Properties

Label 169.2.g.a.14.4
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.4
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.885893 + 1.28344i) q^{2} +(-1.70070 + 0.892595i) q^{3} +(-0.153196 - 0.403946i) q^{4} +(2.77189 + 2.45568i) q^{5} +(0.361046 - 2.97348i) q^{6} +(3.26613 + 0.805028i) q^{7} +(-2.37420 - 0.585188i) q^{8} +(0.391453 - 0.567117i) q^{9} +O(q^{10})\) \(q+(-0.885893 + 1.28344i) q^{2} +(-1.70070 + 0.892595i) q^{3} +(-0.153196 - 0.403946i) q^{4} +(2.77189 + 2.45568i) q^{5} +(0.361046 - 2.97348i) q^{6} +(3.26613 + 0.805028i) q^{7} +(-2.37420 - 0.585188i) q^{8} +(0.391453 - 0.567117i) q^{9} +(-5.60732 + 1.38208i) q^{10} +(-1.53597 - 2.22524i) q^{11} +(0.621101 + 0.550247i) q^{12} +(-3.49393 + 0.890203i) q^{13} +(-3.92664 + 3.47870i) q^{14} +(-6.90608 - 1.70220i) q^{15} +(3.50108 - 3.10169i) q^{16} +(-3.27833 - 0.808035i) q^{17} +(0.381074 + 1.00481i) q^{18} +7.55032 q^{19} +(0.567318 - 1.49590i) q^{20} +(-6.27326 + 1.54622i) q^{21} +4.21667 q^{22} +1.76869 q^{23} +(4.56013 - 1.12397i) q^{24} +(1.05033 + 8.65023i) q^{25} +(1.95273 - 5.27287i) q^{26} +(0.535009 - 4.40619i) q^{27} +(-0.175171 - 1.44266i) q^{28} +(-1.72976 + 2.50599i) q^{29} +(8.30271 - 7.35556i) q^{30} +(0.836152 - 6.88633i) q^{31} +(0.289754 + 2.38634i) q^{32} +(4.59846 + 2.41346i) q^{33} +(3.94131 - 3.49170i) q^{34} +(7.07646 + 10.2520i) q^{35} +(-0.289054 - 0.0712453i) q^{36} +(-0.445358 + 3.66786i) q^{37} +(-6.68878 + 9.69037i) q^{38} +(5.14753 - 4.63263i) q^{39} +(-5.14399 - 7.45236i) q^{40} +(-1.42618 + 0.748516i) q^{41} +(3.57296 - 9.42112i) q^{42} +(0.0744845 + 0.613435i) q^{43} +(-0.663571 + 0.961348i) q^{44} +(2.47772 - 0.610704i) q^{45} +(-1.56687 + 2.27000i) q^{46} +(-2.47961 + 6.53820i) q^{47} +(-3.18573 + 8.40008i) q^{48} +(3.82131 + 2.00558i) q^{49} +(-12.0325 - 6.31515i) q^{50} +(6.29669 - 1.55199i) q^{51} +(0.894851 + 1.27498i) q^{52} +(12.9219 + 3.18497i) q^{53} +(5.18111 + 4.59007i) q^{54} +(1.20693 - 9.93999i) q^{55} +(-7.28334 - 3.82259i) q^{56} +(-12.8408 + 6.73938i) q^{57} +(-1.68390 - 4.44008i) q^{58} +(-2.43331 - 2.15572i) q^{59} +(0.370392 + 3.05045i) q^{60} +(13.6795 - 3.37169i) q^{61} +(8.09744 + 7.17370i) q^{62} +(1.73508 - 1.53715i) q^{63} +(4.96386 + 2.60523i) q^{64} +(-11.8708 - 6.11243i) q^{65} +(-7.17127 + 3.76377i) q^{66} +(-3.14424 + 8.29068i) q^{67} +(0.175825 + 1.44805i) q^{68} +(-3.00800 + 1.57872i) q^{69} -19.4268 q^{70} +(4.18318 - 2.19550i) q^{71} +(-1.26126 + 1.11738i) q^{72} +(-3.56058 - 5.15839i) q^{73} +(-4.31293 - 3.82092i) q^{74} +(-9.50744 - 13.7739i) q^{75} +(-1.15668 - 3.04992i) q^{76} +(-3.22530 - 8.50442i) q^{77} +(1.38553 + 10.7105i) q^{78} +(3.79832 - 10.0153i) q^{79} +17.3214 q^{80} +(3.75613 + 9.90410i) q^{81} +(0.302768 - 2.49352i) q^{82} +(3.97704 + 2.08731i) q^{83} +(1.58563 + 2.29718i) q^{84} +(-7.10289 - 10.2903i) q^{85} +(-0.853291 - 0.447842i) q^{86} +(0.704964 - 5.80590i) q^{87} +(2.34452 + 6.18200i) q^{88} -9.93317 q^{89} +(-1.41120 + 3.72102i) q^{90} +(-12.1282 + 0.0948039i) q^{91} +(-0.270956 - 0.714453i) q^{92} +(4.72466 + 12.4579i) q^{93} +(-6.19470 - 8.97458i) q^{94} +(20.9287 + 18.5412i) q^{95} +(-2.62282 - 3.79980i) q^{96} +(-1.36959 + 1.21335i) q^{97} +(-5.95932 + 3.12769i) q^{98} -1.86323 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.885893 + 1.28344i −0.626421 + 0.907528i −0.999797 0.0201525i \(-0.993585\pi\)
0.373376 + 0.927680i \(0.378200\pi\)
\(3\) −1.70070 + 0.892595i −0.981898 + 0.515340i −0.877697 0.479216i \(-0.840921\pi\)
−0.104201 + 0.994556i \(0.533229\pi\)
\(4\) −0.153196 0.403946i −0.0765982 0.201973i
\(5\) 2.77189 + 2.45568i 1.23963 + 1.09821i 0.991584 + 0.129466i \(0.0413262\pi\)
0.248044 + 0.968749i \(0.420212\pi\)
\(6\) 0.361046 2.97348i 0.147397 1.21392i
\(7\) 3.26613 + 0.805028i 1.23448 + 0.304272i 0.801974 0.597359i \(-0.203783\pi\)
0.432506 + 0.901631i \(0.357630\pi\)
\(8\) −2.37420 0.585188i −0.839406 0.206895i
\(9\) 0.391453 0.567117i 0.130484 0.189039i
\(10\) −5.60732 + 1.38208i −1.77319 + 0.437052i
\(11\) −1.53597 2.22524i −0.463113 0.670935i 0.519951 0.854196i \(-0.325950\pi\)
−0.983064 + 0.183261i \(0.941335\pi\)
\(12\) 0.621101 + 0.550247i 0.179296 + 0.158843i
\(13\) −3.49393 + 0.890203i −0.969042 + 0.246898i
\(14\) −3.92664 + 3.47870i −1.04944 + 0.929722i
\(15\) −6.90608 1.70220i −1.78314 0.439505i
\(16\) 3.50108 3.10169i 0.875271 0.775422i
\(17\) −3.27833 0.808035i −0.795111 0.195977i −0.179220 0.983809i \(-0.557357\pi\)
−0.615890 + 0.787832i \(0.711204\pi\)
\(18\) 0.381074 + 1.00481i 0.0898201 + 0.236836i
\(19\) 7.55032 1.73216 0.866081 0.499903i \(-0.166631\pi\)
0.866081 + 0.499903i \(0.166631\pi\)
\(20\) 0.567318 1.49590i 0.126856 0.334492i
\(21\) −6.27326 + 1.54622i −1.36894 + 0.337413i
\(22\) 4.21667 0.898996
\(23\) 1.76869 0.368797 0.184398 0.982852i \(-0.440966\pi\)
0.184398 + 0.982852i \(0.440966\pi\)
\(24\) 4.56013 1.12397i 0.930833 0.229430i
\(25\) 1.05033 + 8.65023i 0.210065 + 1.73005i
\(26\) 1.95273 5.27287i 0.382962 1.03409i
\(27\) 0.535009 4.40619i 0.102962 0.847972i
\(28\) −0.175171 1.44266i −0.0331042 0.272638i
\(29\) −1.72976 + 2.50599i −0.321208 + 0.465350i −0.950012 0.312214i \(-0.898930\pi\)
0.628804 + 0.777564i \(0.283545\pi\)
\(30\) 8.30271 7.35556i 1.51586 1.34294i
\(31\) 0.836152 6.88633i 0.150177 1.23682i −0.701467 0.712702i \(-0.747471\pi\)
0.851645 0.524120i \(-0.175606\pi\)
\(32\) 0.289754 + 2.38634i 0.0512217 + 0.421849i
\(33\) 4.59846 + 2.41346i 0.800490 + 0.420129i
\(34\) 3.94131 3.49170i 0.675929 0.598821i
\(35\) 7.07646 + 10.2520i 1.19614 + 1.73291i
\(36\) −0.289054 0.0712453i −0.0481756 0.0118742i
\(37\) −0.445358 + 3.66786i −0.0732165 + 0.602992i 0.909209 + 0.416339i \(0.136687\pi\)
−0.982426 + 0.186653i \(0.940236\pi\)
\(38\) −6.68878 + 9.69037i −1.08506 + 1.57199i
\(39\) 5.14753 4.63263i 0.824264 0.741814i
\(40\) −5.14399 7.45236i −0.813336 1.17832i
\(41\) −1.42618 + 0.748516i −0.222732 + 0.116899i −0.572399 0.819975i \(-0.693987\pi\)
0.349667 + 0.936874i \(0.386295\pi\)
\(42\) 3.57296 9.42112i 0.551320 1.45371i
\(43\) 0.0744845 + 0.613435i 0.0113588 + 0.0935479i 0.997286 0.0736288i \(-0.0234580\pi\)
−0.985927 + 0.167177i \(0.946535\pi\)
\(44\) −0.663571 + 0.961348i −0.100037 + 0.144929i
\(45\) 2.47772 0.610704i 0.369357 0.0910384i
\(46\) −1.56687 + 2.27000i −0.231022 + 0.334693i
\(47\) −2.47961 + 6.53820i −0.361689 + 0.953695i 0.623439 + 0.781872i \(0.285735\pi\)
−0.985128 + 0.171823i \(0.945034\pi\)
\(48\) −3.18573 + 8.40008i −0.459821 + 1.21245i
\(49\) 3.82131 + 2.00558i 0.545902 + 0.286512i
\(50\) −12.0325 6.31515i −1.70165 0.893097i
\(51\) 6.29669 1.55199i 0.881713 0.217323i
\(52\) 0.894851 + 1.27498i 0.124093 + 0.176808i
\(53\) 12.9219 + 3.18497i 1.77496 + 0.437490i 0.984553 0.175086i \(-0.0560205\pi\)
0.790412 + 0.612576i \(0.209867\pi\)
\(54\) 5.18111 + 4.59007i 0.705060 + 0.624629i
\(55\) 1.20693 9.93999i 0.162743 1.34031i
\(56\) −7.28334 3.82259i −0.973278 0.510816i
\(57\) −12.8408 + 6.73938i −1.70081 + 0.892653i
\(58\) −1.68390 4.44008i −0.221107 0.583011i
\(59\) −2.43331 2.15572i −0.316790 0.280651i 0.489710 0.871885i \(-0.337103\pi\)
−0.806500 + 0.591234i \(0.798641\pi\)
\(60\) 0.370392 + 3.05045i 0.0478174 + 0.393811i
\(61\) 13.6795 3.37169i 1.75148 0.431701i 0.772392 0.635146i \(-0.219060\pi\)
0.979086 + 0.203445i \(0.0652139\pi\)
\(62\) 8.09744 + 7.17370i 1.02838 + 0.911061i
\(63\) 1.73508 1.53715i 0.218599 0.193662i
\(64\) 4.96386 + 2.60523i 0.620482 + 0.325654i
\(65\) −11.8708 6.11243i −1.47240 0.758154i
\(66\) −7.17127 + 3.76377i −0.882723 + 0.463289i
\(67\) −3.14424 + 8.29068i −0.384130 + 1.01287i 0.593925 + 0.804521i \(0.297578\pi\)
−0.978055 + 0.208347i \(0.933192\pi\)
\(68\) 0.175825 + 1.44805i 0.0213220 + 0.175602i
\(69\) −3.00800 + 1.57872i −0.362121 + 0.190056i
\(70\) −19.4268 −2.32195
\(71\) 4.18318 2.19550i 0.496452 0.260558i −0.197863 0.980230i \(-0.563400\pi\)
0.694314 + 0.719672i \(0.255708\pi\)
\(72\) −1.26126 + 1.11738i −0.148641 + 0.131684i
\(73\) −3.56058 5.15839i −0.416735 0.603744i 0.557254 0.830342i \(-0.311855\pi\)
−0.973988 + 0.226598i \(0.927240\pi\)
\(74\) −4.31293 3.82092i −0.501367 0.444173i
\(75\) −9.50744 13.7739i −1.09782 1.59047i
\(76\) −1.15668 3.04992i −0.132681 0.349850i
\(77\) −3.22530 8.50442i −0.367557 0.969168i
\(78\) 1.38553 + 10.7105i 0.156881 + 1.21273i
\(79\) 3.79832 10.0153i 0.427344 1.12681i −0.532537 0.846407i \(-0.678761\pi\)
0.959881 0.280408i \(-0.0904696\pi\)
\(80\) 17.3214 1.93659
\(81\) 3.75613 + 9.90410i 0.417348 + 1.10046i
\(82\) 0.302768 2.49352i 0.0334351 0.275363i
\(83\) 3.97704 + 2.08731i 0.436537 + 0.229112i 0.668651 0.743576i \(-0.266872\pi\)
−0.232114 + 0.972689i \(0.574564\pi\)
\(84\) 1.58563 + 2.29718i 0.173006 + 0.250643i
\(85\) −7.10289 10.2903i −0.770416 1.11614i
\(86\) −0.853291 0.447842i −0.0920127 0.0482920i
\(87\) 0.704964 5.80590i 0.0755801 0.622458i
\(88\) 2.34452 + 6.18200i 0.249927 + 0.659003i
\(89\) −9.93317 −1.05291 −0.526457 0.850202i \(-0.676480\pi\)
−0.526457 + 0.850202i \(0.676480\pi\)
\(90\) −1.41120 + 3.72102i −0.148753 + 0.392230i
\(91\) −12.1282 + 0.0948039i −1.27139 + 0.00993815i
\(92\) −0.270956 0.714453i −0.0282491 0.0744869i
\(93\) 4.72466 + 12.4579i 0.489925 + 1.29183i
\(94\) −6.19470 8.97458i −0.638935 0.925657i
\(95\) 20.9287 + 18.5412i 2.14724 + 1.90229i
\(96\) −2.62282 3.79980i −0.267690 0.387816i
\(97\) −1.36959 + 1.21335i −0.139061 + 0.123197i −0.729786 0.683676i \(-0.760380\pi\)
0.590725 + 0.806873i \(0.298842\pi\)
\(98\) −5.95932 + 3.12769i −0.601982 + 0.315944i
\(99\) −1.86323 −0.187262
\(100\) 3.33331 1.74946i 0.333331 0.174946i
\(101\) 0.502063 + 4.13486i 0.0499571 + 0.411434i 0.996138 + 0.0877969i \(0.0279826\pi\)
−0.946181 + 0.323637i \(0.895094\pi\)
\(102\) −3.58631 + 9.45631i −0.355097 + 0.936314i
\(103\) −5.31284 + 2.78839i −0.523489 + 0.274748i −0.705700 0.708511i \(-0.749367\pi\)
0.182210 + 0.983260i \(0.441675\pi\)
\(104\) 8.81622 0.0689145i 0.864502 0.00675762i
\(105\) −21.1858 11.1192i −2.06752 1.08512i
\(106\) −15.5352 + 13.7630i −1.50891 + 1.33678i
\(107\) −2.87378 2.54595i −0.277819 0.246126i 0.512694 0.858571i \(-0.328647\pi\)
−0.790513 + 0.612445i \(0.790186\pi\)
\(108\) −1.86182 + 0.458898i −0.179154 + 0.0441575i
\(109\) 0.505270 + 4.16128i 0.0483961 + 0.398578i 0.996697 + 0.0812062i \(0.0258772\pi\)
−0.948301 + 0.317372i \(0.897200\pi\)
\(110\) 11.6881 + 10.3548i 1.11442 + 0.987291i
\(111\) −2.51649 6.63544i −0.238855 0.629808i
\(112\) 13.9319 7.31204i 1.31644 0.690923i
\(113\) 0.520380 + 0.273117i 0.0489533 + 0.0256927i 0.489022 0.872271i \(-0.337354\pi\)
−0.440069 + 0.897964i \(0.645046\pi\)
\(114\) 2.72602 22.4508i 0.255315 2.10271i
\(115\) 4.90261 + 4.34333i 0.457170 + 0.405018i
\(116\) 1.27728 + 0.314820i 0.118592 + 0.0292303i
\(117\) −0.862859 + 2.32994i −0.0797713 + 0.215403i
\(118\) 4.92239 1.21326i 0.453142 0.111690i
\(119\) −10.0569 5.27829i −0.921918 0.483860i
\(120\) 15.4003 + 8.08271i 1.40585 + 0.737847i
\(121\) 1.30817 3.44936i 0.118925 0.313578i
\(122\) −7.79121 + 20.5437i −0.705383 + 1.85994i
\(123\) 1.75738 2.54600i 0.158457 0.229565i
\(124\) −2.90980 + 0.717201i −0.261308 + 0.0644065i
\(125\) −7.81249 + 11.3184i −0.698771 + 1.01234i
\(126\) 0.435736 + 3.58861i 0.0388185 + 0.319699i
\(127\) 4.88700 12.8860i 0.433651 1.14344i −0.523032 0.852313i \(-0.675199\pi\)
0.956683 0.291131i \(-0.0940315\pi\)
\(128\) −11.9981 + 6.29711i −1.06050 + 0.556591i
\(129\) −0.674224 0.976783i −0.0593621 0.0860009i
\(130\) 18.3612 9.82053i 1.61039 0.861318i
\(131\) −1.32597 + 1.92101i −0.115851 + 0.167839i −0.876620 0.481184i \(-0.840207\pi\)
0.760769 + 0.649023i \(0.224822\pi\)
\(132\) 0.270439 2.22726i 0.0235387 0.193858i
\(133\) 24.6603 + 6.07822i 2.13832 + 0.527048i
\(134\) −7.85511 11.3801i −0.678578 0.983091i
\(135\) 12.3032 10.8997i 1.05889 0.938095i
\(136\) 7.31055 + 3.83687i 0.626874 + 0.329009i
\(137\) −1.93213 15.9125i −0.165073 1.35950i −0.806008 0.591905i \(-0.798376\pi\)
0.640935 0.767595i \(-0.278547\pi\)
\(138\) 0.638578 5.25916i 0.0543593 0.447689i
\(139\) −13.7274 + 12.1614i −1.16434 + 1.03152i −0.165370 + 0.986232i \(0.552882\pi\)
−0.998974 + 0.0452872i \(0.985580\pi\)
\(140\) 3.05717 4.42907i 0.258378 0.374325i
\(141\) −1.61889 13.3328i −0.136335 1.12282i
\(142\) −0.888059 + 7.31383i −0.0745243 + 0.613763i
\(143\) 7.34749 + 6.40751i 0.614428 + 0.535823i
\(144\) −0.388512 3.19969i −0.0323760 0.266641i
\(145\) −10.9486 + 2.69859i −0.909233 + 0.224106i
\(146\) 9.77477 0.808966
\(147\) −8.28907 −0.683671
\(148\) 1.54984 0.382002i 0.127396 0.0314003i
\(149\) 0.891019 2.34942i 0.0729951 0.192472i −0.893553 0.448958i \(-0.851795\pi\)
0.966548 + 0.256485i \(0.0825646\pi\)
\(150\) 26.1005 2.13110
\(151\) −7.82248 20.6262i −0.636584 1.67853i −0.730464 0.682951i \(-0.760696\pi\)
0.0938801 0.995584i \(-0.470073\pi\)
\(152\) −17.9260 4.41836i −1.45399 0.358376i
\(153\) −1.74156 + 1.54289i −0.140797 + 0.124735i
\(154\) 13.7722 + 3.39453i 1.10979 + 0.273539i
\(155\) 19.2284 17.0348i 1.54446 1.36827i
\(156\) −2.65991 1.36962i −0.212963 0.109657i
\(157\) 10.5366 + 9.33465i 0.840916 + 0.744986i 0.969075 0.246767i \(-0.0793683\pi\)
−0.128159 + 0.991754i \(0.540907\pi\)
\(158\) 9.48917 + 13.7474i 0.754918 + 1.09369i
\(159\) −24.8192 + 6.11738i −1.96829 + 0.485140i
\(160\) −5.05692 + 7.32621i −0.399784 + 0.579188i
\(161\) 5.77675 + 1.42384i 0.455272 + 0.112214i
\(162\) −16.0388 3.95322i −1.26013 0.310594i
\(163\) −1.22408 + 10.0812i −0.0958775 + 0.789622i 0.862882 + 0.505405i \(0.168657\pi\)
−0.958760 + 0.284217i \(0.908266\pi\)
\(164\) 0.520845 + 0.461428i 0.0406712 + 0.0360315i
\(165\) 6.81975 + 17.9822i 0.530917 + 1.39991i
\(166\) −6.20217 + 3.25515i −0.481382 + 0.252649i
\(167\) 4.42166 6.40587i 0.342158 0.495701i −0.613696 0.789542i \(-0.710318\pi\)
0.955854 + 0.293841i \(0.0949335\pi\)
\(168\) 15.7988 1.21890
\(169\) 11.4151 6.22061i 0.878083 0.478508i
\(170\) 19.4994 1.49553
\(171\) 2.95559 4.28192i 0.226020 0.327446i
\(172\) 0.236384 0.124064i 0.0180241 0.00945976i
\(173\) −4.63440 12.2199i −0.352347 0.929062i −0.987633 0.156785i \(-0.949887\pi\)
0.635286 0.772277i \(-0.280882\pi\)
\(174\) 6.82699 + 6.04819i 0.517553 + 0.458512i
\(175\) −3.53317 + 29.0983i −0.267082 + 2.19962i
\(176\) −12.2796 3.02664i −0.925608 0.228142i
\(177\) 6.06251 + 1.49427i 0.455686 + 0.112317i
\(178\) 8.79972 12.7486i 0.659567 0.955548i
\(179\) 17.4846 4.30958i 1.30686 0.322113i 0.476421 0.879217i \(-0.341934\pi\)
0.830442 + 0.557104i \(0.188088\pi\)
\(180\) −0.626269 0.907308i −0.0466794 0.0676267i
\(181\) 2.00697 + 1.77802i 0.149177 + 0.132159i 0.734411 0.678705i \(-0.237459\pi\)
−0.585233 + 0.810865i \(0.698997\pi\)
\(182\) 10.6227 15.6498i 0.787404 1.16004i
\(183\) −20.2551 + 17.9445i −1.49730 + 1.32649i
\(184\) −4.19921 1.03501i −0.309570 0.0763022i
\(185\) −10.2416 + 9.07324i −0.752975 + 0.667078i
\(186\) −20.1745 4.97257i −1.47927 0.364606i
\(187\) 3.23735 + 8.53618i 0.236738 + 0.624227i
\(188\) 3.02095 0.220325
\(189\) 5.29451 13.9605i 0.385119 1.01548i
\(190\) −42.3370 + 10.4351i −3.07145 + 0.757045i
\(191\) −6.73859 −0.487587 −0.243794 0.969827i \(-0.578392\pi\)
−0.243794 + 0.969827i \(0.578392\pi\)
\(192\) −10.7674 −0.777073
\(193\) −7.68211 + 1.89347i −0.552970 + 0.136295i −0.505893 0.862596i \(-0.668837\pi\)
−0.0470773 + 0.998891i \(0.514991\pi\)
\(194\) −0.343951 2.83269i −0.0246942 0.203375i
\(195\) 25.6447 0.200459i 1.83645 0.0143551i
\(196\) 0.224734 1.85085i 0.0160524 0.132204i
\(197\) −2.14266 17.6464i −0.152659 1.25726i −0.844638 0.535339i \(-0.820184\pi\)
0.691979 0.721918i \(-0.256739\pi\)
\(198\) 1.65062 2.39134i 0.117305 0.169945i
\(199\) −6.46059 + 5.72359i −0.457979 + 0.405734i −0.860319 0.509756i \(-0.829736\pi\)
0.402339 + 0.915491i \(0.368197\pi\)
\(200\) 2.56832 21.1520i 0.181608 1.49567i
\(201\) −2.05282 16.9065i −0.144795 1.19249i
\(202\) −5.75161 3.01868i −0.404682 0.212393i
\(203\) −7.66700 + 6.79237i −0.538118 + 0.476731i
\(204\) −1.59155 2.30576i −0.111431 0.161435i
\(205\) −5.79133 1.42743i −0.404484 0.0996963i
\(206\) 1.12788 9.28892i 0.0785830 0.647189i
\(207\) 0.692357 1.00305i 0.0481221 0.0697169i
\(208\) −9.47140 + 13.9538i −0.656724 + 0.967519i
\(209\) −11.5971 16.8013i −0.802187 1.16217i
\(210\) 33.0391 17.3403i 2.27992 1.19659i
\(211\) −2.24615 + 5.92261i −0.154631 + 0.407729i −0.989837 0.142209i \(-0.954579\pi\)
0.835205 + 0.549938i \(0.185349\pi\)
\(212\) −0.693039 5.70769i −0.0475981 0.392006i
\(213\) −5.15463 + 7.46776i −0.353189 + 0.511683i
\(214\) 5.81342 1.43288i 0.397397 0.0979497i
\(215\) −1.29994 + 1.88328i −0.0886550 + 0.128439i
\(216\) −3.84867 + 10.1481i −0.261869 + 0.690491i
\(217\) 8.27466 21.8185i 0.561721 1.48114i
\(218\) −5.78835 3.03796i −0.392037 0.205757i
\(219\) 10.6598 + 5.59471i 0.720325 + 0.378055i
\(220\) −4.20011 + 1.03523i −0.283171 + 0.0697955i
\(221\) 12.1736 0.0951580i 0.818882 0.00640102i
\(222\) 10.7455 + 2.64853i 0.721192 + 0.177758i
\(223\) −6.24367 5.53141i −0.418107 0.370411i 0.427681 0.903930i \(-0.359331\pi\)
−0.845788 + 0.533519i \(0.820869\pi\)
\(224\) −0.974695 + 8.02733i −0.0651245 + 0.536349i
\(225\) 5.31684 + 2.79049i 0.354456 + 0.186033i
\(226\) −0.811530 + 0.425924i −0.0539821 + 0.0283320i
\(227\) −7.43374 19.6012i −0.493395 1.30097i −0.918353 0.395762i \(-0.870480\pi\)
0.424958 0.905213i \(-0.360289\pi\)
\(228\) 4.68951 + 4.15454i 0.310570 + 0.275141i
\(229\) 2.49840 + 20.5761i 0.165099 + 1.35971i 0.805922 + 0.592021i \(0.201670\pi\)
−0.640824 + 0.767688i \(0.721407\pi\)
\(230\) −9.91758 + 2.44446i −0.653946 + 0.161183i
\(231\) 13.0763 + 11.5846i 0.860355 + 0.762208i
\(232\) 5.57327 4.93748i 0.365903 0.324162i
\(233\) 3.34995 + 1.75819i 0.219462 + 0.115183i 0.570872 0.821039i \(-0.306605\pi\)
−0.351410 + 0.936222i \(0.614298\pi\)
\(234\) −2.22593 3.17150i −0.145514 0.207328i
\(235\) −22.9290 + 12.0340i −1.49572 + 0.785015i
\(236\) −0.498021 + 1.31317i −0.0324184 + 0.0854803i
\(237\) 2.47985 + 20.4234i 0.161084 + 1.32664i
\(238\) 15.6837 8.23145i 1.01662 0.533566i
\(239\) −3.99585 −0.258470 −0.129235 0.991614i \(-0.541252\pi\)
−0.129235 + 0.991614i \(0.541252\pi\)
\(240\) −29.4584 + 15.4610i −1.90153 + 0.998002i
\(241\) −17.2294 + 15.2639i −1.10984 + 0.983235i −0.999943 0.0107078i \(-0.996592\pi\)
−0.109900 + 0.993943i \(0.535053\pi\)
\(242\) 3.26814 + 4.73472i 0.210084 + 0.304359i
\(243\) −5.26148 4.66126i −0.337524 0.299020i
\(244\) −3.45763 5.00924i −0.221352 0.320684i
\(245\) 5.66720 + 14.9432i 0.362064 + 0.954685i
\(246\) 1.71078 + 4.51097i 0.109076 + 0.287609i
\(247\) −26.3803 + 6.72132i −1.67854 + 0.427667i
\(248\) −6.01499 + 15.8602i −0.381952 + 1.00713i
\(249\) −8.62687 −0.546705
\(250\) −7.60537 20.0537i −0.481006 1.26831i
\(251\) −0.527679 + 4.34583i −0.0333068 + 0.274306i 0.966535 + 0.256534i \(0.0825805\pi\)
−0.999842 + 0.0177723i \(0.994343\pi\)
\(252\) −0.886731 0.465392i −0.0558588 0.0293170i
\(253\) −2.71665 3.93575i −0.170795 0.247439i
\(254\) 12.2090 + 17.6877i 0.766059 + 1.10983i
\(255\) 21.2649 + 11.1607i 1.33166 + 0.698910i
\(256\) 1.19567 9.84719i 0.0747291 0.615449i
\(257\) 2.62178 + 6.91306i 0.163542 + 0.431225i 0.991588 0.129436i \(-0.0413166\pi\)
−0.828046 + 0.560660i \(0.810547\pi\)
\(258\) 1.85093 0.115234
\(259\) −4.40732 + 11.6212i −0.273858 + 0.722103i
\(260\) −0.650520 + 5.73158i −0.0403435 + 0.355457i
\(261\) 0.744070 + 1.96195i 0.0460568 + 0.121442i
\(262\) −1.29082 3.40361i −0.0797471 0.210276i
\(263\) −3.03730 4.40028i −0.187288 0.271333i 0.718081 0.695960i \(-0.245021\pi\)
−0.905369 + 0.424627i \(0.860405\pi\)
\(264\) −9.50535 8.42100i −0.585014 0.518277i
\(265\) 27.9969 + 40.5606i 1.71984 + 2.49162i
\(266\) −29.6474 + 26.2653i −1.81780 + 1.61043i
\(267\) 16.8933 8.86629i 1.03385 0.542608i
\(268\) 3.83067 0.233995
\(269\) −12.0061 + 6.30127i −0.732023 + 0.384195i −0.789174 0.614170i \(-0.789491\pi\)
0.0571506 + 0.998366i \(0.481798\pi\)
\(270\) 3.08974 + 25.4463i 0.188036 + 1.54861i
\(271\) 9.73656 25.6732i 0.591454 1.55954i −0.220236 0.975447i \(-0.570683\pi\)
0.811690 0.584089i \(-0.198548\pi\)
\(272\) −13.9840 + 7.33935i −0.847902 + 0.445013i
\(273\) 20.5419 10.9868i 1.24325 0.664954i
\(274\) 22.1344 + 11.6170i 1.33719 + 0.701811i
\(275\) 17.6356 15.6237i 1.06346 0.942147i
\(276\) 1.09853 + 0.973214i 0.0661238 + 0.0585806i
\(277\) −0.180912 + 0.0445908i −0.0108699 + 0.00267920i −0.244747 0.969587i \(-0.578705\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(278\) −3.44741 28.3920i −0.206762 1.70284i
\(279\) −3.57804 3.16987i −0.214212 0.189775i
\(280\) −10.8016 28.4814i −0.645517 1.70209i
\(281\) 19.4773 10.2225i 1.16192 0.609822i 0.230250 0.973132i \(-0.426046\pi\)
0.931668 + 0.363310i \(0.118353\pi\)
\(282\) 18.5460 + 9.73368i 1.10440 + 0.579632i
\(283\) 2.27728 18.7551i 0.135370 1.11487i −0.753738 0.657175i \(-0.771751\pi\)
0.889108 0.457697i \(-0.151326\pi\)
\(284\) −1.52771 1.35343i −0.0906529 0.0803115i
\(285\) −52.1431 12.8521i −3.08869 0.761294i
\(286\) −14.7327 + 3.75369i −0.871165 + 0.221960i
\(287\) −5.26065 + 1.29663i −0.310526 + 0.0765379i
\(288\) 1.46676 + 0.769813i 0.0864295 + 0.0453617i
\(289\) −4.95825 2.60229i −0.291662 0.153076i
\(290\) 6.23583 16.4425i 0.366181 0.965539i
\(291\) 1.24623 3.28604i 0.0730553 0.192631i
\(292\) −1.53824 + 2.22853i −0.0900188 + 0.130415i
\(293\) −3.01610 + 0.743402i −0.176202 + 0.0434300i −0.326430 0.945222i \(-0.605846\pi\)
0.150227 + 0.988651i \(0.451999\pi\)
\(294\) 7.34323 10.6385i 0.428266 0.620451i
\(295\) −1.45110 11.9509i −0.0844861 0.695806i
\(296\) 3.20375 8.44761i 0.186214 0.491007i
\(297\) −10.6266 + 5.57727i −0.616618 + 0.323626i
\(298\) 2.22599 + 3.22491i 0.128948 + 0.186814i
\(299\) −6.17966 + 1.57449i −0.357379 + 0.0910550i
\(300\) −4.10740 + 5.95060i −0.237141 + 0.343558i
\(301\) −0.250556 + 2.06352i −0.0144418 + 0.118939i
\(302\) 33.4023 + 8.23293i 1.92209 + 0.473752i
\(303\) −4.54461 6.58401i −0.261081 0.378241i
\(304\) 26.4343 23.4188i 1.51611 1.34316i
\(305\) 46.1978 + 24.2465i 2.64528 + 1.38835i
\(306\) −0.437364 3.60202i −0.0250024 0.205914i
\(307\) 2.24485 18.4880i 0.128120 1.05516i −0.776849 0.629687i \(-0.783183\pi\)
0.904969 0.425477i \(-0.139894\pi\)
\(308\) −2.94122 + 2.60569i −0.167591 + 0.148473i
\(309\) 6.54663 9.48443i 0.372425 0.539550i
\(310\) 4.82889 + 39.7695i 0.274262 + 2.25875i
\(311\) 2.31976 19.1049i 0.131541 1.08334i −0.766133 0.642682i \(-0.777822\pi\)
0.897674 0.440659i \(-0.145255\pi\)
\(312\) −14.9322 + 7.98652i −0.845370 + 0.452148i
\(313\) −0.502927 4.14197i −0.0284271 0.234118i 0.971569 0.236755i \(-0.0760838\pi\)
−0.999997 + 0.00263666i \(0.999161\pi\)
\(314\) −21.3148 + 5.25362i −1.20286 + 0.296479i
\(315\) 8.58419 0.483664
\(316\) −4.62754 −0.260320
\(317\) 2.68886 0.662745i 0.151022 0.0372235i −0.163080 0.986613i \(-0.552143\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(318\) 14.1359 37.2733i 0.792701 2.09018i
\(319\) 8.23329 0.460976
\(320\) 7.36165 + 19.4111i 0.411529 + 1.08511i
\(321\) 7.15993 + 1.76476i 0.399628 + 0.0984995i
\(322\) −6.94500 + 6.15273i −0.387029 + 0.342878i
\(323\) −24.7524 6.10092i −1.37726 0.339464i
\(324\) 3.42529 3.03454i 0.190294 0.168586i
\(325\) −11.3702 29.2883i −0.630706 1.62462i
\(326\) −11.8542 10.5019i −0.656544 0.581647i
\(327\) −4.57365 6.62607i −0.252923 0.366423i
\(328\) 3.82405 0.942545i 0.211148 0.0520433i
\(329\) −13.3622 + 19.3584i −0.736680 + 1.06726i
\(330\) −29.1206 7.17759i −1.60304 0.395113i
\(331\) −8.44747 2.08211i −0.464315 0.114443i 0.000216573 1.00000i \(-0.499931\pi\)
−0.464531 + 0.885557i \(0.653777\pi\)
\(332\) 0.233892 1.92628i 0.0128365 0.105718i
\(333\) 1.90577 + 1.68836i 0.104435 + 0.0925217i
\(334\) 4.30443 + 11.3498i 0.235528 + 0.621036i
\(335\) −29.0748 + 15.2596i −1.58852 + 0.833722i
\(336\) −17.1673 + 24.8711i −0.936553 + 1.35683i
\(337\) −20.3370 −1.10783 −0.553913 0.832575i \(-0.686866\pi\)
−0.553913 + 0.832575i \(0.686866\pi\)
\(338\) −2.12878 + 20.1613i −0.115790 + 1.09663i
\(339\) −1.12879 −0.0613076
\(340\) −3.06859 + 4.44562i −0.166418 + 0.241098i
\(341\) −16.6080 + 8.71658i −0.899376 + 0.472029i
\(342\) 2.87723 + 7.58664i 0.155583 + 0.410239i
\(343\) −6.75892 5.98788i −0.364948 0.323315i
\(344\) 0.182133 1.50000i 0.00981998 0.0808748i
\(345\) −12.2147 3.01065i −0.657617 0.162088i
\(346\) 19.7891 + 4.87757i 1.06387 + 0.262220i
\(347\) 6.02599 8.73016i 0.323492 0.468659i −0.627172 0.778881i \(-0.715788\pi\)
0.950664 + 0.310221i \(0.100403\pi\)
\(348\) −2.45327 + 0.604676i −0.131509 + 0.0324140i
\(349\) −1.38151 2.00147i −0.0739508 0.107136i 0.784263 0.620428i \(-0.213041\pi\)
−0.858214 + 0.513292i \(0.828426\pi\)
\(350\) −34.2158 30.3126i −1.82891 1.62027i
\(351\) 2.05312 + 15.8712i 0.109588 + 0.847141i
\(352\) 4.86512 4.31012i 0.259312 0.229730i
\(353\) 20.3890 + 5.02544i 1.08520 + 0.267477i 0.741058 0.671441i \(-0.234324\pi\)
0.344140 + 0.938918i \(0.388171\pi\)
\(354\) −7.28854 + 6.45709i −0.387382 + 0.343190i
\(355\) 16.9868 + 4.18686i 0.901564 + 0.222215i
\(356\) 1.52172 + 4.01246i 0.0806513 + 0.212660i
\(357\) 21.8152 1.15458
\(358\) −9.95845 + 26.2583i −0.526321 + 1.38779i
\(359\) 16.4961 4.06592i 0.870630 0.214591i 0.221400 0.975183i \(-0.428937\pi\)
0.649230 + 0.760592i \(0.275091\pi\)
\(360\) −6.23999 −0.328876
\(361\) 38.0074 2.00039
\(362\) −4.05995 + 1.00069i −0.213386 + 0.0525950i
\(363\) 0.854081 + 7.03399i 0.0448276 + 0.369189i
\(364\) 1.89630 + 4.88463i 0.0993931 + 0.256024i
\(365\) 2.79783 23.0422i 0.146445 1.20608i
\(366\) −5.08674 41.8931i −0.265888 2.18979i
\(367\) −6.53370 + 9.46569i −0.341056 + 0.494105i −0.955555 0.294812i \(-0.904743\pi\)
0.614499 + 0.788918i \(0.289358\pi\)
\(368\) 6.19232 5.48591i 0.322797 0.285973i
\(369\) −0.133785 + 1.10182i −0.00696457 + 0.0573584i
\(370\) −2.57200 21.1823i −0.133712 1.10122i
\(371\) 39.6407 + 20.8050i 2.05804 + 1.08014i
\(372\) 4.30852 3.81701i 0.223386 0.197903i
\(373\) 18.5146 + 26.8230i 0.958648 + 1.38884i 0.921005 + 0.389550i \(0.127369\pi\)
0.0376422 + 0.999291i \(0.488015\pi\)
\(374\) −13.8236 3.40721i −0.714802 0.176183i
\(375\) 3.18399 26.2225i 0.164420 1.35412i
\(376\) 9.71317 14.0720i 0.500919 0.725706i
\(377\) 3.81282 10.2956i 0.196370 0.530249i
\(378\) 13.2270 + 19.1627i 0.680325 + 0.985622i
\(379\) 9.19514 4.82598i 0.472323 0.247894i −0.211728 0.977329i \(-0.567909\pi\)
0.684050 + 0.729435i \(0.260217\pi\)
\(380\) 4.28344 11.2945i 0.219736 0.579395i
\(381\) 3.19063 + 26.2772i 0.163461 + 1.34622i
\(382\) 5.96967 8.64856i 0.305435 0.442499i
\(383\) −15.1494 + 3.73398i −0.774096 + 0.190798i −0.606527 0.795063i \(-0.707438\pi\)
−0.167569 + 0.985860i \(0.553592\pi\)
\(384\) 14.7844 21.4189i 0.754465 1.09303i
\(385\) 11.9440 31.4936i 0.608720 1.60506i
\(386\) 4.37538 11.5369i 0.222701 0.587214i
\(387\) 0.377046 + 0.197889i 0.0191663 + 0.0100593i
\(388\) 0.699945 + 0.367360i 0.0355343 + 0.0186499i
\(389\) 27.3855 6.74991i 1.38850 0.342234i 0.526945 0.849900i \(-0.323338\pi\)
0.861554 + 0.507665i \(0.169491\pi\)
\(390\) −22.4611 + 33.0909i −1.13736 + 1.67562i
\(391\) −5.79833 1.42916i −0.293234 0.0722757i
\(392\) −7.89892 6.99784i −0.398956 0.353444i
\(393\) 0.540402 4.45061i 0.0272597 0.224503i
\(394\) 24.5463 + 12.8829i 1.23662 + 0.649030i
\(395\) 35.1230 18.4340i 1.76723 0.927515i
\(396\) 0.285440 + 0.752644i 0.0143439 + 0.0378218i
\(397\) −24.6269 21.8176i −1.23599 1.09499i −0.992134 0.125180i \(-0.960049\pi\)
−0.243856 0.969811i \(-0.578413\pi\)
\(398\) −1.62247 13.3623i −0.0813272 0.669790i
\(399\) −47.3651 + 11.6745i −2.37122 + 0.584454i
\(400\) 30.5076 + 27.0274i 1.52538 + 1.35137i
\(401\) 2.35932 2.09017i 0.117819 0.104378i −0.602156 0.798378i \(-0.705692\pi\)
0.719975 + 0.694000i \(0.244153\pi\)
\(402\) 23.5170 + 12.3427i 1.17292 + 0.615596i
\(403\) 3.20877 + 24.8047i 0.159840 + 1.23561i
\(404\) 1.59334 0.836252i 0.0792719 0.0416051i
\(405\) −13.9097 + 36.6770i −0.691180 + 1.82249i
\(406\) −1.92544 15.8574i −0.0955580 0.786991i
\(407\) 8.84592 4.64270i 0.438476 0.230130i
\(408\) −15.8578 −0.785078
\(409\) −26.6215 + 13.9720i −1.31635 + 0.690872i −0.969046 0.246882i \(-0.920594\pi\)
−0.347301 + 0.937754i \(0.612902\pi\)
\(410\) 6.96252 6.16825i 0.343854 0.304628i
\(411\) 17.4894 + 25.3378i 0.862690 + 1.24982i
\(412\) 1.94027 + 1.71893i 0.0955901 + 0.0846854i
\(413\) −6.21207 8.99974i −0.305676 0.442848i
\(414\) 0.674001 + 1.77719i 0.0331253 + 0.0873443i
\(415\) 5.89815 + 15.5521i 0.289529 + 0.763425i
\(416\) −3.13670 8.07975i −0.153789 0.396142i
\(417\) 12.4910 32.9359i 0.611685 1.61288i
\(418\) 31.8372 1.55721
\(419\) −3.84817 10.1468i −0.187995 0.495703i 0.807570 0.589771i \(-0.200782\pi\)
−0.995566 + 0.0940680i \(0.970013\pi\)
\(420\) −1.24595 + 10.2613i −0.0607962 + 0.500702i
\(421\) −29.7333 15.6052i −1.44911 0.760552i −0.457426 0.889248i \(-0.651229\pi\)
−0.991684 + 0.128696i \(0.958921\pi\)
\(422\) −5.61145 8.12959i −0.273161 0.395742i
\(423\) 2.73727 + 3.96563i 0.133091 + 0.192815i
\(424\) −28.8155 15.1235i −1.39940 0.734463i
\(425\) 3.54637 29.2070i 0.172024 1.41675i
\(426\) −5.01796 13.2313i −0.243121 0.641058i
\(427\) 47.3932 2.29352
\(428\) −0.588171 + 1.55088i −0.0284303 + 0.0749646i
\(429\) −18.2152 4.33889i −0.879437 0.209484i
\(430\) −1.26547 3.33678i −0.0610265 0.160914i
\(431\) 9.96556 + 26.2770i 0.480024 + 1.26572i 0.928303 + 0.371826i \(0.121268\pi\)
−0.448278 + 0.893894i \(0.647963\pi\)
\(432\) −11.7935 17.0859i −0.567416 0.822045i
\(433\) 4.15913 + 3.68467i 0.199875 + 0.177074i 0.757123 0.653272i \(-0.226604\pi\)
−0.557248 + 0.830346i \(0.688143\pi\)
\(434\) 20.6722 + 29.9489i 0.992298 + 1.43759i
\(435\) 16.2115 14.3622i 0.777284 0.688613i
\(436\) 1.60352 0.841594i 0.0767948 0.0403050i
\(437\) 13.3541 0.638816
\(438\) −16.6239 + 8.72491i −0.794322 + 0.416893i
\(439\) 4.00239 + 32.9626i 0.191023 + 1.57322i 0.701082 + 0.713080i \(0.252701\pi\)
−0.510059 + 0.860140i \(0.670376\pi\)
\(440\) −8.68226 + 22.8932i −0.413910 + 1.09139i
\(441\) 2.63326 1.38204i 0.125393 0.0658116i
\(442\) −10.6623 + 15.7083i −0.507156 + 0.747168i
\(443\) 10.0329 + 5.26565i 0.476676 + 0.250179i 0.685909 0.727687i \(-0.259405\pi\)
−0.209234 + 0.977866i \(0.567097\pi\)
\(444\) −2.29484 + 2.03305i −0.108908 + 0.0964843i
\(445\) −27.5337 24.3927i −1.30522 1.15632i
\(446\) 12.6305 3.11313i 0.598069 0.147411i
\(447\) 0.581730 + 4.79098i 0.0275149 + 0.226606i
\(448\) 14.1153 + 12.5051i 0.666885 + 0.590809i
\(449\) 11.7526 + 30.9891i 0.554641 + 1.46247i 0.860032 + 0.510241i \(0.170444\pi\)
−0.305391 + 0.952227i \(0.598787\pi\)
\(450\) −8.29158 + 4.35176i −0.390869 + 0.205144i
\(451\) 3.85620 + 2.02389i 0.181581 + 0.0953012i
\(452\) 0.0306039 0.252046i 0.00143949 0.0118552i
\(453\) 31.7145 + 28.0966i 1.49008 + 1.32009i
\(454\) 31.7424 + 7.82379i 1.48974 + 0.367189i
\(455\) −33.8510 29.5203i −1.58696 1.38393i
\(456\) 34.4305 8.48635i 1.61235 0.397410i
\(457\) −7.94663 4.17071i −0.371727 0.195098i 0.268506 0.963278i \(-0.413470\pi\)
−0.640233 + 0.768180i \(0.721162\pi\)
\(458\) −28.6215 15.0217i −1.33740 0.701919i
\(459\) −5.31429 + 14.0126i −0.248050 + 0.654053i
\(460\) 1.00341 2.64577i 0.0467841 0.123360i
\(461\) −1.18100 + 1.71097i −0.0550044 + 0.0796877i −0.849521 0.527555i \(-0.823109\pi\)
0.794517 + 0.607242i \(0.207724\pi\)
\(462\) −26.4522 + 6.51989i −1.23067 + 0.303333i
\(463\) −4.32852 + 6.27095i −0.201163 + 0.291436i −0.910562 0.413372i \(-0.864351\pi\)
0.709399 + 0.704807i \(0.248966\pi\)
\(464\) 1.71677 + 14.1388i 0.0796989 + 0.656380i
\(465\) −17.4964 + 46.1343i −0.811377 + 2.13942i
\(466\) −5.22422 + 2.74188i −0.242007 + 0.127015i
\(467\) −17.0726 24.7339i −0.790024 1.14455i −0.986455 0.164029i \(-0.947551\pi\)
0.196432 0.980517i \(-0.437065\pi\)
\(468\) 1.07336 0.00839019i 0.0496159 0.000387837i
\(469\) −16.9437 + 24.5472i −0.782388 + 1.13348i
\(470\) 4.86766 40.0888i 0.224528 1.84916i
\(471\) −26.2517 6.47047i −1.20962 0.298143i
\(472\) 4.51566 + 6.54206i 0.207850 + 0.301123i
\(473\) 1.25063 1.10796i 0.0575042 0.0509443i
\(474\) −28.4091 14.9102i −1.30487 0.684850i
\(475\) 7.93031 + 65.3120i 0.363868 + 2.99672i
\(476\) −0.591455 + 4.87107i −0.0271093 + 0.223265i
\(477\) 6.86458 6.08149i 0.314307 0.278452i
\(478\) 3.53989 5.12842i 0.161911 0.234569i
\(479\) 1.52668 + 12.5733i 0.0697556 + 0.574489i 0.985121 + 0.171864i \(0.0549791\pi\)
−0.915365 + 0.402625i \(0.868098\pi\)
\(480\) 2.06095 16.9734i 0.0940690 0.774728i
\(481\) −1.70908 13.2117i −0.0779275 0.602401i
\(482\) −4.32688 35.6351i −0.197084 1.62313i
\(483\) −11.0954 + 2.73478i −0.504859 + 0.124437i
\(484\) −1.59376 −0.0724437
\(485\) −6.77597 −0.307681
\(486\) 10.6435 2.62340i 0.482801 0.119000i
\(487\) −2.56149 + 6.75408i −0.116072 + 0.306057i −0.980445 0.196795i \(-0.936947\pi\)
0.864373 + 0.502852i \(0.167716\pi\)
\(488\) −34.4509 −1.55952
\(489\) −6.91665 18.2377i −0.312782 0.824738i
\(490\) −24.1992 5.96456i −1.09321 0.269452i
\(491\) −13.4841 + 11.9458i −0.608528 + 0.539109i −0.910129 0.414326i \(-0.864017\pi\)
0.301601 + 0.953434i \(0.402479\pi\)
\(492\) −1.29767 0.319847i −0.0585034 0.0144198i
\(493\) 7.69564 6.81774i 0.346594 0.307056i
\(494\) 14.7437 39.8118i 0.663352 1.79122i
\(495\) −5.16468 4.57551i −0.232135 0.205654i
\(496\) −18.4318 26.7031i −0.827613 1.19900i
\(497\) 15.4302 3.80321i 0.692140 0.170597i
\(498\) 7.64248 11.0720i 0.342468 0.496150i
\(499\) 11.9213 + 2.93835i 0.533673 + 0.131539i 0.496937 0.867787i \(-0.334458\pi\)
0.0367355 + 0.999325i \(0.488304\pi\)
\(500\) 5.76884 + 1.42189i 0.257991 + 0.0635890i
\(501\) −1.80205 + 14.8412i −0.0805096 + 0.663056i
\(502\) −5.11013 4.52718i −0.228076 0.202058i
\(503\) −8.83831 23.3047i −0.394081 1.03911i −0.974421 0.224731i \(-0.927850\pi\)
0.580340 0.814374i \(-0.302920\pi\)
\(504\) −5.01894 + 2.63414i −0.223561 + 0.117334i
\(505\) −8.76224 + 12.6943i −0.389914 + 0.564889i
\(506\) 7.45796 0.331547
\(507\) −13.8611 + 20.7684i −0.615594 + 0.922358i
\(508\) −5.95390 −0.264161
\(509\) −24.0029 + 34.7742i −1.06391 + 1.54134i −0.243212 + 0.969973i \(0.578201\pi\)
−0.820696 + 0.571364i \(0.806414\pi\)
\(510\) −33.1625 + 17.4050i −1.46846 + 0.770708i
\(511\) −7.47666 19.7143i −0.330748 0.872111i
\(512\) −8.70596 7.71280i −0.384753 0.340861i
\(513\) 4.03949 33.2682i 0.178348 1.46883i
\(514\) −11.1951 2.75934i −0.493794 0.121709i
\(515\) −21.5740 5.31752i −0.950665 0.234318i
\(516\) −0.291278 + 0.421989i −0.0128228 + 0.0185771i
\(517\) 18.3577 4.52476i 0.807370 0.198999i
\(518\) −11.0106 15.9516i −0.483778 0.700874i
\(519\) 18.7891 + 16.6457i 0.824752 + 0.730666i
\(520\) 24.6068 + 21.4588i 1.07908 + 0.941031i
\(521\) −9.09156 + 8.05442i −0.398309 + 0.352871i −0.838374 0.545095i \(-0.816494\pi\)
0.440066 + 0.897966i \(0.354955\pi\)
\(522\) −3.17721 0.783112i −0.139063 0.0342759i
\(523\) 6.07148 5.37886i 0.265487 0.235201i −0.519868 0.854247i \(-0.674019\pi\)
0.785355 + 0.619046i \(0.212480\pi\)
\(524\) 0.979116 + 0.241330i 0.0427729 + 0.0105426i
\(525\) −19.9641 52.6410i −0.871305 2.29744i
\(526\) 8.33821 0.363563
\(527\) −8.30557 + 21.9000i −0.361796 + 0.953979i
\(528\) 23.5854 5.81328i 1.02642 0.252991i
\(529\) −19.8718 −0.863989
\(530\) −76.8593 −3.33855
\(531\) −2.17507 + 0.536107i −0.0943901 + 0.0232651i
\(532\) −1.32260 10.8926i −0.0573419 0.472253i
\(533\) 4.31663 3.88485i 0.186974 0.168271i
\(534\) −3.58633 + 29.5361i −0.155196 + 1.27815i
\(535\) −1.71377 14.1142i −0.0740928 0.610209i
\(536\) 12.3167 17.8438i 0.531999 0.770733i
\(537\) −25.8894 + 22.9360i −1.11721 + 0.989761i
\(538\) 2.54880 20.9913i 0.109887 0.904999i
\(539\) −1.40654 11.5839i −0.0605838 0.498952i
\(540\) −6.28768 3.30003i −0.270579 0.142011i
\(541\) 12.0094 10.6394i 0.516324 0.457423i −0.364271 0.931293i \(-0.618682\pi\)
0.880595 + 0.473870i \(0.157143\pi\)
\(542\) 24.3244 + 35.2400i 1.04482 + 1.51369i
\(543\) −5.00031 1.23247i −0.214584 0.0528902i
\(544\) 0.978335 8.05732i 0.0419458 0.345455i
\(545\) −8.81821 + 12.7754i −0.377731 + 0.547238i
\(546\) −4.09696 + 36.0974i −0.175334 + 1.54483i
\(547\) 1.16137 + 1.68253i 0.0496565 + 0.0719399i 0.847026 0.531552i \(-0.178391\pi\)
−0.797369 + 0.603492i \(0.793776\pi\)
\(548\) −6.13180 + 3.21822i −0.261938 + 0.137476i
\(549\) 3.44273 9.07772i 0.146932 0.387428i
\(550\) 4.42888 + 36.4751i 0.188848 + 1.55530i
\(551\) −13.0602 + 18.9210i −0.556385 + 0.806063i
\(552\) 8.06544 1.98795i 0.343288 0.0846129i
\(553\) 20.4684 29.6536i 0.870406 1.26100i
\(554\) 0.103039 0.271692i 0.00437771 0.0115431i
\(555\) 9.31909 24.5724i 0.395573 1.04304i
\(556\) 7.01554 + 3.68204i 0.297525 + 0.156153i
\(557\) −3.97499 2.08624i −0.168426 0.0883967i 0.378404 0.925641i \(-0.376473\pi\)
−0.546830 + 0.837244i \(0.684165\pi\)
\(558\) 7.23809 1.78403i 0.306413 0.0755240i
\(559\) −0.806325 2.07699i −0.0341039 0.0878474i
\(560\) 56.5738 + 13.9442i 2.39068 + 0.589250i
\(561\) −13.1251 11.6278i −0.554142 0.490927i
\(562\) −4.13489 + 34.0539i −0.174420 + 1.43648i
\(563\) 26.7369 + 14.0326i 1.12683 + 0.591405i 0.921921 0.387377i \(-0.126619\pi\)
0.204906 + 0.978782i \(0.434311\pi\)
\(564\) −5.13771 + 2.69648i −0.216337 + 0.113542i
\(565\) 0.771750 + 2.03494i 0.0324678 + 0.0856105i
\(566\) 22.0535 + 19.5377i 0.926979 + 0.821231i
\(567\) 4.29492 + 35.3718i 0.180370 + 1.48548i
\(568\) −11.2165 + 2.76461i −0.470633 + 0.116001i
\(569\) −13.1151 11.6189i −0.549812 0.487091i 0.341874 0.939746i \(-0.388938\pi\)
−0.891686 + 0.452655i \(0.850477\pi\)
\(570\) 62.6882 55.5369i 2.62572 2.32618i
\(571\) 3.54419 + 1.86013i 0.148320 + 0.0778441i 0.537250 0.843423i \(-0.319463\pi\)
−0.388931 + 0.921267i \(0.627155\pi\)
\(572\) 1.46267 3.94959i 0.0611575 0.165141i
\(573\) 11.4603 6.01483i 0.478761 0.251273i
\(574\) 2.99623 7.90040i 0.125060 0.329756i
\(575\) 1.85770 + 15.2995i 0.0774714 + 0.638035i
\(576\) 3.42059 1.79526i 0.142524 0.0748026i
\(577\) −16.7774 −0.698454 −0.349227 0.937038i \(-0.613556\pi\)
−0.349227 + 0.937038i \(0.613556\pi\)
\(578\) 7.73236 4.05826i 0.321624 0.168801i
\(579\) 11.3748 10.0772i 0.472722 0.418795i
\(580\) 2.76737 + 4.00923i 0.114909 + 0.166474i
\(581\) 11.3092 + 10.0190i 0.469183 + 0.415660i
\(582\) 3.11340 + 4.51054i 0.129055 + 0.186968i
\(583\) −12.7604 33.6465i −0.528482 1.39349i
\(584\) 5.43491 + 14.3307i 0.224898 + 0.593007i
\(585\) −8.11334 + 4.33943i −0.335445 + 0.179413i
\(586\) 1.71783 4.52955i 0.0709630 0.187114i
\(587\) −24.5712 −1.01416 −0.507081 0.861898i \(-0.669276\pi\)
−0.507081 + 0.861898i \(0.669276\pi\)
\(588\) 1.26986 + 3.34833i 0.0523680 + 0.138083i
\(589\) 6.31322 51.9940i 0.260132 2.14238i
\(590\) 16.6237 + 8.72479i 0.684387 + 0.359194i
\(591\) 19.3951 + 28.0987i 0.797810 + 1.15583i
\(592\) 9.81731 + 14.2228i 0.403489 + 0.584555i
\(593\) −21.4740 11.2704i −0.881832 0.462821i −0.0379065 0.999281i \(-0.512069\pi\)
−0.843926 + 0.536460i \(0.819761\pi\)
\(594\) 2.25595 18.5794i 0.0925629 0.762324i
\(595\) −14.9149 39.3275i −0.611453 1.61227i
\(596\) −1.08554 −0.0444655
\(597\) 5.87867 15.5008i 0.240598 0.634405i
\(598\) 3.45376 9.32604i 0.141235 0.381370i
\(599\) 14.3955 + 37.9578i 0.588185 + 1.55092i 0.816511 + 0.577330i \(0.195906\pi\)
−0.228326 + 0.973585i \(0.573325\pi\)
\(600\) 14.5122 + 38.2656i 0.592460 + 1.56219i
\(601\) 6.02351 + 8.72656i 0.245704 + 0.355964i 0.926360 0.376640i \(-0.122920\pi\)
−0.680656 + 0.732603i \(0.738305\pi\)
\(602\) −2.42643 2.14963i −0.0988939 0.0876123i
\(603\) 3.47097 + 5.02856i 0.141349 + 0.204779i
\(604\) −7.13348 + 6.31971i −0.290257 + 0.257145i
\(605\) 12.0966 6.34881i 0.491798 0.258116i
\(606\) 12.4762 0.506811
\(607\) 6.15708 3.23148i 0.249908 0.131162i −0.335118 0.942176i \(-0.608776\pi\)
0.585027 + 0.811014i \(0.301084\pi\)
\(608\) 2.18773 + 18.0176i 0.0887243 + 0.730710i
\(609\) 6.97641 18.3953i 0.282699 0.745415i
\(610\) −72.0452 + 37.8123i −2.91703 + 1.53097i
\(611\) 2.84327 25.0514i 0.115026 1.01347i
\(612\) 0.890043 + 0.467131i 0.0359779 + 0.0188826i
\(613\) 23.8150 21.0983i 0.961880 0.852152i −0.0271850 0.999630i \(-0.508654\pi\)
0.989065 + 0.147479i \(0.0471158\pi\)
\(614\) 21.7395 + 19.2595i 0.877334 + 0.777250i
\(615\) 11.1234 2.74168i 0.448539 0.110555i
\(616\) 2.68083 + 22.0786i 0.108014 + 0.889572i
\(617\) 6.73636 + 5.96789i 0.271196 + 0.240258i 0.787749 0.615997i \(-0.211247\pi\)
−0.516553 + 0.856255i \(0.672785\pi\)
\(618\) 6.37306 + 16.8044i 0.256362 + 0.675971i
\(619\) −4.68457 + 2.45865i −0.188289 + 0.0988215i −0.556233 0.831026i \(-0.687754\pi\)
0.367945 + 0.929848i \(0.380062\pi\)
\(620\) −9.82686 5.15754i −0.394656 0.207132i
\(621\) 0.946262 7.79317i 0.0379722 0.312729i
\(622\) 22.4649 + 19.9022i 0.900762 + 0.798006i
\(623\) −32.4430 7.99647i −1.29980 0.320372i
\(624\) 3.65294 32.1852i 0.146235 1.28844i
\(625\) −7.14690 + 1.76155i −0.285876 + 0.0704621i
\(626\) 5.76150 + 3.02387i 0.230276 + 0.120858i
\(627\) 34.7199 + 18.2224i 1.38658 + 0.727733i
\(628\) 2.15652 5.68627i 0.0860544 0.226907i
\(629\) 4.42378 11.6646i 0.176388 0.465097i
\(630\) −7.60468 + 11.0173i −0.302978 + 0.438939i
\(631\) −8.33861 + 2.05528i −0.331955 + 0.0818195i −0.401771 0.915740i \(-0.631605\pi\)
0.0698156 + 0.997560i \(0.477759\pi\)
\(632\) −14.8788 + 21.5557i −0.591848 + 0.857440i
\(633\) −1.46647 12.0775i −0.0582869 0.480036i
\(634\) −1.53145 + 4.03811i −0.0608218 + 0.160374i
\(635\) 45.1900 23.7176i 1.79331 0.941203i
\(636\) 6.27330 + 9.08845i 0.248753 + 0.360380i
\(637\) −15.1368 3.60561i −0.599741 0.142860i
\(638\) −7.29382 + 10.5669i −0.288765 + 0.418348i
\(639\) 0.392410 3.23178i 0.0155235 0.127847i
\(640\) −48.7212 12.0087i −1.92587 0.474686i
\(641\) −4.30755 6.24056i −0.170138 0.246487i 0.728635 0.684903i \(-0.240155\pi\)
−0.898773 + 0.438415i \(0.855540\pi\)
\(642\) −8.60789 + 7.62593i −0.339727 + 0.300971i
\(643\) −15.9800 8.38696i −0.630191 0.330750i 0.119207 0.992869i \(-0.461965\pi\)
−0.749398 + 0.662120i \(0.769657\pi\)
\(644\) −0.309823 2.55162i −0.0122087 0.100548i
\(645\) 0.529790 4.36322i 0.0208605 0.171801i
\(646\) 29.7582 26.3634i 1.17082 1.03726i
\(647\) −26.6493 + 38.6082i −1.04769 + 1.51784i −0.205505 + 0.978656i \(0.565884\pi\)
−0.842186 + 0.539187i \(0.818732\pi\)
\(648\) −3.12205 25.7124i −0.122646 1.01008i
\(649\) −1.05951 + 8.72583i −0.0415893 + 0.342519i
\(650\) 47.6625 + 11.3533i 1.86948 + 0.445313i
\(651\) 5.40238 + 44.4926i 0.211736 + 1.74380i
\(652\) 4.25979 1.04994i 0.166826 0.0411190i
\(653\) 18.6754 0.730824 0.365412 0.930846i \(-0.380928\pi\)
0.365412 + 0.930846i \(0.380928\pi\)
\(654\) 12.5559 0.490975
\(655\) −8.39283 + 2.06865i −0.327935 + 0.0808288i
\(656\) −2.67150 + 7.04418i −0.104305 + 0.275029i
\(657\) −4.31921 −0.168509
\(658\) −13.0079 34.2990i −0.507101 1.33711i
\(659\) −4.68282 1.15421i −0.182417 0.0449617i 0.147049 0.989129i \(-0.453022\pi\)
−0.329466 + 0.944168i \(0.606869\pi\)
\(660\) 6.21907 5.50962i 0.242077 0.214462i
\(661\) −25.8270 6.36579i −1.00455 0.247600i −0.297471 0.954731i \(-0.596143\pi\)
−0.707083 + 0.707130i \(0.749989\pi\)
\(662\) 10.1558 8.99727i 0.394717 0.349689i
\(663\) −20.6186 + 11.0279i −0.800760 + 0.428288i
\(664\) −8.22082 7.28301i −0.319030 0.282636i
\(665\) 53.4295 + 77.4060i 2.07191 + 3.00168i
\(666\) −3.85521 + 0.950225i −0.149387 + 0.0368205i
\(667\) −3.05940 + 4.43231i −0.118460 + 0.171620i
\(668\) −3.26501 0.804752i −0.126327 0.0311368i
\(669\) 15.5559 + 3.83419i 0.601426 + 0.148238i
\(670\) 6.17237 50.8341i 0.238460 1.96389i
\(671\) −28.5141 25.2613i −1.10078 0.975202i
\(672\) −5.50750 14.5221i −0.212456 0.560201i
\(673\) 41.3359 21.6947i 1.59338 0.836271i 0.593884 0.804551i \(-0.297594\pi\)
0.999497 0.0317196i \(-0.0100983\pi\)
\(674\) 18.0164 26.1012i 0.693965 1.00538i
\(675\) 38.6765 1.48866
\(676\) −4.26154 3.65810i −0.163905 0.140696i
\(677\) 44.3162 1.70321 0.851604 0.524185i \(-0.175630\pi\)
0.851604 + 0.524185i \(0.175630\pi\)
\(678\) 0.999989 1.44873i 0.0384044 0.0556383i
\(679\) −5.45004 + 2.86040i −0.209154 + 0.109772i
\(680\) 10.8419 + 28.5878i 0.415768 + 1.09629i
\(681\) 30.1384 + 26.7003i 1.15491 + 1.02316i
\(682\) 3.52577 29.0374i 0.135009 1.11190i
\(683\) 10.0984 + 2.48902i 0.386403 + 0.0952397i 0.427731 0.903906i \(-0.359313\pi\)
−0.0413287 + 0.999146i \(0.513159\pi\)
\(684\) −2.18245 0.537925i −0.0834480 0.0205681i
\(685\) 33.7205 48.8525i 1.28839 1.86656i
\(686\) 13.6728 3.37003i 0.522028 0.128668i
\(687\) −22.6152 32.7637i −0.862823 1.25001i
\(688\) 2.16346 + 1.91666i 0.0824811 + 0.0730719i
\(689\) −47.9836 + 0.375078i −1.82803 + 0.0142893i
\(690\) 14.6849 13.0097i 0.559044 0.495270i
\(691\) −16.8349 4.14942i −0.640428 0.157851i −0.0942878 0.995545i \(-0.530057\pi\)
−0.546140 + 0.837694i \(0.683904\pi\)
\(692\) −4.22620 + 3.74409i −0.160656 + 0.142329i
\(693\) −6.08555 1.49995i −0.231171 0.0569785i
\(694\) 5.86623 + 15.4680i 0.222679 + 0.587156i
\(695\) −67.9155 −2.57618
\(696\) −5.07127 + 13.3718i −0.192226 + 0.506858i
\(697\) 5.28030 1.30148i 0.200006 0.0492970i
\(698\) 3.79263 0.143553
\(699\) −7.26659 −0.274848
\(700\) 12.2954 3.03054i 0.464722 0.114544i
\(701\) −3.12223 25.7139i −0.117925 0.971200i −0.924794 0.380469i \(-0.875763\pi\)
0.806869 0.590731i \(-0.201161\pi\)
\(702\) −22.1885 11.4251i −0.837452 0.431214i
\(703\) −3.36260 + 27.6935i −0.126823 + 1.04448i
\(704\) −1.82708 15.0473i −0.0688606 0.567118i
\(705\) 28.2537 40.9326i 1.06410 1.54161i
\(706\) −24.5123 + 21.7160i −0.922534 + 0.817294i
\(707\) −1.68888 + 13.9091i −0.0635167 + 0.523107i
\(708\) −0.325149 2.67784i −0.0122198 0.100639i
\(709\) −9.96521 5.23015i −0.374251 0.196422i 0.267101 0.963668i \(-0.413934\pi\)
−0.641353 + 0.767246i \(0.721626\pi\)
\(710\) −20.4220 + 18.0923i −0.766425 + 0.678993i
\(711\) −4.19301 6.07463i −0.157250 0.227816i
\(712\) 23.5833 + 5.81277i 0.883822 + 0.217843i
\(713\) 1.47889 12.1798i 0.0553849 0.456135i
\(714\) −19.3259 + 27.9984i −0.723254 + 1.04781i
\(715\) 4.63166 + 35.8040i 0.173214 + 1.33899i
\(716\) −4.41942 6.40263i −0.165161 0.239278i
\(717\) 6.79573 3.56667i 0.253791 0.133200i
\(718\) −9.39542 + 24.7737i −0.350634 + 0.924545i
\(719\) 3.41344 + 28.1122i 0.127300 + 1.04841i 0.906669 + 0.421843i \(0.138617\pi\)
−0.779369 + 0.626565i \(0.784460\pi\)
\(720\) 6.78050 9.82325i 0.252694 0.366091i
\(721\) −19.5971 + 4.83026i −0.729835 + 0.179888i
\(722\) −33.6705 + 48.7801i −1.25309 + 1.81541i
\(723\) 15.6775 41.3382i 0.583052 1.53738i
\(724\) 0.410764 1.08310i 0.0152659 0.0402529i
\(725\) −23.4942 12.3307i −0.872552 0.457951i
\(726\) −9.78431 5.13520i −0.363130 0.190585i
\(727\) 26.2617 6.47292i 0.973991 0.240067i 0.279960 0.960012i \(-0.409679\pi\)
0.694032 + 0.719945i \(0.255833\pi\)
\(728\) 28.8504 + 6.87222i 1.06927 + 0.254701i
\(729\) −17.7451 4.37378i −0.657227 0.161992i
\(730\) 27.0946 + 24.0037i 1.00282 + 0.888418i
\(731\) 0.251492 2.07122i 0.00930178 0.0766070i
\(732\) 10.3516 + 5.43294i 0.382606 + 0.200807i
\(733\) −20.6521 + 10.8391i −0.762803 + 0.400350i −0.800803 0.598928i \(-0.795594\pi\)
0.0379998 + 0.999278i \(0.487901\pi\)
\(734\) −6.36047 16.7712i −0.234769 0.619036i
\(735\) −22.9764 20.3553i −0.847498 0.750817i
\(736\) 0.512483 + 4.22068i 0.0188904 + 0.155576i
\(737\) 23.2782 5.73757i 0.857464 0.211346i
\(738\) −1.29560 1.14780i −0.0476915 0.0422510i
\(739\) −36.8832 + 32.6757i −1.35677 + 1.20199i −0.398145 + 0.917322i \(0.630346\pi\)
−0.958625 + 0.284671i \(0.908116\pi\)
\(740\) 5.23407 + 2.74705i 0.192408 + 0.100984i
\(741\) 38.8655 34.9778i 1.42776 1.28494i
\(742\) −61.8194 + 32.4453i −2.26946 + 1.19111i
\(743\) 11.3772 29.9991i 0.417388 1.10056i −0.547247 0.836971i \(-0.684324\pi\)
0.964635 0.263590i \(-0.0849067\pi\)
\(744\) −3.92708 32.3424i −0.143974 1.18573i
\(745\) 8.23925 4.32429i 0.301863 0.158430i
\(746\) −50.8275 −1.86093
\(747\) 2.74057 1.43836i 0.100272 0.0526270i
\(748\) 2.95220 2.61542i 0.107943 0.0956294i
\(749\) −7.33656 10.6288i −0.268072 0.388370i
\(750\) 30.8343 + 27.3168i 1.12591 + 0.997468i
\(751\) −23.3044 33.7623i −0.850391 1.23200i −0.970946 0.239297i \(-0.923083\pi\)
0.120555 0.992707i \(-0.461532\pi\)
\(752\) 11.5981 + 30.5818i 0.422941 + 1.11520i
\(753\) −2.98164 7.86194i −0.108657 0.286505i
\(754\) 9.83599 + 14.0143i 0.358206 + 0.510371i
\(755\) 28.9683 76.3830i 1.05426 2.77986i
\(756\) −6.45037 −0.234598
\(757\) 11.5756 + 30.5224i 0.420723 + 1.10936i 0.963082 + 0.269209i \(0.0867623\pi\)
−0.542358 + 0.840147i \(0.682469\pi\)
\(758\) −1.95206 + 16.0767i −0.0709022 + 0.583932i
\(759\) 8.13324 + 4.26865i 0.295218 + 0.154942i
\(760\) −38.8388 56.2677i −1.40883 2.04104i
\(761\) 18.1757 + 26.3321i 0.658869 + 0.954537i 0.999895 + 0.0144832i \(0.00461031\pi\)
−0.341026 + 0.940054i \(0.610774\pi\)
\(762\) −36.5518 19.1838i −1.32413 0.694957i
\(763\) −1.69967 + 13.9980i −0.0615320 + 0.506762i
\(764\) 1.03233 + 2.72202i 0.0373483 + 0.0984793i
\(765\) −8.61625 −0.311521
\(766\) 8.62838 22.7512i 0.311756 0.822033i
\(767\) 10.4208 + 5.36580i 0.376275 + 0.193748i
\(768\) 6.75609