00596156i
\(595\) 7.37262 + 19.4400i 0.302248 + 0.796962i
\(596\) −20.3193 −0.832311
\(597\) 2.86556 7.55586i 0.117280 0.309241i
\(598\) 0.879533 + 0.354236i 0.0359668 + 0.0144858i
\(599\) 8.26948 + 21.8048i 0.337882 + 0.890921i 0.991024 + 0.133686i \(0.0426813\pi\)
−0.653142 + 0.757236i \(0.726549\pi\)
\(600\) 1.06433 + 2.80642i 0.0434513 + 0.114572i
\(601\) 12.2836 + 17.7959i 0.501060 + 0.725910i 0.989154 0.146880i \(-0.0469233\pi\)
−0.488095 + 0.872791i \(0.662308\pi\)
\(602\) −0.542967 0.481027i −0.0221297 0.0196052i
\(603\) 17.1433 + 24.8364i 0.698130 + 1.01142i
\(604\) −17.7120 + 15.6915i −0.720692 + 0.638477i
\(605\) −23.3447 + 12.2523i −0.949098 + 0.498125i
\(606\) −1.61245 −0.0655015
\(607\) −11.3659 + 5.96531i −0.461329 + 0.242124i −0.679342 0.733822i \(-0.737735\pi\)
0.218013 + 0.975946i \(0.430043\pi\)
\(608\) −0.257207 2.11829i −0.0104311 0.0859081i
\(609\) −13.7224 + 36.1829i −0.556058 + 1.46620i
\(610\) −2.02016 + 1.06026i −0.0817940 + 0.0429288i
\(611\) −11.5032 1.63534i −0.465371 0.0661590i
\(612\) −20.3868 10.6998i −0.824088 0.432515i
\(613\) 3.76904 3.33908i 0.152230 0.134864i −0.583570 0.812063i \(-0.698345\pi\)
0.735800 + 0.677199i \(0.236806\pi\)
\(614\) 0.121672 + 0.107792i 0.00491026 + 0.00435011i
\(615\) 60.2744 14.8563i 2.43050 0.599064i
\(616\) −0.0851035 0.700890i −0.00342892 0.0282397i
\(617\) −5.67750 5.02982i −0.228567 0.202493i 0.541064 0.840981i \(-0.318022\pi\)
−0.769632 + 0.638488i \(0.779560\pi\)
\(618\) −0.563088 1.48474i −0.0226507 0.0597250i
\(619\) −21.5490 + 11.3098i −0.866127 + 0.454578i −0.838412 0.545038i \(-0.816515\pi\)
−0.0277150 + 0.999616i \(0.508823\pi\)
\(620\) −45.7441 24.0084i −1.83713 0.964199i
\(621\) 1.03159 8.49588i 0.0413962 0.340928i
\(622\) 0.111578 + 0.0988494i 0.00447387 + 0.00396350i
\(623\) 29.7153 + 7.32417i 1.19052 + 0.293436i
\(624\) −36.6674 5.21278i −1.46787 0.208678i
\(625\) 20.5005 5.05291i 0.820019 0.202117i
\(626\) −1.06051 0.556596i −0.0423863 0.0222461i
\(627\) 13.5932 + 7.13429i 0.542862 + 0.284916i
\(628\) 8.84472 23.3216i 0.352943 0.930633i
\(629\) 2.36563 6.23766i 0.0943239 0.248712i
\(630\) −0.698230 + 1.01156i −0.0278182 + 0.0403016i
\(631\) 39.0147 9.61626i 1.55315 0.382817i 0.632927 0.774211i \(-0.281853\pi\)
0.920223 + 0.391394i \(0.128007\pi\)
\(632\) 0.967316 1.40140i 0.0384778 0.0557447i
\(633\) 3.38849 + 27.9067i 0.134680 + 1.10919i
\(634\) −0.512065 + 1.35020i −0.0203367 + 0.0536234i
\(635\) 31.2439 16.3981i 1.23988 0.650738i
\(636\) 8.62707 + 12.4985i 0.342086 + 0.495597i
\(637\) 2.75582 10.2746i 0.109190 0.407096i
\(638\) 0.371891 0.538777i 0.0147233 0.0213304i
\(639\) 4.25700 35.0595i 0.168404 1.38693i
\(640\) 5.18678 + 1.27843i 0.205025 + 0.0505342i
\(641\) 2.27226 + 3.29194i 0.0897491 + 0.130024i 0.865287 0.501278i \(-0.167136\pi\)
−0.775537 + 0.631302i \(0.782521\pi\)
\(642\) 1.18805 1.05252i 0.0468885 0.0415396i
\(643\) −15.2888 8.02419i −0.602932 0.316443i 0.135493 0.990778i \(-0.456738\pi\)
−0.738426 + 0.674335i \(0.764430\pi\)
\(644\) 2.48650 + 20.4781i 0.0979817 + 0.806951i
\(645\) −7.14555 + 58.8489i −0.281356 + 2.31717i
\(646\) 0.421455 0.373376i 0.0165819 0.0146903i
\(647\) −12.9884 + 18.8170i −0.510629 + 0.739773i −0.990492 0.137570i \(-0.956071\pi\)
0.479863 + 0.877343i \(0.340686\pi\)
\(648\) 0.163969 + 1.35040i 0.00644130 + 0.0530489i
\(649\) 1.23453 10.1673i 0.0484595 0.399100i
\(650\) −0.272034 + 1.01423i −0.0106700 + 0.0397816i
\(651\) −4.94857 40.7552i −0.193950 1.59732i
\(652\) −24.1505 + 5.95256i −0.945806 + 0.233120i
\(653\) −0.299520 −0.0117211 −0.00586056 0.999983i \(-0.501865\pi\)
−0.00586056 + 0.999983i \(0.501865\pi\)
\(654\) 1.62402 0.0635043
\(655\) −48.4979 + 11.9537i −1.89497 + 0.467068i
\(656\) 10.4079 27.4434i 0.406361 1.07149i
\(657\) −31.1718 −1.21613
\(658\) 0.117832 + 0.310698i 0.00459358 + 0.0121123i
\(659\) −4.53077 1.11674i −0.176494 0.0435018i 0.150078 0.988674i \(-0.452047\pi\)
−0.326572 + 0.945172i \(0.605894\pi\)
\(660\) −21.5800 + 19.1182i −0.840001 + 0.744176i
\(661\) −31.5846 7.78490i −1.22850 0.302798i −0.428910 0.903347i \(-0.641102\pi\)
−0.799588 + 0.600549i \(0.794949\pi\)
\(662\) 0.408879 0.362235i 0.0158915 0.0140787i
\(663\) −13.1215 26.2898i −0.509597 1.02101i
\(664\) −1.87692 1.66280i −0.0728385 0.0645292i
\(665\) 12.9894 + 18.8183i 0.503706 + 0.729744i
\(666\) 0.382930 0.0943837i 0.0148382 0.00365730i
\(667\) −21.7456 + 31.5039i −0.841993 + 1.21984i
\(668\) 8.36800 + 2.06253i 0.323768 + 0.0798016i
\(669\) −31.9381 7.87202i −1.23480 0.304350i
\(670\) 0.167064 1.37590i 0.00645426 0.0531556i
\(671\) −17.4648 15.4724i −0.674220 0.597307i
\(672\) 1.12927 + 2.97765i 0.0435626 + 0.114865i
\(673\) −34.7535 + 18.2400i −1.33965 + 0.703102i −0.973764 0.227558i \(-0.926926\pi\)
−0.365884 + 0.930660i \(0.619233\pi\)
\(674\) −0.0950502 + 0.137704i −0.00366120 + 0.00530416i
\(675\) 9.47798 0.364807
\(676\) −18.7177 17.9965i −0.719912 0.692173i
\(677\) 11.9279 0.458426 0.229213 0.973376i \(-0.426385\pi\)
0.229213 + 0.973376i \(0.426385\pi\)
\(678\) −1.15744 + 1.67684i −0.0444513 + 0.0643988i
\(679\) 26.5885 13.9547i 1.02037 0.535533i
\(680\) 0.750431 + 1.97872i 0.0287777 + 0.0758806i
\(681\) 26.9066 + 23.8372i 1.03106 + 0.913442i
\(682\) −0.0837171 + 0.689472i −0.00320569 + 0.0264013i
\(683\) −16.6921 4.11423i −0.638705 0.157427i −0.0933519 0.995633i \(-0.529758\pi\)
−0.545353 + 0.838207i \(0.683604\pi\)
\(684\) −24.5861 6.05992i −0.940071 0.231707i
\(685\) −24.2365 + 35.1127i −0.926030 + 1.34159i
\(686\) −0.996231 + 0.245549i −0.0380363 + 0.00937510i
\(687\) −14.0332 20.3306i −0.535400 0.775661i
\(688\) 20.9794 + 18.5862i 0.799833 + 0.708590i
\(689\) −0.216768 + 10.6312i −0.00825821 + 0.405015i
\(690\) −1.65878 + 1.46955i −0.0631487 + 0.0559448i
\(691\) −18.0230 4.44227i −0.685626 0.168992i −0.118910 0.992905i \(-0.537940\pi\)
−0.566716 + 0.823913i \(0.691786\pi\)
\(692\) 3.14438 2.78568i 0.119532 0.105896i
\(693\) −12.2050 3.00827i −0.463631 0.114275i
\(694\) 0.189941 + 0.500832i 0.00721005 + 0.0190113i
\(695\) 43.7673 1.66019
\(696\) −1.39675 + 3.68292i −0.0529435 + 0.139601i
\(697\) 22.6087 5.57254i 0.856364 0.211075i
\(698\) 0.0420150 0.00159029
\(699\) 15.2856 0.578154
\(700\) −22.1815 + 5.46724i −0.838381 + 0.206642i
\(701\) −0.980348 8.07389i −0.0370272 0.304947i −0.999443 0.0333670i \(-0.989377\pi\)
0.962416 0.271580i \(-0.0875461\pi\)
\(702\) 0.148707 0.269824i 0.00561260 0.0101838i
\(703\) 0.884371 7.28345i 0.0333547 0.274701i
\(704\) 1.63872 + 13.4961i 0.0617616 + 0.508653i
\(705\) 15.4262 22.3487i 0.580984 0.841701i
\(706\) 0.310041 0.274673i 0.0116686 0.0103374i
\(707\) 2.96064 24.3831i 0.111346 0.917020i
\(708\) 3.71143 + 30.5664i 0.139484 + 1.14875i
\(709\) −15.8731 8.33084i −0.596126 0.312871i 0.139539 0.990217i \(-0.455438\pi\)
−0.735665 + 0.677345i \(0.763130\pi\)
\(710\) −1.21409 + 1.07559i −0.0455639 + 0.0403661i
\(711\) −17.2221 24.9506i −0.645880 0.935719i
\(712\) 3.02461 + 0.745499i 0.113352 + 0.0279387i
\(713\) 4.89519 40.3155i 0.183326 1.50983i
\(714\) −0.477354 + 0.691567i −0.0178645 + 0.0258812i
\(715\) −20.0847 + 2.02419i −0.751124 + 0.0757003i
\(716\) −10.2412 14.8369i −0.382730 0.554480i
\(717\) −11.1548 + 5.85447i −0.416582 + 0.218639i
\(718\) 0.493511 1.30128i 0.0184177 0.0485634i
\(719\) 4.79936 + 39.5263i 0.178986 + 1.47408i 0.754506 + 0.656293i \(0.227877\pi\)
−0.575520 + 0.817788i \(0.695200\pi\)
\(720\) 26.9786 39.0852i 1.00543 1.45662i
\(721\) 23.4857 5.78871i 0.874654 0.215583i
\(722\) −0.201285 + 0.291612i −0.00749106 + 0.0108527i
\(723\) −15.9907 + 42.1641i −0.594702 + 1.56810i
\(724\) −11.8282 + 31.1885i −0.439593 + 1.15911i
\(725\) −37.5379 19.7014i −1.39412 0.731691i
\(726\) −0.943528 0.495202i −0.0350176 0.0183787i
\(727\) −41.7957 + 10.3017i −1.55011 + 0.382069i −0.919203 0.393785i \(-0.871165\pi\)
−0.630912 + 0.775854i \(0.717319\pi\)
\(728\) −0.385010 + 1.43545i −0.0142694 + 0.0532013i
\(729\) 36.0384 + 8.88266i 1.33475 + 0.328987i
\(730\) 1.07159 + 0.949344i 0.0396612 + 0.0351368i
\(731\) −2.68026 + 22.0740i −0.0991332 + 0.816435i
\(732\) 62.1114 + 32.5986i 2.29570 + 1.20488i
\(733\) 4.78419 2.51094i 0.176708 0.0927436i −0.374050 0.927409i \(-0.622031\pi\)
0.550758 + 0.834665i \(0.314339\pi\)
\(734\) 0.246852 + 0.650896i 0.00911148 + 0.0240250i
\(735\) 18.6100 + 16.4870i 0.686440 + 0.608132i
\(736\) 0.379719 + 3.12727i 0.0139966 + 0.115273i
\(737\) 13.7627 3.39220i 0.506955 0.124953i
\(738\) 1.03039 + 0.912850i 0.0379294 + 0.0336025i
\(739\) 33.4939 29.6730i 1.23209 1.09154i 0.239393 0.970923i \(-0.423051\pi\)
0.992699 0.120616i \(-0.0384870\pi\)
\(740\) 12.2006 + 6.40335i 0.448502 + 0.235392i
\(741\) −20.9311 24.6198i −0.768924 0.904430i
\(742\) 0.269273 0.141325i 0.00988533 0.00518822i
\(743\) −5.42588 + 14.3069i −0.199056 + 0.524868i −0.996960 0.0779170i \(-0.975173\pi\)
0.797904 + 0.602785i \(0.205942\pi\)
\(744\) −0.503696 4.14831i −0.0184664 0.152085i
\(745\) 29.4427 15.4527i 1.07870 0.566143i
\(746\) 0.484310 0.0177319
\(747\) −39.5305 + 20.7472i −1.44634 + 0.759100i
\(748\) −8.09457 + 7.17117i −0.295967 + 0.262204i
\(749\) 13.7345 + 19.8979i 0.501848 + 0.727053i
\(750\) −0.220981 0.195772i −0.00806910 0.00714860i
\(751\) −22.7411 32.9462i −0.829836 1.20223i −0.977027 0.213117i \(-0.931638\pi\)
0.147190 0.989108i \(-0.452977\pi\)
\(752\) −4.55287 12.0049i −0.166026 0.437775i
\(753\) 13.6602 + 36.0191i 0.497807 + 1.31261i
\(754\) −1.14983 + 0.759536i −0.0418743 + 0.0276607i
\(755\) 13.7314 36.2068i 0.499738 1.31770i
\(756\) 6.70270 0.243775
\(757\) −8.55795 22.5655i −0.311044 0.820156i −0.995815 0.0913969i \(-0.970867\pi\)
0.684771 0.728759i \(-0.259902\pi\)
\(758\) 0.0953784 0.785512i 0.00346430 0.0285311i
\(759\) −20.0680 10.5325i −0.728420 0.382305i
\(760\) 1.32214 + 1.91545i 0.0479590 + 0.0694806i
\(761\) −3.73132 5.40575i −0.135260 0.195958i 0.749501 0.662004i \(-0.230294\pi\)
−0.884761 + 0.466046i \(0.845678\pi\)
\(762\) 1.26279 + 0.662764i 0.0457461 + 0.0240094i
\(763\) −2.98188 + 24.5580i −0.107951 + 0.889060i
\(764\) −11.5190 30.3731i −0.416743 1.09886i
\(765\) 37.6777 1.36224
\(766\) −0.0777631 + 0.205044i −0.00280969 + 0.00740856i
\(767\) −10.4060 + 18.8813i −0.375739