Properties

Label 169.2.g.a.14.7
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.7
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0917982 + 0.132993i) q^{2} +(-0.752776 + 0.395087i) q^{3} +(0.699950 + 1.84562i) q^{4} +(1.16867 + 1.03535i) q^{5} +(0.0165598 - 0.136382i) q^{6} +(-2.31458 - 0.570492i) q^{7} +(-0.623512 - 0.153682i) q^{8} +(-1.29362 + 1.87413i) q^{9} +O(q^{10})\) \(q+(-0.0917982 + 0.132993i) q^{2} +(-0.752776 + 0.395087i) q^{3} +(0.699950 + 1.84562i) q^{4} +(1.16867 + 1.03535i) q^{5} +(0.0165598 - 0.136382i) q^{6} +(-2.31458 - 0.570492i) q^{7} +(-0.623512 - 0.153682i) q^{8} +(-1.29362 + 1.87413i) q^{9} +(-0.244976 + 0.0603811i) q^{10} +(-0.0306707 - 0.0444342i) q^{11} +(-1.25608 - 1.11279i) q^{12} +(3.36948 + 1.28319i) q^{13} +(0.288345 - 0.255451i) q^{14} +(-1.28880 - 0.317661i) q^{15} +(-2.87727 + 2.54904i) q^{16} +(4.46417 + 1.10032i) q^{17} +(-0.130493 - 0.344083i) q^{18} -1.36974 q^{19} +(-1.09285 + 2.88161i) q^{20} +(1.96775 - 0.485007i) q^{21} +0.00872495 q^{22} +4.45818 q^{23} +(0.530083 - 0.130654i) q^{24} +(-0.308847 - 2.54358i) q^{25} +(-0.479968 + 0.330322i) q^{26} +(0.540785 - 4.45376i) q^{27} +(-0.567178 - 4.67113i) q^{28} +(-0.470864 + 0.682164i) q^{29} +(0.160556 - 0.142240i) q^{30} +(0.799878 - 6.58759i) q^{31} +(-0.229686 - 1.89163i) q^{32} +(0.0406436 + 0.0213314i) q^{33} +(-0.556137 + 0.492694i) q^{34} +(-2.11431 - 3.06311i) q^{35} +(-4.36438 - 1.07572i) q^{36} +(0.430050 - 3.54178i) q^{37} +(0.125740 - 0.182165i) q^{38} +(-3.04344 + 0.365284i) q^{39} +(-0.569565 - 0.825157i) q^{40} +(1.52303 - 0.799348i) q^{41} +(-0.116134 + 0.306219i) q^{42} +(0.462084 + 3.80560i) q^{43} +(0.0605405 - 0.0877081i) q^{44} +(-3.45219 + 0.850888i) q^{45} +(-0.409253 + 0.592905i) q^{46} +(1.57797 - 4.16077i) q^{47} +(1.15885 - 3.05563i) q^{48} +(-1.16640 - 0.612171i) q^{49} +(0.366629 + 0.192422i) q^{50} +(-3.79524 + 0.935443i) q^{51} +(-0.00981156 + 7.11694i) q^{52} +(13.0840 + 3.22491i) q^{53} +(0.542675 + 0.480768i) q^{54} +(0.0101611 - 0.0836838i) q^{55} +(1.35549 + 0.711417i) q^{56} +(1.03111 - 0.541167i) q^{57} +(-0.0474983 - 0.125243i) q^{58} +(6.73868 + 5.96995i) q^{59} +(-0.315816 - 2.60098i) q^{60} +(-10.2084 + 2.51616i) q^{61} +(0.802674 + 0.711107i) q^{62} +(4.06335 - 3.59981i) q^{63} +(-6.53472 - 3.42969i) q^{64} +(2.60926 + 4.98822i) q^{65} +(-0.00656793 + 0.00344712i) q^{66} +(3.90570 - 10.2985i) q^{67} +(1.09393 + 9.00931i) q^{68} +(-3.35601 + 1.76137i) q^{69} +0.601462 q^{70} +(-7.61139 + 3.99477i) q^{71} +(1.09461 - 0.969736i) q^{72} +(1.95987 + 2.83936i) q^{73} +(0.431553 + 0.382323i) q^{74} +(1.23743 + 1.79273i) q^{75} +(-0.958749 - 2.52801i) q^{76} +(0.0456404 + 0.120344i) q^{77} +(0.230802 - 0.438288i) q^{78} +(-0.301779 + 0.795725i) q^{79} -6.00173 q^{80} +(-1.07002 - 2.82141i) q^{81} +(-0.0335040 + 0.275931i) q^{82} +(-5.58265 - 2.93000i) q^{83} +(2.27246 + 3.29223i) q^{84} +(4.07792 + 5.90789i) q^{85} +(-0.548536 - 0.287894i) q^{86} +(0.0849406 - 0.699549i) q^{87} +(0.0122948 + 0.0324188i) q^{88} +8.99614 q^{89} +(0.203743 - 0.537226i) q^{90} +(-7.06687 - 4.89231i) q^{91} +(3.12050 + 8.22808i) q^{92} +(2.00054 + 5.27500i) q^{93} +(0.408497 + 0.591809i) q^{94} +(-1.60077 - 1.41816i) q^{95} +(0.920263 + 1.33323i) q^{96} +(-11.2311 + 9.94984i) q^{97} +(0.188487 - 0.0989258i) q^{98} +0.122952 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0917982 + 0.132993i −0.0649111 + 0.0940400i −0.854095 0.520117i \(-0.825888\pi\)
0.789184 + 0.614157i \(0.210504\pi\)
\(3\) −0.752776 + 0.395087i −0.434615 + 0.228104i −0.667818 0.744324i \(-0.732772\pi\)
0.233203 + 0.972428i \(0.425079\pi\)
\(4\) 0.699950 + 1.84562i 0.349975 + 0.922808i
\(5\) 1.16867 + 1.03535i 0.522645 + 0.463023i 0.882719 0.469901i \(-0.155710\pi\)
−0.360075 + 0.932923i \(0.617249\pi\)
\(6\) 0.0165598 0.136382i 0.00676050 0.0556777i
\(7\) −2.31458 0.570492i −0.874827 0.215626i −0.223759 0.974645i \(-0.571833\pi\)
−0.651068 + 0.759019i \(0.725679\pi\)
\(8\) −0.623512 0.153682i −0.220445 0.0543348i
\(9\) −1.29362 + 1.87413i −0.431205 + 0.624709i
\(10\) −0.244976 + 0.0603811i −0.0774681 + 0.0190942i
\(11\) −0.0306707 0.0444342i −0.00924757 0.0133974i 0.818333 0.574745i \(-0.194899\pi\)
−0.827580 + 0.561347i \(0.810283\pi\)
\(12\) −1.25608 1.11279i −0.362600 0.321236i
\(13\) 3.36948 + 1.28319i 0.934526 + 0.355894i
\(14\) 0.288345 0.255451i 0.0770635 0.0682723i
\(15\) −1.28880 0.317661i −0.332767 0.0820196i
\(16\) −2.87727 + 2.54904i −0.719318 + 0.637261i
\(17\) 4.46417 + 1.10032i 1.08272 + 0.266867i 0.740024 0.672580i \(-0.234814\pi\)
0.342696 + 0.939446i \(0.388660\pi\)
\(18\) −0.130493 0.344083i −0.0307576 0.0811011i
\(19\) −1.36974 −0.314240 −0.157120 0.987580i \(-0.550221\pi\)
−0.157120 + 0.987580i \(0.550221\pi\)
\(20\) −1.09285 + 2.88161i −0.244368 + 0.644347i
\(21\) 1.96775 0.485007i 0.429398 0.105837i
\(22\) 0.00872495 0.00186016
\(23\) 4.45818 0.929594 0.464797 0.885417i \(-0.346127\pi\)
0.464797 + 0.885417i \(0.346127\pi\)
\(24\) 0.530083 0.130654i 0.108203 0.0266696i
\(25\) −0.308847 2.54358i −0.0617693 0.508716i
\(26\) −0.479968 + 0.330322i −0.0941294 + 0.0647814i
\(27\) 0.540785 4.45376i 0.104074 0.857127i
\(28\) −0.567178 4.67113i −0.107187 0.882761i
\(29\) −0.470864 + 0.682164i −0.0874372 + 0.126675i −0.864262 0.503043i \(-0.832214\pi\)
0.776824 + 0.629717i \(0.216829\pi\)
\(30\) 0.160556 0.142240i 0.0293134 0.0259694i
\(31\) 0.799878 6.58759i 0.143662 1.18317i −0.725352 0.688378i \(-0.758323\pi\)
0.869014 0.494787i \(-0.164754\pi\)
\(32\) −0.229686 1.89163i −0.0406031 0.334397i
\(33\) 0.0406436 + 0.0213314i 0.00707514 + 0.00371332i
\(34\) −0.556137 + 0.492694i −0.0953767 + 0.0844964i
\(35\) −2.11431 3.06311i −0.357384 0.517760i
\(36\) −4.36438 1.07572i −0.727397 0.179287i
\(37\) 0.430050 3.54178i 0.0706998 0.582265i −0.913709 0.406369i \(-0.866795\pi\)
0.984409 0.175896i \(-0.0562822\pi\)
\(38\) 0.125740 0.182165i 0.0203977 0.0295511i
\(39\) −3.04344 + 0.365284i −0.487340 + 0.0584922i
\(40\) −0.569565 0.825157i −0.0900561 0.130469i
\(41\) 1.52303 0.799348i 0.237857 0.124837i −0.341584 0.939851i \(-0.610963\pi\)
0.579441 + 0.815014i \(0.303271\pi\)
\(42\) −0.116134 + 0.306219i −0.0179198 + 0.0472506i
\(43\) 0.462084 + 3.80560i 0.0704671 + 0.580349i 0.984586 + 0.174902i \(0.0559609\pi\)
−0.914119 + 0.405447i \(0.867116\pi\)
\(44\) 0.0605405 0.0877081i 0.00912683 0.0132225i
\(45\) −3.45219 + 0.850888i −0.514622 + 0.126843i
\(46\) −0.409253 + 0.592905i −0.0603410 + 0.0874191i
\(47\) 1.57797 4.16077i 0.230171 0.606910i −0.769319 0.638865i \(-0.779404\pi\)
0.999489 + 0.0319551i \(0.0101734\pi\)
\(48\) 1.15885 3.05563i 0.167265 0.441043i
\(49\) −1.16640 0.612171i −0.166628 0.0874531i
\(50\) 0.366629 + 0.192422i 0.0518492 + 0.0272126i
\(51\) −3.79524 + 0.935443i −0.531440 + 0.130988i
\(52\) −0.00981156 + 7.11694i −0.00136062 + 0.986942i
\(53\) 13.0840 + 3.22491i 1.79722 + 0.442975i 0.989249 0.146244i \(-0.0467184\pi\)
0.807973 + 0.589219i \(0.200565\pi\)
\(54\) 0.542675 + 0.480768i 0.0738487 + 0.0654242i
\(55\) 0.0101611 0.0836838i 0.00137012 0.0112839i
\(56\) 1.35549 + 0.711417i 0.181135 + 0.0950671i
\(57\) 1.03111 0.541167i 0.136573 0.0716793i
\(58\) −0.0474983 0.125243i −0.00623684 0.0164452i
\(59\) 6.73868 + 5.96995i 0.877301 + 0.777221i 0.975971 0.217899i \(-0.0699203\pi\)
−0.0986699 + 0.995120i \(0.531459\pi\)
\(60\) −0.315816 2.60098i −0.0407716 0.335784i
\(61\) −10.2084 + 2.51616i −1.30706 + 0.322161i −0.830518 0.556992i \(-0.811955\pi\)
−0.476540 + 0.879153i \(0.658109\pi\)
\(62\) 0.802674 + 0.711107i 0.101940 + 0.0903107i
\(63\) 4.06335 3.59981i 0.511933 0.453533i
\(64\) −6.53472 3.42969i −0.816841 0.428711i
\(65\) 2.60926 + 4.98822i 0.323638 + 0.618713i
\(66\) −0.00656793 + 0.00344712i −0.000808456 + 0.000424311i
\(67\) 3.90570 10.2985i 0.477157 1.25816i −0.453168 0.891425i \(-0.649706\pi\)
0.930325 0.366735i \(-0.119524\pi\)
\(68\) 1.09393 + 9.00931i 0.132658 + 1.09254i
\(69\) −3.35601 + 1.76137i −0.404016 + 0.212044i
\(70\) 0.601462 0.0718884
\(71\) −7.61139 + 3.99477i −0.903306 + 0.474092i −0.851374 0.524559i \(-0.824230\pi\)
−0.0519320 + 0.998651i \(0.516538\pi\)
\(72\) 1.09461 0.969736i 0.129000 0.114284i
\(73\) 1.95987 + 2.83936i 0.229385 + 0.332322i 0.920728 0.390205i \(-0.127596\pi\)
−0.691343 + 0.722527i \(0.742980\pi\)
\(74\) 0.431553 + 0.382323i 0.0501670 + 0.0444441i
\(75\) 1.23743 + 1.79273i 0.142886 + 0.207006i
\(76\) −0.958749 2.52801i −0.109976 0.289983i
\(77\) 0.0456404 + 0.120344i 0.00520120 + 0.0137144i
\(78\) 0.230802 0.438288i 0.0261332 0.0496263i
\(79\) −0.301779 + 0.795725i −0.0339528 + 0.0895261i −0.950921 0.309435i \(-0.899860\pi\)
0.916968 + 0.398961i \(0.130629\pi\)
\(80\) −6.00173 −0.671014
\(81\) −1.07002 2.82141i −0.118891 0.313490i
\(82\) −0.0335040 + 0.275931i −0.00369990 + 0.0304714i
\(83\) −5.58265 2.93000i −0.612776 0.321610i 0.129627 0.991563i \(-0.458622\pi\)
−0.742403 + 0.669953i \(0.766314\pi\)
\(84\) 2.27246 + 3.29223i 0.247946 + 0.359212i
\(85\) 4.07792 + 5.90789i 0.442313 + 0.640800i
\(86\) −0.548536 0.287894i −0.0591501 0.0310444i
\(87\) 0.0849406 0.699549i 0.00910659 0.0749995i
\(88\) 0.0122948 + 0.0324188i 0.00131063 + 0.00345586i
\(89\) 8.99614 0.953589 0.476794 0.879015i \(-0.341799\pi\)
0.476794 + 0.879015i \(0.341799\pi\)
\(90\) 0.203743 0.537226i 0.0214764 0.0566285i
\(91\) −7.06687 4.89231i −0.740809 0.512853i
\(92\) 3.12050 + 8.22808i 0.325335 + 0.857837i
\(93\) 2.00054 + 5.27500i 0.207447 + 0.546992i
\(94\) 0.408497 + 0.591809i 0.0421332 + 0.0610405i
\(95\) −1.60077 1.41816i −0.164236 0.145500i
\(96\) 0.920263 + 1.33323i 0.0939240 + 0.136072i
\(97\) −11.2311 + 9.94984i −1.14034 + 1.01025i −0.140544 + 0.990074i \(0.544885\pi\)
−0.999796 + 0.0201793i \(0.993576\pi\)
\(98\) 0.188487 0.0989258i 0.0190401 0.00999301i
\(99\) 0.122952 0.0123571
\(100\) 4.47830 2.35039i 0.447830 0.235039i
\(101\) 2.30646 + 18.9954i 0.229502 + 1.89012i 0.418618 + 0.908163i \(0.362515\pi\)
−0.189116 + 0.981955i \(0.560562\pi\)
\(102\) 0.223989 0.590611i 0.0221783 0.0584792i
\(103\) 1.43496 0.753124i 0.141391 0.0742076i −0.392544 0.919733i \(-0.628405\pi\)
0.533935 + 0.845526i \(0.320713\pi\)
\(104\) −1.90371 1.31792i −0.186674 0.129232i
\(105\) 2.80180 + 1.47050i 0.273428 + 0.143506i
\(106\) −1.62997 + 1.44403i −0.158317 + 0.140257i
\(107\) −4.03967 3.57883i −0.390529 0.345979i 0.444897 0.895582i \(-0.353240\pi\)
−0.835426 + 0.549603i \(0.814779\pi\)
\(108\) 8.59846 2.11933i 0.827387 0.203933i
\(109\) −0.747290 6.15449i −0.0715774 0.589493i −0.983731 0.179645i \(-0.942505\pi\)
0.912154 0.409848i \(-0.134418\pi\)
\(110\) 0.0101966 + 0.00903337i 0.000972205 + 0.000861298i
\(111\) 1.07558 + 2.83608i 0.102090 + 0.269188i
\(112\) 8.11387 4.25849i 0.766689 0.402389i
\(113\) −12.0464 6.32244i −1.13323 0.594765i −0.209500 0.977809i \(-0.567184\pi\)
−0.923730 + 0.383044i \(0.874876\pi\)
\(114\) −0.0226826 + 0.186808i −0.00212442 + 0.0174962i
\(115\) 5.21013 + 4.61577i 0.485847 + 0.430423i
\(116\) −1.58859 0.391553i −0.147497 0.0363548i
\(117\) −6.76368 + 4.65488i −0.625303 + 0.430344i
\(118\) −1.41256 + 0.348164i −0.130037 + 0.0320511i
\(119\) −9.70493 5.09354i −0.889650 0.466924i
\(120\) 0.754764 + 0.396131i 0.0689002 + 0.0361616i
\(121\) 3.89962 10.2825i 0.354511 0.934768i
\(122\) 0.602487 1.58863i 0.0545466 0.143828i
\(123\) −0.830689 + 1.20346i −0.0749007 + 0.108512i
\(124\) 12.7180 3.13471i 1.14211 0.281506i
\(125\) 6.70723 9.71710i 0.599913 0.869124i
\(126\) 0.105741 + 0.870851i 0.00942011 + 0.0775816i
\(127\) −6.19832 + 16.3436i −0.550012 + 1.45026i 0.315283 + 0.948998i \(0.397901\pi\)
−0.865294 + 0.501264i \(0.832869\pi\)
\(128\) 4.43052 2.32532i 0.391607 0.205531i
\(129\) −1.85139 2.68220i −0.163006 0.236155i
\(130\) −0.902922 0.110898i −0.0791915 0.00972639i
\(131\) −5.90425 + 8.55378i −0.515856 + 0.747347i −0.991188 0.132460i \(-0.957713\pi\)
0.475332 + 0.879806i \(0.342328\pi\)
\(132\) −0.0109211 + 0.0899434i −0.000950560 + 0.00782856i
\(133\) 3.17036 + 0.781425i 0.274905 + 0.0677581i
\(134\) 1.01109 + 1.46481i 0.0873446 + 0.126540i
\(135\) 5.24320 4.64507i 0.451263 0.399784i
\(136\) −2.61437 1.37212i −0.224180 0.117659i
\(137\) 0.179566 + 1.47886i 0.0153414 + 0.126348i 0.998367 0.0571185i \(-0.0181913\pi\)
−0.983026 + 0.183466i \(0.941268\pi\)
\(138\) 0.0738264 0.608015i 0.00628452 0.0517577i
\(139\) −4.29649 + 3.80636i −0.364424 + 0.322851i −0.825386 0.564568i \(-0.809043\pi\)
0.460963 + 0.887420i \(0.347504\pi\)
\(140\) 4.17341 6.04623i 0.352718 0.511000i
\(141\) 0.456008 + 3.75556i 0.0384028 + 0.316275i
\(142\) 0.167438 1.37897i 0.0140510 0.115721i
\(143\) −0.0463268 0.189077i −0.00387405 0.0158114i
\(144\) −1.05514 8.68986i −0.0879283 0.724155i
\(145\) −1.25656 + 0.309715i −0.104352 + 0.0257204i
\(146\) −0.557527 −0.0461412
\(147\) 1.11990 0.0923674
\(148\) 6.83778 1.68536i 0.562062 0.138536i
\(149\) 6.65099 17.5372i 0.544871 1.43671i −0.326083 0.945341i \(-0.605729\pi\)
0.870954 0.491365i \(-0.163502\pi\)
\(150\) −0.352013 −0.0287418
\(151\) −4.77645 12.5945i −0.388702 1.02492i −0.976424 0.215861i \(-0.930744\pi\)
0.587722 0.809063i \(-0.300025\pi\)
\(152\) 0.854049 + 0.210504i 0.0692726 + 0.0170742i
\(153\) −7.83706 + 6.94303i −0.633589 + 0.561311i
\(154\) −0.0201945 0.00497751i −0.00162732 0.000401099i
\(155\) 7.75525 6.87056i 0.622917 0.551856i
\(156\) −2.80443 5.36134i −0.224534 0.429251i
\(157\) −4.42663 3.92165i −0.353283 0.312982i 0.467751 0.883860i \(-0.345064\pi\)
−0.821035 + 0.570879i \(0.806603\pi\)
\(158\) −0.0781229 0.113181i −0.00621512 0.00900416i
\(159\) −11.1234 + 2.74168i −0.882145 + 0.217429i
\(160\) 1.69008 2.44850i 0.133612 0.193571i
\(161\) −10.3188 2.54335i −0.813234 0.200444i
\(162\) 0.473453 + 0.116696i 0.0371980 + 0.00916847i
\(163\) 1.75888 14.4857i 0.137766 1.13461i −0.745757 0.666219i \(-0.767912\pi\)
0.883523 0.468388i \(-0.155165\pi\)
\(164\) 2.54133 + 2.25143i 0.198445 + 0.175807i
\(165\) 0.0254134 + 0.0670097i 0.00197843 + 0.00521670i
\(166\) 0.902147 0.473483i 0.0700202 0.0367494i
\(167\) −4.02279 + 5.82802i −0.311293 + 0.450986i −0.947136 0.320833i \(-0.896037\pi\)
0.635843 + 0.771819i \(0.280653\pi\)
\(168\) −1.30145 −0.100409
\(169\) 9.70683 + 8.64739i 0.746680 + 0.665184i
\(170\) −1.16005 −0.0889719
\(171\) 1.77192 2.56707i 0.135502 0.196308i
\(172\) −6.70024 + 3.51656i −0.510889 + 0.268135i
\(173\) −0.658423 1.73612i −0.0500589 0.131995i 0.907655 0.419718i \(-0.137871\pi\)
−0.957714 + 0.287723i \(0.907102\pi\)
\(174\) 0.0852375 + 0.0755138i 0.00646184 + 0.00572469i
\(175\) −0.736243 + 6.06350i −0.0556547 + 0.458358i
\(176\) 0.201513 + 0.0496685i 0.0151896 + 0.00374390i
\(177\) −7.43137 1.83167i −0.558576 0.137677i
\(178\) −0.825829 + 1.19642i −0.0618985 + 0.0896755i
\(179\) 11.1583 2.75029i 0.834014 0.205566i 0.200887 0.979614i \(-0.435617\pi\)
0.633126 + 0.774048i \(0.281771\pi\)
\(180\) −3.98677 5.77583i −0.297156 0.430505i
\(181\) −5.99868 5.31436i −0.445878 0.395013i 0.410088 0.912046i \(-0.365498\pi\)
−0.855966 + 0.517033i \(0.827037\pi\)
\(182\) 1.29937 0.490737i 0.0963155 0.0363758i
\(183\) 6.69057 5.92733i 0.494581 0.438161i
\(184\) −2.77973 0.685141i −0.204924 0.0505093i
\(185\) 4.16957 3.69392i 0.306553 0.271582i
\(186\) −0.885183 0.218178i −0.0649048 0.0159976i
\(187\) −0.0880275 0.232110i −0.00643721 0.0169735i
\(188\) 8.78367 0.640615
\(189\) −3.79252 + 10.0001i −0.275865 + 0.727397i
\(190\) 0.335553 0.0827064i 0.0243436 0.00600015i
\(191\) 3.77412 0.273086 0.136543 0.990634i \(-0.456401\pi\)
0.136543 + 0.990634i \(0.456401\pi\)
\(192\) 6.27421 0.452802
\(193\) 13.9817 3.44618i 1.00643 0.248062i 0.298546 0.954395i \(-0.403498\pi\)
0.707879 + 0.706334i \(0.249652\pi\)
\(194\) −0.292266 2.40703i −0.0209835 0.172814i
\(195\) −3.93497 2.72413i −0.281789 0.195079i
\(196\) 0.313415 2.58121i 0.0223868 0.184372i
\(197\) −2.20689 18.1754i −0.157235 1.29494i −0.831114 0.556102i \(-0.812296\pi\)
0.673880 0.738841i \(-0.264627\pi\)
\(198\) −0.0112867 + 0.0163517i −0.000802113 + 0.00116206i
\(199\) −5.70791 + 5.05677i −0.404623 + 0.358465i −0.840753 0.541419i \(-0.817887\pi\)
0.436130 + 0.899884i \(0.356349\pi\)
\(200\) −0.198333 + 1.63342i −0.0140243 + 0.115500i
\(201\) 1.12868 + 9.29554i 0.0796112 + 0.655657i
\(202\) −2.73798 1.43700i −0.192644 0.101107i
\(203\) 1.47902 1.31030i 0.103807 0.0919647i
\(204\) −4.38295 6.34979i −0.306868 0.444575i
\(205\) 2.60752 + 0.642697i 0.182117 + 0.0448879i
\(206\) −0.0315666 + 0.259974i −0.00219935 + 0.0181133i
\(207\) −5.76717 + 8.35519i −0.400846 + 0.580726i
\(208\) −12.9658 + 4.89686i −0.899019 + 0.339536i
\(209\) 0.0420109 + 0.0608633i 0.00290596 + 0.00421000i
\(210\) −0.452766 + 0.237630i −0.0312438 + 0.0163980i
\(211\) −0.331621 + 0.874412i −0.0228297 + 0.0601970i −0.945947 0.324323i \(-0.894864\pi\)
0.923117 + 0.384520i \(0.125633\pi\)
\(212\) 3.20618 + 26.4053i 0.220201 + 1.81352i
\(213\) 4.15139 6.01433i 0.284449 0.412095i
\(214\) 0.846792 0.208716i 0.0578855 0.0142675i
\(215\) −3.40011 + 4.92591i −0.231885 + 0.335944i
\(216\) −1.02165 + 2.69387i −0.0695144 + 0.183294i
\(217\) −5.60954 + 14.7911i −0.380800 + 1.00409i
\(218\) 0.887102 + 0.465587i 0.0600821 + 0.0315335i
\(219\) −2.59714 1.36308i −0.175498 0.0921086i
\(220\) 0.161560 0.0398211i 0.0108924 0.00268474i
\(221\) 13.6300 + 9.43589i 0.916855 + 0.634727i
\(222\) −0.475914 0.117302i −0.0319412 0.00787281i
\(223\) 13.0904 + 11.5971i 0.876599 + 0.776599i 0.975845 0.218464i \(-0.0701045\pi\)
−0.0992456 + 0.995063i \(0.531643\pi\)
\(224\) −0.547536 + 4.50936i −0.0365838 + 0.301295i
\(225\) 5.16652 + 2.71160i 0.344435 + 0.180773i
\(226\) 1.94668 1.02169i 0.129491 0.0679621i
\(227\) −9.17337 24.1882i −0.608858 1.60543i −0.783915 0.620869i \(-0.786780\pi\)
0.175056 0.984558i \(-0.443989\pi\)
\(228\) 1.72051 + 1.52424i 0.113943 + 0.100945i
\(229\) 2.30280 + 18.9653i 0.152173 + 1.25326i 0.846025 + 0.533143i \(0.178989\pi\)
−0.693852 + 0.720118i \(0.744088\pi\)
\(230\) −1.09215 + 0.269190i −0.0720139 + 0.0177498i
\(231\) −0.0819033 0.0725600i −0.00538884 0.00477410i
\(232\) 0.398426 0.352974i 0.0261579 0.0231739i
\(233\) 12.1164 + 6.35919i 0.793773 + 0.416604i 0.812311 0.583224i \(-0.198209\pi\)
−0.0185383 + 0.999828i \(0.505901\pi\)
\(234\) 0.00182920 1.32683i 0.000119578 0.0867376i
\(235\) 6.15197 3.22881i 0.401311 0.210624i
\(236\) −6.30150 + 16.6157i −0.410192 + 1.08159i
\(237\) −0.0872091 0.718232i −0.00566484 0.0466542i
\(238\) 1.56830 0.823107i 0.101658 0.0533541i
\(239\) −26.1366 −1.69063 −0.845317 0.534266i \(-0.820588\pi\)
−0.845317 + 0.534266i \(0.820588\pi\)
\(240\) 4.51796 2.37121i 0.291633 0.153061i
\(241\) −9.26340 + 8.20666i −0.596708 + 0.528637i −0.906521 0.422160i \(-0.861272\pi\)
0.309813 + 0.950798i \(0.399734\pi\)
\(242\) 1.00951 + 1.46253i 0.0648939 + 0.0940151i
\(243\) 11.9947 + 10.6264i 0.769461 + 0.681683i
\(244\) −11.7893 17.0797i −0.754730 1.09341i
\(245\) −0.729318 1.92305i −0.0465944 0.122859i
\(246\) −0.0837957 0.220951i −0.00534262 0.0140873i
\(247\) −4.61531 1.75764i −0.293665 0.111836i
\(248\) −1.51113 + 3.98452i −0.0959567 + 0.253017i
\(249\) 5.36010 0.339682
\(250\) 0.676591 + 1.78402i 0.0427914 + 0.112832i
\(251\) 1.56616 12.8985i 0.0988552 0.814146i −0.855980 0.517009i \(-0.827045\pi\)
0.954835 0.297136i \(-0.0960316\pi\)
\(252\) 9.48800 + 4.97969i 0.597688 + 0.313691i
\(253\) −0.136736 0.198096i −0.00859649 0.0124542i
\(254\) −1.60459 2.32465i −0.100681 0.145861i
\(255\) −5.40389 2.83618i −0.338405 0.177609i
\(256\) 1.68167 13.8498i 0.105105 0.865614i
\(257\) −3.89528 10.2710i −0.242981 0.640689i 0.756937 0.653488i \(-0.226695\pi\)
−0.999918 + 0.0127994i \(0.995926\pi\)
\(258\) 0.526668 0.0327889
\(259\) −3.01594 + 7.95238i −0.187401 + 0.494137i
\(260\) −7.37999 + 8.30719i −0.457688 + 0.515190i
\(261\) −0.669345 1.76492i −0.0414314 0.109246i
\(262\) −0.595590 1.57044i −0.0367957 0.0970223i
\(263\) −5.50297 7.97243i −0.339328 0.491601i 0.615756 0.787937i \(-0.288851\pi\)
−0.955084 + 0.296336i \(0.904235\pi\)
\(264\) −0.0220635 0.0195466i −0.00135792 0.00120301i
\(265\) 11.9519 + 17.3153i 0.734201 + 1.06367i
\(266\) −0.394958 + 0.349902i −0.0242164 + 0.0214539i
\(267\) −6.77208 + 3.55426i −0.414444 + 0.217517i
\(268\) 21.7408 1.32803
\(269\) 10.5935 5.55991i 0.645898 0.338994i −0.109761 0.993958i \(-0.535009\pi\)
0.755660 + 0.654964i \(0.227316\pi\)
\(270\) 0.136444 + 1.12372i 0.00830371 + 0.0683872i
\(271\) −10.7236 + 28.2758i −0.651412 + 1.71763i 0.0440101 + 0.999031i \(0.485987\pi\)
−0.695422 + 0.718601i \(0.744783\pi\)
\(272\) −15.6494 + 8.21344i −0.948884 + 0.498013i
\(273\) 7.25266 + 0.890780i 0.438951 + 0.0539125i
\(274\) −0.213162 0.111876i −0.0128776 0.00675867i
\(275\) −0.103550 + 0.0917369i −0.00624427 + 0.00553194i
\(276\) −5.59985 4.96103i −0.337071 0.298619i
\(277\) 7.60689 1.87493i 0.457054 0.112654i −0.00406554 0.999992i \(-0.501294\pi\)
0.461119 + 0.887338i \(0.347448\pi\)
\(278\) −0.111808 0.920819i −0.00670578 0.0552271i
\(279\) 11.3112 + 10.0209i 0.677186 + 0.599935i
\(280\) 0.847555 + 2.23482i 0.0506511 + 0.133556i
\(281\) −11.3009 + 5.93117i −0.674155 + 0.353824i −0.766810 0.641874i \(-0.778157\pi\)
0.0926545 + 0.995698i \(0.470465\pi\)
\(282\) −0.541323 0.284108i −0.0322353 0.0169184i
\(283\) 2.05934 16.9602i 0.122415 1.00818i −0.793991 0.607929i \(-0.792000\pi\)
0.916406 0.400250i \(-0.131077\pi\)
\(284\) −12.7004 11.2516i −0.753630 0.667658i
\(285\) 1.76532 + 0.435112i 0.104569 + 0.0257738i
\(286\) 0.0293986 + 0.0111958i 0.00173837 + 0.000662021i
\(287\) −3.98119 + 0.981275i −0.235002 + 0.0579228i
\(288\) 3.84229 + 2.01659i 0.226409 + 0.118829i
\(289\) 3.66535 + 1.92373i 0.215609 + 0.113160i
\(290\) 0.0741604 0.195545i 0.00435485 0.0114828i
\(291\) 4.52341 11.9273i 0.265167 0.699188i
\(292\) −3.86856 + 5.60457i −0.226390 + 0.327983i
\(293\) 12.3170 3.03587i 0.719568 0.177358i 0.137505 0.990501i \(-0.456092\pi\)
0.582063 + 0.813144i \(0.302246\pi\)
\(294\) −0.102804 + 0.148938i −0.00599568 + 0.00868624i
\(295\) 1.69430 + 13.9538i 0.0986458 + 0.812421i
\(296\) −0.812449 + 2.14225i −0.0472227 + 0.124516i
\(297\) −0.214486 + 0.112571i −0.0124457 + 0.00653202i
\(298\) 1.72177 + 2.49442i 0.0997397 + 0.144498i
\(299\) 15.0218 + 5.72070i 0.868730 + 0.330837i
\(300\) −2.44254 + 3.53864i −0.141020 + 0.204303i
\(301\) 1.10154 9.07196i 0.0634915 0.522899i
\(302\) 2.11344 + 0.520917i 0.121615 + 0.0299754i
\(303\) −9.24111 13.3881i −0.530888 0.769124i
\(304\) 3.94112 3.49152i 0.226038 0.200253i
\(305\) −14.5354 7.62876i −0.832294 0.436822i
\(306\) −0.203944 1.67963i −0.0116587 0.0960180i
\(307\) −1.82176 + 15.0035i −0.103973 + 0.856297i 0.843647 + 0.536898i \(0.180404\pi\)
−0.947620 + 0.319399i \(0.896519\pi\)
\(308\) −0.190162 + 0.168469i −0.0108355 + 0.00959942i
\(309\) −0.782653 + 1.13387i −0.0445236 + 0.0645035i
\(310\) 0.201815 + 1.66210i 0.0114623 + 0.0944008i
\(311\) −0.0137720 + 0.113423i −0.000780941 + 0.00643162i −0.993094 0.117320i \(-0.962570\pi\)
0.992313 + 0.123752i \(0.0394927\pi\)
\(312\) 1.95376 + 0.239963i 0.110610 + 0.0135852i
\(313\) −2.09109 17.2217i −0.118195 0.973425i −0.924304 0.381658i \(-0.875353\pi\)
0.806109 0.591768i \(-0.201570\pi\)
\(314\) 0.927907 0.228708i 0.0523648 0.0129068i
\(315\) 8.47577 0.477556
\(316\) −1.67983 −0.0944980
\(317\) −22.5402 + 5.55566i −1.26598 + 0.312037i −0.814459 0.580221i \(-0.802966\pi\)
−0.451526 + 0.892258i \(0.649120\pi\)
\(318\) 0.656487 1.73101i 0.0368140 0.0970705i
\(319\) 0.0447532 0.00250570
\(320\) −4.08600 10.7739i −0.228414 0.602279i
\(321\) 4.45491 + 1.09804i 0.248649 + 0.0612865i
\(322\) 1.28549 1.13885i 0.0716377 0.0634655i
\(323\) −6.11475 1.50715i −0.340234 0.0838601i
\(324\) 4.45828 3.94969i 0.247682 0.219427i
\(325\) 2.22325 8.96686i 0.123324 0.497392i
\(326\) 1.76503 + 1.56368i 0.0977559 + 0.0866042i
\(327\) 2.99410 + 4.33771i 0.165574 + 0.239876i
\(328\) −1.07247 + 0.264341i −0.0592174 + 0.0145958i
\(329\) −6.02601 + 8.73019i −0.332225 + 0.481311i
\(330\) −0.0112447 0.00277157i −0.000619001 0.000152570i
\(331\) 9.88931 + 2.43750i 0.543566 + 0.133977i 0.501532 0.865139i \(-0.332770\pi\)
0.0420339 + 0.999116i \(0.486616\pi\)
\(332\) 1.50008 12.3543i 0.0823277 0.678030i
\(333\) 6.08143 + 5.38767i 0.333260 + 0.295243i
\(334\) −0.405799 1.07000i −0.0222043 0.0585480i
\(335\) 15.2270 7.99175i 0.831940 0.436636i
\(336\) −4.42545 + 6.41138i −0.241428 + 0.349769i
\(337\) 6.89120 0.375388 0.187694 0.982228i \(-0.439899\pi\)
0.187694 + 0.982228i \(0.439899\pi\)
\(338\) −2.04111 + 0.497123i −0.111022 + 0.0270399i
\(339\) 11.5662 0.628188
\(340\) −8.04935 + 11.6615i −0.436537 + 0.632433i
\(341\) −0.317247 + 0.166504i −0.0171799 + 0.00901671i
\(342\) 0.178742 + 0.471304i 0.00966526 + 0.0254852i
\(343\) 14.8408 + 13.1478i 0.801328 + 0.709915i
\(344\) 0.296737 2.44385i 0.0159990 0.131764i
\(345\) −5.74570 1.41619i −0.309338 0.0762450i
\(346\) 0.291333 + 0.0718071i 0.0156622 + 0.00386038i
\(347\) 18.8509 27.3102i 1.01197 1.46609i 0.131887 0.991265i \(-0.457896\pi\)
0.880081 0.474824i \(-0.157488\pi\)
\(348\) 1.35055 0.332881i 0.0723972 0.0178443i
\(349\) −20.9098 30.2930i −1.11927 1.62155i −0.700876 0.713283i \(-0.747207\pi\)
−0.418397 0.908264i \(-0.637408\pi\)
\(350\) −0.738816 0.654534i −0.0394914 0.0349863i
\(351\) 7.53720 14.3129i 0.402306 0.763969i
\(352\) −0.0770087 + 0.0682237i −0.00410458 + 0.00363634i
\(353\) −14.4637 3.56499i −0.769828 0.189745i −0.165207 0.986259i \(-0.552829\pi\)
−0.604621 + 0.796513i \(0.706675\pi\)
\(354\) 0.925785 0.820174i 0.0492049 0.0435917i
\(355\) −13.0312 3.21190i −0.691623 0.170470i
\(356\) 6.29684 + 16.6034i 0.333732 + 0.879979i
\(357\) 9.31803 0.493163
\(358\) −0.658548 + 1.73645i −0.0348054 + 0.0917742i
\(359\) −24.0252 + 5.92169i −1.26800 + 0.312535i −0.815254 0.579103i \(-0.803403\pi\)
−0.452749 + 0.891638i \(0.649557\pi\)
\(360\) 2.28325 0.120338
\(361\) −17.1238 −0.901253
\(362\) 1.25744 0.309931i 0.0660895 0.0162896i
\(363\) 1.12693 + 9.28108i 0.0591483 + 0.487130i
\(364\) 4.08286 16.4671i 0.214000 0.863110i
\(365\) −0.649295 + 5.34742i −0.0339856 + 0.279897i
\(366\) 0.174109 + 1.43392i 0.00910081 + 0.0749519i
\(367\) 12.3825 17.9391i 0.646359 0.936413i −0.353640 0.935381i \(-0.615056\pi\)
0.999999 0.00103132i \(-0.000328280\pi\)
\(368\) −12.8274 + 11.3641i −0.668674 + 0.592394i
\(369\) −0.472138 + 3.88840i −0.0245785 + 0.202422i
\(370\) 0.108505 + 0.893617i 0.00564089 + 0.0464569i
\(371\) −28.4441 14.9286i −1.47674 0.775054i
\(372\) −8.33534 + 7.38447i −0.432167 + 0.382867i
\(373\) 9.72673 + 14.0916i 0.503631 + 0.729636i 0.989522 0.144384i \(-0.0461200\pi\)
−0.485891 + 0.874020i \(0.661505\pi\)
\(374\) 0.0389496 + 0.00960022i 0.00201404 + 0.000496416i
\(375\) −1.20994 + 9.96474i −0.0624809 + 0.514577i
\(376\) −1.62332 + 2.35178i −0.0837163 + 0.121284i
\(377\) −2.46191 + 1.69433i −0.126795 + 0.0872625i
\(378\) −0.981787 1.42236i −0.0504977 0.0731585i
\(379\) 23.6550 12.4151i 1.21508 0.637721i 0.269462 0.963011i \(-0.413154\pi\)
0.945614 + 0.325289i \(0.105462\pi\)
\(380\) 1.49692 3.94705i 0.0767903 0.202479i
\(381\) −1.79121 14.7520i −0.0917666 0.755766i
\(382\) −0.346457 + 0.501930i −0.0177263 + 0.0256810i
\(383\) −9.24850 + 2.27955i −0.472577 + 0.116480i −0.468409 0.883512i \(-0.655173\pi\)
−0.00416736 + 0.999991i \(0.501327\pi\)
\(384\) −2.41649 + 3.50089i −0.123316 + 0.178654i
\(385\) −0.0712595 + 0.187896i −0.00363172 + 0.00957605i
\(386\) −0.825179 + 2.17582i −0.0420005 + 0.110746i
\(387\) −7.72994 4.05699i −0.392935 0.206228i
\(388\) −26.2248 13.7638i −1.33136 0.698752i
\(389\) 24.6682 6.08017i 1.25073 0.308277i 0.442298 0.896868i \(-0.354164\pi\)
0.808431 + 0.588592i \(0.200317\pi\)
\(390\) 0.723513 0.273252i 0.0366365 0.0138366i
\(391\) 19.9021 + 4.90542i 1.00649 + 0.248078i
\(392\) 0.633182 + 0.560950i 0.0319805 + 0.0283323i
\(393\) 1.06509 8.77177i 0.0537265 0.442477i
\(394\) 2.61978 + 1.37497i 0.131983 + 0.0692699i
\(395\) −1.17653 + 0.617492i −0.0591978 + 0.0310694i
\(396\) 0.0860599 + 0.226921i 0.00432467 + 0.0114032i
\(397\) −16.5751 14.6842i −0.831880 0.736981i 0.135373 0.990795i \(-0.456777\pi\)
−0.967253 + 0.253813i \(0.918315\pi\)
\(398\) −0.148537 1.22331i −0.00744549 0.0613191i
\(399\) −2.69531 + 0.664333i −0.134934 + 0.0332583i
\(400\) 7.37233 + 6.53132i 0.368617 + 0.326566i
\(401\) 15.4058 13.6484i 0.769331 0.681567i −0.184192 0.982890i \(-0.558967\pi\)
0.953522 + 0.301323i \(0.0974282\pi\)
\(402\) −1.33985 0.703208i −0.0668257 0.0350728i
\(403\) 11.1483 21.1704i 0.555337 1.05457i
\(404\) −33.4439 + 17.5527i −1.66390 + 0.873280i
\(405\) 1.67065 4.40514i 0.0830152 0.218893i
\(406\) 0.0384885 + 0.316981i 0.00191015 + 0.0157315i
\(407\) −0.170566 + 0.0895201i −0.00845466 + 0.00443735i
\(408\) 2.51014 0.124270
\(409\) 14.5473 7.63501i 0.719317 0.377527i −0.0650011 0.997885i \(-0.520705\pi\)
0.784319 + 0.620358i \(0.213013\pi\)
\(410\) −0.324840 + 0.287783i −0.0160427 + 0.0142126i
\(411\) −0.719453 1.04231i −0.0354880 0.0514132i
\(412\) 2.39438 + 2.12123i 0.117962 + 0.104506i
\(413\) −12.1914 17.6623i −0.599898 0.869103i
\(414\) −0.581763 1.53398i −0.0285921 0.0753912i
\(415\) −3.49069 9.20421i −0.171351 0.451817i
\(416\) 1.65341 6.66856i 0.0810650 0.326953i
\(417\) 1.73045 4.56283i 0.0847406 0.223443i
\(418\) −0.0119509 −0.000584538
\(419\) 2.02728 + 5.34550i 0.0990392 + 0.261145i 0.975374 0.220558i \(-0.0707878\pi\)
−0.876335 + 0.481703i \(0.840019\pi\)
\(420\) −0.752855 + 6.20032i −0.0367356 + 0.302545i
\(421\) 2.99518 + 1.57199i 0.145976 + 0.0766142i 0.536130 0.844136i \(-0.319886\pi\)
−0.390154 + 0.920750i \(0.627578\pi\)
\(422\) −0.0858482 0.124373i −0.00417903 0.00605436i
\(423\) 5.75652 + 8.33975i 0.279891 + 0.405493i
\(424\) −7.66241 4.02154i −0.372119 0.195303i
\(425\) 1.42001 11.6948i 0.0688804 0.567282i
\(426\) 0.418771 + 1.10421i 0.0202895 + 0.0534991i
\(427\) 25.0637 1.21292
\(428\) 3.77758 9.96067i 0.182596 0.481467i
\(429\) 0.109576 + 0.124029i 0.00529036 + 0.00598819i
\(430\) −0.342986 0.904379i −0.0165402 0.0436130i
\(431\) 13.6341 + 35.9502i 0.656732 + 1.73166i 0.681345 + 0.731962i \(0.261395\pi\)
−0.0246137 + 0.999697i \(0.507836\pi\)
\(432\) 9.79684 + 14.1932i 0.471351 + 0.682870i
\(433\) 5.37160 + 4.75882i 0.258142 + 0.228694i 0.782261 0.622951i \(-0.214067\pi\)
−0.524118 + 0.851646i \(0.675605\pi\)
\(434\) −1.45217 2.10383i −0.0697063 0.100987i
\(435\) 0.823545 0.729598i 0.0394860 0.0349815i
\(436\) 10.8358 5.68704i 0.518938 0.272360i
\(437\) −6.10654 −0.292115
\(438\) 0.419693 0.220272i 0.0200537 0.0105250i
\(439\) 2.72780 + 22.4655i 0.130191 + 1.07222i 0.900594 + 0.434662i \(0.143132\pi\)
−0.770403 + 0.637558i \(0.779945\pi\)
\(440\) −0.0191962 + 0.0506163i −0.000915145 + 0.00241304i
\(441\) 2.65616 1.39406i 0.126484 0.0663837i
\(442\) −2.50612 + 0.946495i −0.119204 + 0.0450202i
\(443\) −13.0584 6.85359i −0.620424 0.325624i 0.125058 0.992149i \(-0.460088\pi\)
−0.745482 + 0.666526i \(0.767781\pi\)
\(444\) −4.48145 + 3.97022i −0.212680 + 0.188418i
\(445\) 10.5135 + 9.31415i 0.498388 + 0.441533i
\(446\) −2.74401 + 0.676337i −0.129932 + 0.0320255i
\(447\) 1.92203 + 15.8293i 0.0909088 + 0.748702i
\(448\) 13.1685 + 11.6663i 0.622153 + 0.551180i
\(449\) −4.79308 12.6383i −0.226200 0.596439i 0.773083 0.634305i \(-0.218713\pi\)
−0.999283 + 0.0378652i \(0.987944\pi\)
\(450\) −0.834901 + 0.438190i −0.0393576 + 0.0206565i
\(451\) −0.0822309 0.0431581i −0.00387210 0.00203224i
\(452\) 3.23692 26.6584i 0.152252 1.25391i
\(453\) 8.57152 + 7.59370i 0.402725 + 0.356783i
\(454\) 4.05895 + 1.00044i 0.190496 + 0.0469531i
\(455\) −3.19358 13.0342i −0.149717 0.611051i
\(456\) −0.726076 + 0.178962i −0.0340016 + 0.00838064i
\(457\) −10.9319 5.73751i −0.511374 0.268390i 0.189239 0.981931i \(-0.439398\pi\)
−0.700613 + 0.713541i \(0.747090\pi\)
\(458\) −2.73363 1.43472i −0.127734 0.0670402i
\(459\) 7.31471 19.2873i 0.341422 0.900255i
\(460\) −4.87211 + 12.8467i −0.227164 + 0.598981i
\(461\) −4.93906 + 7.15547i −0.230035 + 0.333263i −0.920956 0.389667i \(-0.872590\pi\)
0.690921 + 0.722931i \(0.257205\pi\)
\(462\) 0.0171685 0.00423166i 0.000798752 0.000196875i
\(463\) −19.3652 + 28.0553i −0.899976 + 1.30384i 0.0523095 + 0.998631i \(0.483342\pi\)
−0.952285 + 0.305209i \(0.901274\pi\)
\(464\) −0.384061 3.16302i −0.0178296 0.146840i
\(465\) −3.12350 + 8.23599i −0.144849 + 0.381935i
\(466\) −1.95799 + 1.02763i −0.0907022 + 0.0476042i
\(467\) 22.8017 + 33.0340i 1.05514 + 1.52863i 0.832731 + 0.553678i \(0.186776\pi\)
0.222408 + 0.974954i \(0.428608\pi\)
\(468\) −13.3254 9.22498i −0.615965 0.426425i
\(469\) −14.9152 + 21.6084i −0.688721 + 0.997785i
\(470\) −0.135333 + 1.11457i −0.00624244 + 0.0514111i
\(471\) 4.88165 + 1.20322i 0.224935 + 0.0554414i
\(472\) −3.28418 4.75795i −0.151166 0.219002i
\(473\) 0.154927 0.137253i 0.00712353 0.00631090i
\(474\) 0.103525 + 0.0543342i 0.00475507 + 0.00249565i
\(475\) 0.423040 + 3.48404i 0.0194104 + 0.159859i
\(476\) 2.60776 21.4768i 0.119526 0.984387i
\(477\) −22.9695 + 20.3492i −1.05170 + 0.931727i
\(478\) 2.39929 3.47597i 0.109741 0.158987i
\(479\) 4.95812 + 40.8338i 0.226542 + 1.86574i 0.452712 + 0.891657i \(0.350457\pi\)
−0.226169 + 0.974088i \(0.572620\pi\)
\(480\) −0.304879 + 2.51090i −0.0139157 + 0.114606i
\(481\) 5.99383 11.3821i 0.273295 0.518981i
\(482\) −0.241062 1.98532i −0.0109801 0.0904289i
\(483\) 8.77258 2.16225i 0.399166 0.0983856i
\(484\) 21.7070 0.986681
\(485\) −23.4270 −1.06376
\(486\) −2.51432 + 0.619725i −0.114052 + 0.0281113i
\(487\) 1.88885 4.98050i 0.0855921 0.225688i −0.885386 0.464857i \(-0.846106\pi\)
0.970978 + 0.239169i \(0.0768750\pi\)
\(488\) 6.75178 0.305639
\(489\) 4.39907 + 11.5994i 0.198933 + 0.524543i
\(490\) 0.322702 + 0.0795389i 0.0145782 + 0.00359320i
\(491\) −8.77694 + 7.77569i −0.396098 + 0.350912i −0.837538 0.546378i \(-0.816006\pi\)
0.441441 + 0.897290i \(0.354468\pi\)
\(492\) −2.80257 0.690770i −0.126349 0.0311423i
\(493\) −2.85261 + 2.52719i −0.128475 + 0.113819i
\(494\) 0.657431 0.452455i 0.0295792 0.0203569i
\(495\) 0.143690 + 0.127298i 0.00645837 + 0.00572162i
\(496\) 14.4906 + 20.9932i 0.650646 + 0.942623i
\(497\) 19.8961 4.90395i 0.892463 0.219972i
\(498\) −0.492047 + 0.712853i −0.0220492 + 0.0319437i
\(499\) −8.28649 2.04244i −0.370954 0.0914320i 0.0494315 0.998778i \(-0.484259\pi\)
−0.420386 + 0.907346i \(0.638105\pi\)
\(500\) 22.6287 + 5.57748i 1.01199 + 0.249433i
\(501\) 0.725684 5.97655i 0.0324212 0.267013i
\(502\) 1.57163 + 1.39235i 0.0701455 + 0.0621435i
\(503\) 0.972311 + 2.56377i 0.0433532 + 0.114313i 0.954944 0.296785i \(-0.0959145\pi\)
−0.911591 + 0.411098i \(0.865145\pi\)
\(504\) −3.08677 + 1.62006i −0.137496 + 0.0721633i
\(505\) −16.9714 + 24.5874i −0.755219 + 1.09412i
\(506\) 0.0388974 0.00172920
\(507\) −10.7235 2.67450i −0.476249 0.118779i
\(508\) −34.5025 −1.53080
\(509\) −20.7979 + 30.1310i −0.921852 + 1.33553i 0.0201050 + 0.999798i \(0.493600\pi\)
−0.941957 + 0.335735i \(0.891015\pi\)
\(510\) 0.873259 0.458322i 0.0386686 0.0202948i
\(511\) −2.91643 7.69000i −0.129015 0.340186i
\(512\) 9.17814 + 8.13112i 0.405620 + 0.359348i
\(513\) −0.740734 + 6.10049i −0.0327042 + 0.269343i
\(514\) 1.72355 + 0.424817i 0.0760225 + 0.0187379i
\(515\) 2.45674 + 0.605532i 0.108257 + 0.0266829i
\(516\) 3.65443 5.29436i 0.160877 0.233071i
\(517\) −0.233278 + 0.0574978i −0.0102596 + 0.00252875i
\(518\) −0.780750 1.13111i −0.0343042 0.0496982i
\(519\) 1.18156 + 1.04677i 0.0518649 + 0.0459483i
\(520\) −0.860303 3.51121i −0.0377268 0.153977i
\(521\) −0.0806527 + 0.0714521i −0.00353346 + 0.00313037i −0.664888 0.746943i \(-0.731521\pi\)
0.661354 + 0.750074i \(0.269982\pi\)
\(522\) 0.296166 + 0.0729983i 0.0129628 + 0.00319505i
\(523\) −4.35086 + 3.85452i −0.190250 + 0.168546i −0.752871 0.658168i \(-0.771331\pi\)
0.562621 + 0.826715i \(0.309793\pi\)
\(524\) −19.9197 4.90975i −0.870194 0.214484i
\(525\) −1.84139 4.85534i −0.0803648 0.211904i
\(526\) 1.56544 0.0682563
\(527\) 10.8192 28.5280i 0.471294 1.24270i
\(528\) −0.171317 + 0.0422259i −0.00745563 + 0.00183765i
\(529\) −3.12466 −0.135855
\(530\) −3.39998 −0.147686
\(531\) −19.9057 + 4.90632i −0.863834 + 0.212916i
\(532\) 0.776886 + 6.39823i 0.0336823 + 0.277399i
\(533\) 6.15754 0.739048i 0.266713 0.0320117i
\(534\) 0.148974 1.22691i 0.00644674 0.0530936i
\(535\) −1.01569 8.36494i −0.0439120 0.361648i
\(536\) −4.01794 + 5.82099i −0.173549 + 0.251429i
\(537\) −7.31313 + 6.47887i −0.315585 + 0.279584i
\(538\) −0.233039 + 1.91925i −0.0100470 + 0.0827447i
\(539\) 0.00857283 + 0.0706036i 0.000369258 + 0.00304111i
\(540\) 12.2430 + 6.42562i 0.526855 + 0.276515i
\(541\) 4.30692 3.81560i 0.185169 0.164045i −0.565446 0.824785i \(-0.691296\pi\)
0.750615 + 0.660740i \(0.229757\pi\)
\(542\) −2.77607 4.02183i −0.119242 0.172752i
\(543\) 6.61530 + 1.63052i 0.283890 + 0.0699725i
\(544\) 1.05604 8.69731i 0.0452775 0.372894i
\(545\) 5.49872 7.96627i 0.235539 0.341237i
\(546\) −0.784248 + 0.882779i −0.0335627 + 0.0377794i
\(547\) −19.8862 28.8101i −0.850272 1.23183i −0.970984 0.239144i \(-0.923133\pi\)
0.120712 0.992688i \(-0.461482\pi\)
\(548\) −2.60372 + 1.36654i −0.111226 + 0.0583757i
\(549\) 8.49022 22.3869i 0.362354 0.955448i
\(550\) −0.00269467 0.0221926i −0.000114901 0.000946296i
\(551\) 0.644961 0.934387i 0.0274762 0.0398062i
\(552\) 2.36320 0.582477i 0.100585 0.0247919i
\(553\) 1.15244 1.66960i 0.0490069 0.0709988i
\(554\) −0.448947 + 1.18378i −0.0190739 + 0.0502938i
\(555\) −1.67933 + 4.42804i −0.0712837 + 0.187960i
\(556\) −10.0324 5.26541i −0.425469 0.223303i
\(557\) 15.9711 + 8.38229i 0.676718 + 0.355169i 0.767814 0.640673i \(-0.221345\pi\)
−0.0910956 + 0.995842i \(0.529037\pi\)
\(558\) −2.37106 + 0.584413i −0.100375 + 0.0247402i
\(559\) −3.32634 + 13.4159i −0.140689 + 0.567430i
\(560\) 13.8915 + 3.42394i 0.587021 + 0.144688i
\(561\) 0.157969 + 0.139948i 0.00666944 + 0.00590861i
\(562\) 0.248600 2.04741i 0.0104866 0.0863647i
\(563\) −0.881510 0.462652i −0.0371512 0.0194985i 0.446045 0.895010i \(-0.352832\pi\)
−0.483197 + 0.875512i \(0.660524\pi\)
\(564\) −6.61214 + 3.47032i −0.278421 + 0.146127i
\(565\) −7.53232 19.8611i −0.316887 0.835562i
\(566\) 2.06654 + 1.83079i 0.0868631 + 0.0769540i
\(567\) 0.867050 + 7.14080i 0.0364127 + 0.299885i
\(568\) 5.35972 1.32105i 0.224889 0.0554301i
\(569\) 12.3906 + 10.9771i 0.519442 + 0.460185i 0.881645 0.471914i \(-0.156437\pi\)
−0.362203 + 0.932099i \(0.617975\pi\)
\(570\) −0.219920 + 0.194832i −0.00921143 + 0.00816062i
\(571\) 25.6257 + 13.4494i 1.07240 + 0.562841i 0.906026 0.423221i \(-0.139101\pi\)
0.166377 + 0.986062i \(0.446793\pi\)
\(572\) 0.316537 0.217846i 0.0132351 0.00910859i
\(573\) −2.84107 + 1.49111i −0.118687 + 0.0622918i
\(574\) 0.234964 0.619548i 0.00980720 0.0258594i
\(575\) −1.37689 11.3397i −0.0574204 0.472900i
\(576\) 14.8811 7.81020i 0.620046 0.325425i
\(577\) −33.2380 −1.38372 −0.691859 0.722033i \(-0.743208\pi\)
−0.691859 + 0.722033i \(0.743208\pi\)
\(578\) −0.592314 + 0.310871i −0.0246370 + 0.0129305i
\(579\) −9.16355 + 8.11820i −0.380824 + 0.337381i
\(580\) −1.45114 2.10235i −0.0602555 0.0872952i
\(581\) 11.2499 + 9.96657i 0.466726 + 0.413483i
\(582\) 1.17100 + 1.69648i 0.0485394 + 0.0703214i
\(583\) −0.257999 0.680287i −0.0106852 0.0281746i
\(584\) −0.785644 2.07157i −0.0325102 0.0857223i
\(585\) −12.7239 1.56277i −0.526070 0.0646125i
\(586\) −0.726931 + 1.91676i −0.0300293 + 0.0791807i
\(587\) 32.8722 1.35678 0.678391 0.734701i \(-0.262678\pi\)
0.678391 + 0.734701i \(0.262678\pi\)
\(588\) 0.783871 + 2.06690i 0.0323263 + 0.0852374i
\(589\) −1.09562 + 9.02328i −0.0451444 + 0.371798i
\(590\) −2.01128 1.05560i −0.0828033 0.0434585i
\(591\) 8.84216 + 12.8101i 0.363718 + 0.526936i
\(592\) 7.79078 + 11.2869i 0.320199 + 0.463888i
\(593\) 8.74561 + 4.59005i 0.359139 + 0.188491i 0.634636 0.772811i \(-0.281150\pi\)
−0.275497 + 0.961302i \(0.588842\pi\)
\(594\) 0.00471832 0.0388588i 0.000193595 0.00159440i
\(595\) −6.06825 16.0007i −0.248774 0.655963i
\(596\) 37.0223 1.51649
\(597\) 2.29891 6.06174i 0.0940883 0.248090i
\(598\) −2.13978 + 1.47263i −0.0875022 + 0.0602204i
\(599\) 9.08801 + 23.9631i 0.371326 + 0.979106i 0.982277 + 0.187437i \(0.0600181\pi\)
−0.610951 + 0.791669i \(0.709213\pi\)
\(600\) −0.496043 1.30796i −0.0202509 0.0533971i
\(601\) −18.6973 27.0878i −0.762681 1.10493i −0.991326 0.131424i \(-0.958045\pi\)
0.228646 0.973510i \(-0.426570\pi\)
\(602\) 1.10539 + 0.979286i 0.0450522 + 0.0399127i
\(603\) 14.2482 + 20.6421i 0.580231 + 0.840610i
\(604\) 19.9013 17.6310i 0.809771 0.717395i
\(605\) 15.2033 7.97931i 0.618102 0.324405i
\(606\) 2.62883 0.106789
\(607\) −0.314006 + 0.164803i −0.0127451 + 0.00668915i −0.471084 0.882089i \(-0.656137\pi\)
0.458339 + 0.888778i \(0.348445\pi\)
\(608\) 0.314610 + 2.59105i 0.0127591 + 0.105081i
\(609\) −0.595688 + 1.57070i −0.0241385 + 0.0636480i
\(610\) 2.34889 1.23279i 0.0951039 0.0499144i
\(611\) 10.6560 11.9948i 0.431096 0.485257i
\(612\) −18.2997 9.60443i −0.739722 0.388236i
\(613\) −15.6969 + 13.9062i −0.633991 + 0.561667i −0.917715 0.397239i \(-0.869968\pi\)
0.283724 + 0.958906i \(0.408430\pi\)
\(614\) −1.82813 1.61958i −0.0737772 0.0653609i
\(615\) −2.21680 + 0.546393i −0.0893901 + 0.0220327i
\(616\) −0.00996266 0.0820499i −0.000401407 0.00330588i
\(617\) −7.36656 6.52621i −0.296567 0.262735i 0.501697 0.865044i \(-0.332709\pi\)
−0.798264 + 0.602308i \(0.794248\pi\)
\(618\) −0.0789500 0.208174i −0.00317584 0.00837399i
\(619\) −0.528419 + 0.277336i −0.0212390 + 0.0111471i −0.475309 0.879819i \(-0.657664\pi\)
0.454070 + 0.890966i \(0.349972\pi\)
\(620\) 18.1087 + 9.50417i 0.727263 + 0.381697i
\(621\) 2.41091 19.8557i 0.0967466 0.796780i
\(622\) −0.0138202 0.0122436i −0.000554138 0.000490924i
\(623\) −20.8222 5.13222i −0.834225 0.205618i
\(624\) 7.82569 8.80888i 0.313278 0.352637i
\(625\) 5.46008 1.34579i 0.218403 0.0538316i
\(626\) 2.48231 + 1.30282i 0.0992131 + 0.0520711i
\(627\) −0.0556711 0.0292185i −0.00222329 0.00116687i
\(628\) 4.13944 10.9148i 0.165182 0.435548i
\(629\) 5.81691 15.3379i 0.231935 0.611563i
\(630\) −0.778061 + 1.12722i −0.0309987 + 0.0449093i
\(631\) −31.0808 + 7.66073i −1.23731 + 0.304969i −0.803100 0.595844i \(-0.796818\pi\)
−0.434207 + 0.900813i \(0.642972\pi\)
\(632\) 0.310451 0.449766i 0.0123491 0.0178907i
\(633\) −0.0958330 0.789256i −0.00380902 0.0313701i
\(634\) 1.33029 3.50768i 0.0528325 0.139308i
\(635\) −24.1652 + 12.6828i −0.958965 + 0.503304i
\(636\) −12.8459 18.6105i −0.509374 0.737955i
\(637\) −3.14462 3.55941i −0.124594 0.141029i
\(638\) −0.00410826 + 0.00595184i −0.000162648 + 0.000235636i
\(639\) 2.35952 19.4324i 0.0933413 0.768734i
\(640\) 7.58533 + 1.86962i 0.299837 + 0.0739031i
\(641\) −24.9487 36.1445i −0.985416 1.42762i −0.902313 0.431080i \(-0.858133\pi\)
−0.0831025 0.996541i \(-0.526483\pi\)
\(642\) −0.554984 + 0.491673i −0.0219035 + 0.0194048i
\(643\) 28.0447 + 14.7190i 1.10597 + 0.580460i 0.915939 0.401317i \(-0.131447\pi\)
0.190036 + 0.981777i \(0.439140\pi\)
\(644\) −2.52858 20.8247i −0.0996400 0.820609i
\(645\) 0.613356 5.05144i 0.0241509 0.198900i
\(646\) 0.761763 0.674863i 0.0299712 0.0265521i
\(647\) 24.3594 35.2906i 0.957666 1.38742i 0.0360350 0.999351i \(-0.488527\pi\)
0.921631 0.388068i \(-0.126857\pi\)
\(648\) 0.233571 + 1.92363i 0.00917552 + 0.0755672i
\(649\) 0.0585898 0.482531i 0.00229985 0.0189410i
\(650\) 0.988437 + 1.11882i 0.0387697 + 0.0438837i
\(651\) −1.62107 13.3507i −0.0635346 0.523254i
\(652\) 27.9661 6.89304i 1.09524 0.269952i
\(653\) −38.3288 −1.49992 −0.749962 0.661481i \(-0.769928\pi\)
−0.749962 + 0.661481i \(0.769928\pi\)
\(654\) −0.851736 −0.0333055
\(655\) −15.7563 + 3.88357i −0.615648 + 0.151744i
\(656\) −2.34460 + 6.18221i −0.0915414 + 0.241375i
\(657\) −7.85664 −0.306517
\(658\) −0.607874 1.60283i −0.0236974 0.0624849i
\(659\) 11.7717 + 2.90146i 0.458560 + 0.113025i 0.461828 0.886970i \(-0.347194\pi\)
−0.00326737 + 0.999995i \(0.501040\pi\)
\(660\) −0.105886 + 0.0938068i −0.00412161 + 0.00365143i
\(661\) −29.5750 7.28959i −1.15034 0.283532i −0.382361 0.924013i \(-0.624889\pi\)
−0.767974 + 0.640481i \(0.778735\pi\)
\(662\) −1.23199 + 1.09145i −0.0478827 + 0.0424203i
\(663\) −13.9884 1.71807i −0.543263 0.0667242i
\(664\) 3.03056 + 2.68485i 0.117609 + 0.104192i
\(665\) 2.89606 + 4.19566i 0.112304 + 0.162701i
\(666\) −1.27479 + 0.314206i −0.0493969 + 0.0121753i
\(667\) −2.09919 + 3.04121i −0.0812811 + 0.117756i
\(668\) −13.5720 3.34521i −0.525118 0.129430i
\(669\) −14.4360 3.55816i −0.558129 0.137566i
\(670\) −0.334968 + 2.75871i −0.0129409 + 0.106578i
\(671\) 0.424904 + 0.376432i 0.0164032 + 0.0145320i
\(672\) −1.36942 3.61087i −0.0528266 0.139292i
\(673\) 0.512077 0.268759i 0.0197391 0.0103599i −0.454825 0.890581i \(-0.650298\pi\)
0.474564 + 0.880221i \(0.342606\pi\)
\(674\) −0.632600 + 0.916480i −0.0243668 + 0.0353015i
\(675\) −11.4955 −0.442463
\(676\) −9.16547 + 23.9678i −0.352518 + 0.921839i
\(677\) −8.03573 −0.308838 −0.154419 0.988005i \(-0.549351\pi\)
−0.154419 + 0.988005i \(0.549351\pi\)
\(678\) −1.06175 + 1.53821i −0.0407764 + 0.0590748i
\(679\) 31.6714 16.6224i 1.21544 0.637911i
\(680\) −1.63470 4.31034i −0.0626878 0.165294i
\(681\) 16.4619 + 14.5840i 0.630823 + 0.558861i
\(682\) 0.00697889 0.0574764i 0.000267236 0.00220088i
\(683\) −35.7488 8.81129i −1.36789 0.337155i −0.514081 0.857742i \(-0.671867\pi\)
−0.853809 + 0.520587i \(0.825713\pi\)
\(684\) 5.97807 + 1.47346i 0.228577 + 0.0563392i
\(685\) −1.32129 + 1.91421i −0.0504838 + 0.0731384i
\(686\) −3.11092 + 0.766773i −0.118776 + 0.0292755i
\(687\) −9.22643 13.3668i −0.352010 0.509975i
\(688\) −11.0302 9.77189i −0.420522 0.372550i
\(689\) 39.9480 + 27.6555i 1.52190 + 1.05359i
\(690\) 0.715787 0.634132i 0.0272496 0.0241410i
\(691\) −20.1472 4.96585i −0.766437 0.188910i −0.163332 0.986571i \(-0.552224\pi\)
−0.603105 + 0.797661i \(0.706070\pi\)
\(692\) 2.74334 2.43039i 0.104286 0.0923896i
\(693\) −0.284581 0.0701428i −0.0108103 0.00266451i
\(694\) 1.90158 + 5.01406i 0.0721830 + 0.190331i
\(695\) −8.96210 −0.339952
\(696\) −0.160470 + 0.423123i −0.00608258 + 0.0160385i
\(697\) 7.67860 1.89261i 0.290848 0.0716876i
\(698\) 5.94823 0.225144
\(699\) −11.6334 −0.440015
\(700\) −11.7062 + 2.88533i −0.442454 + 0.109055i
\(701\) 2.39886 + 19.7564i 0.0906038 + 0.746190i 0.965232 + 0.261395i \(0.0841825\pi\)
−0.874628 + 0.484795i \(0.838894\pi\)
\(702\) 1.21162 + 2.31630i 0.0457295 + 0.0874229i
\(703\) −0.589057 + 4.85132i −0.0222167 + 0.182971i
\(704\) 0.0480293 + 0.395556i 0.00181017 + 0.0149081i
\(705\) −3.35540 + 4.86113i −0.126372 + 0.183081i
\(706\) 1.80186 1.59631i 0.0678141 0.0600780i
\(707\) 5.49825 45.2822i 0.206783 1.70301i
\(708\) −1.82103 14.9975i −0.0684385 0.563642i
\(709\) 13.0465 + 6.84735i 0.489973 + 0.257158i 0.691568 0.722311i \(-0.256920\pi\)
−0.201595 + 0.979469i \(0.564612\pi\)
\(710\) 1.62340 1.43821i 0.0609250 0.0539749i
\(711\) −1.10090 1.59493i −0.0412871 0.0598147i
\(712\) −5.60920 1.38254i −0.210214 0.0518130i
\(713\) 3.56600 29.3686i 0.133548 1.09986i
\(714\) −0.855379 + 1.23923i −0.0320118 + 0.0463770i
\(715\) 0.141620 0.268933i 0.00529629 0.0100575i
\(716\) 12.8862 + 18.6690i 0.481582 + 0.697692i
\(717\) 19.6750 10.3262i 0.734775 0.385640i
\(718\) 1.41793 3.73878i 0.0529168 0.139530i
\(719\) 3.16038 + 26.0281i 0.117862 + 0.970685i 0.924907 + 0.380194i \(0.124143\pi\)
−0.807044 + 0.590491i \(0.798934\pi\)
\(720\) 7.76394 11.2480i 0.289345 0.419188i
\(721\) −3.75097 + 0.924531i −0.139693 + 0.0344313i
\(722\) 1.57194 2.27734i 0.0585014 0.0847539i
\(723\) 3.73092 9.83763i 0.138754 0.365865i
\(724\) 5.60950 14.7910i 0.208475 0.549704i
\(725\) 1.88056 + 0.986996i 0.0698424 + 0.0366561i
\(726\) −1.33776 0.702113i −0.0496491 0.0260579i
\(727\) −6.37892 + 1.57226i −0.236581 + 0.0583120i −0.355824 0.934553i \(-0.615800\pi\)
0.119242 + 0.992865i \(0.461953\pi\)
\(728\) 3.65442 + 4.13646i 0.135442 + 0.153308i
\(729\) −4.43824 1.09393i −0.164379 0.0405158i
\(730\) −0.651564 0.577235i −0.0241155 0.0213644i
\(731\) −2.12456 + 17.4973i −0.0785795 + 0.647161i
\(732\) 15.6226 + 8.19939i 0.577429 + 0.303058i
\(733\) −5.32890 + 2.79682i −0.196827 + 0.103303i −0.560258 0.828318i \(-0.689298\pi\)
0.363430 + 0.931621i \(0.381606\pi\)
\(734\) 1.24908 + 3.29355i 0.0461044 + 0.121567i
\(735\) 1.30879 + 1.15948i 0.0482753 + 0.0427682i
\(736\) −1.02398 8.43324i −0.0377444 0.310853i
\(737\) −0.577396 + 0.142315i −0.0212686 + 0.00524225i
\(738\) −0.473788 0.419739i −0.0174404 0.0154508i
\(739\) −1.66361 + 1.47383i −0.0611968 + 0.0542156i −0.693167 0.720777i \(-0.743785\pi\)
0.631970 + 0.774993i \(0.282247\pi\)
\(740\) 9.73604 + 5.10987i 0.357904 + 0.187842i
\(741\) 4.16872 0.500343i 0.153142 0.0183806i
\(742\) 4.59651 2.41243i 0.168743 0.0885632i
\(743\) −18.1112 + 47.7554i −0.664437 + 1.75198i −0.00526085 + 0.999986i \(0.501675\pi\)
−0.659176 + 0.751989i \(0.729095\pi\)
\(744\) −0.436691 3.59648i −0.0160099 0.131853i
\(745\) 25.9300 13.6091i 0.950001 0.498599i
\(746\) −2.76698 −0.101306
\(747\) 12.7130 6.67230i 0.465145 0.244127i
\(748\) 0.366770 0.324930i 0.0134104 0.0118806i
\(749\) 7.30842 + 10.5881i 0.267044 + 0.386880i
\(750\) −1.21417 1.07566i −0.0443351 0.0392775i
\(751\) 18.4541 + 26.7354i 0.673399 + 0.975587i 0.999542 + 0.0302668i \(0.00963569\pi\)
−0.326142 + 0.945321i \(0.605749\pi\)
\(752\) 6.06572 + 15.9940i 0.221194 + 0.583240i
\(753\) 3.91706 + 10.3284i 0.142746 + 0.376390i
\(754\) 0.000665809 0.482953i 2.42473e−5 0.0175881i
\(755\) 7.45760 19.6641i 0.271410 0.715649i
\(756\) −21.1108 −0.767793
\(757\) 0.452018 + 1.19187i 0.0164289 + 0.0433194i 0.942980 0.332850i \(-0.108010\pi\)
−0.926551 + 0.376169i \(0.877241\pi\)
\(758\) −0.520370 + 4.28563i −0.0189007 + 0.155661i
\(759\) 0.181196 + 0.0950992i 0.00657701 + 0.00345188i
\(760\) 0.780155 + 1.13025i 0.0282992 + 0.0409985i
\(761\) −2.99820 4.34364i −0.108685 0.157457i 0.764867 0.644188i \(-0.222805\pi\)
−0.873552 + 0.486731i \(0.838189\pi\)
\(762\) 2.12633 + 1.11599i 0.0770289 + 0.0404279i
\(763\) −1.78142 + 14.6713i −0.0644919 + 0.531138i
\(764\) 2.64169 + 6.96557i 0.0955731 + 0.252005i
\(765\) −16.3474 −0.591041
\(766\) 0.545833 1.43924i 0.0197217 0.0520019i