Properties

Label 169.2.g.a.14.3
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.3
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.958835 + 1.38911i) q^{2} +(0.0179783 - 0.00943576i) q^{3} +(-0.301058 - 0.793826i) q^{4} +(-2.19225 - 1.94216i) q^{5} +(-0.00413093 + 0.0340212i) q^{6} +(-2.78022 - 0.685263i) q^{7} +(-1.88632 - 0.464936i) q^{8} +(-1.70396 + 2.46861i) q^{9} +O(q^{10})\) \(q+(-0.958835 + 1.38911i) q^{2} +(0.0179783 - 0.00943576i) q^{3} +(-0.301058 - 0.793826i) q^{4} +(-2.19225 - 1.94216i) q^{5} +(-0.00413093 + 0.0340212i) q^{6} +(-2.78022 - 0.685263i) q^{7} +(-1.88632 - 0.464936i) q^{8} +(-1.70396 + 2.46861i) q^{9} +(4.79989 - 1.18307i) q^{10} +(-0.897411 - 1.30012i) q^{11} +(-0.0129029 - 0.0114310i) q^{12} +(-2.34228 + 2.74112i) q^{13} +(3.61768 - 3.20498i) q^{14} +(-0.0577388 - 0.0142313i) q^{15} +(3.72549 - 3.30049i) q^{16} +(0.528502 + 0.130264i) q^{17} +(-1.79536 - 4.73398i) q^{18} +4.05657 q^{19} +(-0.881745 + 2.32497i) q^{20} +(-0.0564497 + 0.0139136i) q^{21} +2.66649 q^{22} -4.20368 q^{23} +(-0.0382999 + 0.00944009i) q^{24} +(0.431275 + 3.55187i) q^{25} +(-1.56186 - 5.88197i) q^{26} +(-0.0146833 + 0.120928i) q^{27} +(0.293029 + 2.41331i) q^{28} +(2.13487 - 3.09289i) q^{29} +(0.0751308 - 0.0665601i) q^{30} +(-0.885559 + 7.29323i) q^{31} +(0.544277 + 4.48253i) q^{32} +(-0.0284016 - 0.0149063i) q^{33} +(-0.687697 + 0.609246i) q^{34} +(4.76404 + 6.90191i) q^{35} +(2.47264 + 0.609451i) q^{36} +(0.652567 - 5.37437i) q^{37} +(-3.88958 + 5.63503i) q^{38} +(-0.0162457 + 0.0713819i) q^{39} +(3.23230 + 4.68280i) q^{40} +(-10.1126 + 5.30752i) q^{41} +(0.0347984 - 0.0917558i) q^{42} +(1.28549 + 10.5869i) q^{43} +(-0.761899 + 1.10380i) q^{44} +(8.52995 - 2.10244i) q^{45} +(4.03063 - 5.83938i) q^{46} +(2.61776 - 6.90247i) q^{47} +(0.0358354 - 0.0944901i) q^{48} +(1.06184 + 0.557299i) q^{49} +(-5.34747 - 2.80657i) q^{50} +(0.0107307 - 0.00264488i) q^{51} +(2.88113 + 1.03412i) q^{52} +(-10.2838 - 2.53472i) q^{53} +(-0.153903 - 0.136346i) q^{54} +(-0.557705 + 4.59311i) q^{55} +(4.92578 + 2.58525i) q^{56} +(0.0729304 - 0.0382768i) q^{57} +(2.24939 + 5.93115i) q^{58} +(1.91135 + 1.69330i) q^{59} +(0.00608555 + 0.0501190i) q^{60} +(-4.85391 + 1.19638i) q^{61} +(-9.28202 - 8.22315i) q^{62} +(6.42903 - 5.69562i) q^{63} +(2.06558 + 1.08410i) q^{64} +(10.4586 - 1.46013i) q^{65} +(0.0479390 - 0.0251603i) q^{66} +(-0.750866 + 1.97987i) q^{67} +(-0.0557030 - 0.458755i) q^{68} +(-0.0755751 + 0.0396649i) q^{69} -14.1555 q^{70} +(2.61743 - 1.37373i) q^{71} +(4.36196 - 3.86436i) q^{72} +(-5.66909 - 8.21310i) q^{73} +(6.83990 + 6.05962i) q^{74} +(0.0412682 + 0.0597873i) q^{75} +(-1.22126 - 3.22021i) q^{76} +(1.60407 + 4.22959i) q^{77} +(-0.0835805 - 0.0910106i) q^{78} +(6.16106 - 16.2454i) q^{79} -14.5773 q^{80} +(-3.19013 - 8.41168i) q^{81} +(2.32360 - 19.1366i) q^{82} +(-6.61602 - 3.47236i) q^{83} +(0.0280396 + 0.0406224i) q^{84} +(-0.905613 - 1.31201i) q^{85} +(-15.9390 - 8.36543i) q^{86} +(0.00919761 - 0.0757492i) q^{87} +(1.08833 + 2.86969i) q^{88} +0.872335 q^{89} +(-5.25829 + 13.8650i) q^{90} +(8.39043 - 6.01584i) q^{91} +(1.26555 + 3.33699i) q^{92} +(0.0528963 + 0.139476i) q^{93} +(7.07831 + 10.2547i) q^{94} +(-8.89301 - 7.87852i) q^{95} +(0.0520812 + 0.0754527i) q^{96} +(-3.23340 + 2.86454i) q^{97} +(-1.79228 + 0.940663i) q^{98} +4.73865 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.958835 + 1.38911i −0.677999 + 0.982251i 0.321378 + 0.946951i \(0.395854\pi\)
−0.999377 + 0.0352997i \(0.988761\pi\)
\(3\) 0.0179783 0.00943576i 0.0103798 0.00544774i −0.459525 0.888165i \(-0.651980\pi\)
0.469905 + 0.882717i \(0.344288\pi\)
\(4\) −0.301058 0.793826i −0.150529 0.396913i
\(5\) −2.19225 1.94216i −0.980404 0.868562i 0.0109286 0.999940i \(-0.496521\pi\)
−0.991332 + 0.131378i \(0.958060\pi\)
\(6\) −0.00413093 + 0.0340212i −0.00168644 + 0.0138891i
\(7\) −2.78022 0.685263i −1.05082 0.259005i −0.324163 0.946001i \(-0.605083\pi\)
−0.726661 + 0.686996i \(0.758929\pi\)
\(8\) −1.88632 0.464936i −0.666915 0.164380i
\(9\) −1.70396 + 2.46861i −0.567987 + 0.822871i
\(10\) 4.79989 1.18307i 1.51786 0.374118i
\(11\) −0.897411 1.30012i −0.270579 0.392002i 0.664014 0.747720i \(-0.268852\pi\)
−0.934593 + 0.355718i \(0.884236\pi\)
\(12\) −0.0129029 0.0114310i −0.00372474 0.00329983i
\(13\) −2.34228 + 2.74112i −0.649631 + 0.760250i
\(14\) 3.61768 3.20498i 0.966865 0.856568i
\(15\) −0.0577388 0.0142313i −0.0149081 0.00367451i
\(16\) 3.72549 3.30049i 0.931372 0.825123i
\(17\) 0.528502 + 0.130264i 0.128180 + 0.0315936i 0.302884 0.953027i \(-0.402051\pi\)
−0.174704 + 0.984621i \(0.555897\pi\)
\(18\) −1.79536 4.73398i −0.423171 1.11581i
\(19\) 4.05657 0.930641 0.465321 0.885142i \(-0.345939\pi\)
0.465321 + 0.885142i \(0.345939\pi\)
\(20\) −0.881745 + 2.32497i −0.197164 + 0.519879i
\(21\) −0.0564497 + 0.0139136i −0.0123183 + 0.00303620i
\(22\) 2.66649 0.568497
\(23\) −4.20368 −0.876527 −0.438264 0.898846i \(-0.644406\pi\)
−0.438264 + 0.898846i \(0.644406\pi\)
\(24\) −0.0382999 + 0.00944009i −0.00781794 + 0.00192695i
\(25\) 0.431275 + 3.55187i 0.0862550 + 0.710374i
\(26\) −1.56186 5.88197i −0.306307 1.15355i
\(27\) −0.0146833 + 0.120928i −0.00282580 + 0.0232725i
\(28\) 0.293029 + 2.41331i 0.0553774 + 0.456074i
\(29\) 2.13487 3.09289i 0.396435 0.574336i −0.573039 0.819528i \(-0.694236\pi\)
0.969474 + 0.245192i \(0.0788511\pi\)
\(30\) 0.0751308 0.0665601i 0.0137170 0.0121522i
\(31\) −0.885559 + 7.29323i −0.159051 + 1.30990i 0.666470 + 0.745532i \(0.267805\pi\)
−0.825521 + 0.564372i \(0.809119\pi\)
\(32\) 0.544277 + 4.48253i 0.0962155 + 0.792406i
\(33\) −0.0284016 0.0149063i −0.00494408 0.00259485i
\(34\) −0.687697 + 0.609246i −0.117939 + 0.104485i
\(35\) 4.76404 + 6.90191i 0.805270 + 1.16664i
\(36\) 2.47264 + 0.609451i 0.412107 + 0.101575i
\(37\) 0.652567 5.37437i 0.107281 0.883541i −0.835353 0.549714i \(-0.814737\pi\)
0.942634 0.333827i \(-0.108340\pi\)
\(38\) −3.88958 + 5.63503i −0.630973 + 0.914123i
\(39\) −0.0162457 + 0.0713819i −0.00260140 + 0.0114303i
\(40\) 3.23230 + 4.68280i 0.511072 + 0.740416i
\(41\) −10.1126 + 5.30752i −1.57933 + 0.828895i −0.579423 + 0.815027i \(0.696722\pi\)
−0.999904 + 0.0138678i \(0.995586\pi\)
\(42\) 0.0347984 0.0917558i 0.00536951 0.0141582i
\(43\) 1.28549 + 10.5869i 0.196035 + 1.61449i 0.675794 + 0.737091i \(0.263801\pi\)
−0.479759 + 0.877400i \(0.659276\pi\)
\(44\) −0.761899 + 1.10380i −0.114861 + 0.166404i
\(45\) 8.52995 2.10244i 1.27157 0.313414i
\(46\) 4.03063 5.83938i 0.594284 0.860970i
\(47\) 2.61776 6.90247i 0.381840 1.00683i −0.597007 0.802236i \(-0.703644\pi\)
0.978847 0.204593i \(-0.0655872\pi\)
\(48\) 0.0358354 0.0944901i 0.00517239 0.0136385i
\(49\) 1.06184 + 0.557299i 0.151692 + 0.0796141i
\(50\) −5.34747 2.80657i −0.756246 0.396908i
\(51\) 0.0107307 0.00264488i 0.00150260 0.000370358i
\(52\) 2.88113 + 1.03412i 0.399541 + 0.143407i
\(53\) −10.2838 2.53472i −1.41258 0.348170i −0.542077 0.840329i \(-0.682362\pi\)
−0.870505 + 0.492159i \(0.836208\pi\)
\(54\) −0.153903 0.136346i −0.0209436 0.0185544i
\(55\) −0.557705 + 4.59311i −0.0752009 + 0.619335i
\(56\) 4.92578 + 2.58525i 0.658236 + 0.345469i
\(57\) 0.0729304 0.0382768i 0.00965986 0.00506989i
\(58\) 2.24939 + 5.93115i 0.295359 + 0.778798i
\(59\) 1.91135 + 1.69330i 0.248836 + 0.220449i 0.778316 0.627873i \(-0.216074\pi\)
−0.529480 + 0.848323i \(0.677613\pi\)
\(60\) 0.00608555 + 0.0501190i 0.000785641 + 0.00647033i
\(61\) −4.85391 + 1.19638i −0.621480 + 0.153181i −0.537469 0.843284i \(-0.680619\pi\)
−0.0840112 + 0.996465i \(0.526773\pi\)
\(62\) −9.28202 8.22315i −1.17882 1.04434i
\(63\) 6.42903 5.69562i 0.809982 0.717581i
\(64\) 2.06558 + 1.08410i 0.258197 + 0.135512i
\(65\) 10.4586 1.46013i 1.29722 0.181107i
\(66\) 0.0479390 0.0251603i 0.00590088 0.00309702i
\(67\) −0.750866 + 1.97987i −0.0917329 + 0.241880i −0.973028 0.230686i \(-0.925903\pi\)
0.881295 + 0.472566i \(0.156672\pi\)
\(68\) −0.0557030 0.458755i −0.00675498 0.0556322i
\(69\) −0.0755751 + 0.0396649i −0.00909817 + 0.00477509i
\(70\) −14.1555 −1.69190
\(71\) 2.61743 1.37373i 0.310632 0.163032i −0.302202 0.953244i \(-0.597722\pi\)
0.612834 + 0.790212i \(0.290029\pi\)
\(72\) 4.36196 3.86436i 0.514062 0.455420i
\(73\) −5.66909 8.21310i −0.663517 0.961271i −0.999810 0.0195130i \(-0.993788\pi\)
0.336292 0.941758i \(-0.390827\pi\)
\(74\) 6.83990 + 6.05962i 0.795122 + 0.704417i
\(75\) 0.0412682 + 0.0597873i 0.00476524 + 0.00690364i
\(76\) −1.22126 3.22021i −0.140089 0.369384i
\(77\) 1.60407 + 4.22959i 0.182801 + 0.482007i
\(78\) −0.0835805 0.0910106i −0.00946363 0.0103049i
\(79\) 6.16106 16.2454i 0.693173 1.82775i 0.148872 0.988856i \(-0.452436\pi\)
0.544301 0.838890i \(-0.316795\pi\)
\(80\) −14.5773 −1.62979
\(81\) −3.19013 8.41168i −0.354459 0.934631i
\(82\) 2.32360 19.1366i 0.256599 2.11328i
\(83\) −6.61602 3.47236i −0.726203 0.381141i 0.0607505 0.998153i \(-0.480651\pi\)
−0.786954 + 0.617012i \(0.788343\pi\)
\(84\) 0.0280396 + 0.0406224i 0.00305937 + 0.00443227i
\(85\) −0.905613 1.31201i −0.0982276 0.142307i
\(86\) −15.9390 8.36543i −1.71875 0.902068i
\(87\) 0.00919761 0.0757492i 0.000986088 0.00812116i
\(88\) 1.08833 + 2.86969i 0.116016 + 0.305910i
\(89\) 0.872335 0.0924674 0.0462337 0.998931i \(-0.485278\pi\)
0.0462337 + 0.998931i \(0.485278\pi\)
\(90\) −5.25829 + 13.8650i −0.554272 + 1.46150i
\(91\) 8.39043 6.01584i 0.879557 0.630631i
\(92\) 1.26555 + 3.33699i 0.131943 + 0.347905i
\(93\) 0.0528963 + 0.139476i 0.00548509 + 0.0144630i
\(94\) 7.07831 + 10.2547i 0.730072 + 1.05769i
\(95\) −8.89301 7.87852i −0.912404 0.808319i
\(96\) 0.0520812 + 0.0754527i 0.00531552 + 0.00770086i
\(97\) −3.23340 + 2.86454i −0.328302 + 0.290850i −0.811131 0.584864i \(-0.801148\pi\)
0.482829 + 0.875715i \(0.339609\pi\)
\(98\) −1.79228 + 0.940663i −0.181048 + 0.0950214i
\(99\) 4.73865 0.476253
\(100\) 2.68973 1.41168i 0.268973 0.141168i
\(101\) 0.591672 + 4.87286i 0.0588736 + 0.484867i 0.992088 + 0.125547i \(0.0400685\pi\)
−0.933214 + 0.359321i \(0.883008\pi\)
\(102\) −0.00661494 + 0.0174422i −0.000654977 + 0.00172703i
\(103\) −8.07054 + 4.23574i −0.795214 + 0.417360i −0.812842 0.582484i \(-0.802081\pi\)
0.0176284 + 0.999845i \(0.494388\pi\)
\(104\) 5.69274 4.08162i 0.558219 0.400236i
\(105\) 0.150774 + 0.0791324i 0.0147141 + 0.00772253i
\(106\) 13.3814 11.8549i 1.29972 1.15145i
\(107\) 13.6655 + 12.1066i 1.32110 + 1.17039i 0.972444 + 0.233136i \(0.0748986\pi\)
0.348651 + 0.937253i \(0.386640\pi\)
\(108\) 0.100416 0.0247503i 0.00966254 0.00238160i
\(109\) 1.33213 + 10.9711i 0.127595 + 1.05084i 0.906059 + 0.423151i \(0.139076\pi\)
−0.778464 + 0.627689i \(0.784001\pi\)
\(110\) −5.84560 5.17875i −0.557356 0.493775i
\(111\) −0.0389792 0.102780i −0.00369974 0.00975541i
\(112\) −12.6194 + 6.62316i −1.19242 + 0.625830i
\(113\) 0.167116 + 0.0877093i 0.0157210 + 0.00825100i 0.472565 0.881296i \(-0.343328\pi\)
−0.456844 + 0.889547i \(0.651020\pi\)
\(114\) −0.0167574 + 0.138010i −0.00156947 + 0.0129258i
\(115\) 9.21551 + 8.16423i 0.859351 + 0.761318i
\(116\) −3.09794 0.763573i −0.287636 0.0708960i
\(117\) −2.77561 10.4529i −0.256605 0.966374i
\(118\) −4.18486 + 1.03147i −0.385247 + 0.0949549i
\(119\) −1.38009 0.724325i −0.126512 0.0663987i
\(120\) 0.102297 + 0.0536897i 0.00933841 + 0.00490118i
\(121\) 3.01568 7.95169i 0.274153 0.722881i
\(122\) 2.99219 7.88976i 0.270900 0.714305i
\(123\) −0.131728 + 0.190841i −0.0118775 + 0.0172075i
\(124\) 6.05616 1.49271i 0.543860 0.134049i
\(125\) −2.36593 + 3.42765i −0.211616 + 0.306578i
\(126\) 1.74748 + 14.3918i 0.155678 + 1.28212i
\(127\) 0.974142 2.56860i 0.0864411 0.227927i −0.884825 0.465924i \(-0.845722\pi\)
0.971266 + 0.237998i \(0.0764911\pi\)
\(128\) −11.4829 + 6.02671i −1.01496 + 0.532691i
\(129\) 0.123007 + 0.178206i 0.0108301 + 0.0156901i
\(130\) −7.99975 + 15.9281i −0.701624 + 1.39699i
\(131\) 2.39561 3.47064i 0.209306 0.303232i −0.704245 0.709957i \(-0.748714\pi\)
0.913550 + 0.406726i \(0.133330\pi\)
\(132\) −0.00328247 + 0.0270336i −0.000285703 + 0.00235297i
\(133\) −11.2782 2.77982i −0.977940 0.241041i
\(134\) −2.03031 2.94141i −0.175392 0.254099i
\(135\) 0.267051 0.236586i 0.0229841 0.0203621i
\(136\) −0.936359 0.491439i −0.0802921 0.0421406i
\(137\) 2.57909 + 21.2407i 0.220346 + 1.81472i 0.512880 + 0.858460i \(0.328579\pi\)
−0.292534 + 0.956255i \(0.594498\pi\)
\(138\) 0.0173651 0.143014i 0.00147821 0.0121742i
\(139\) 3.72962 3.30415i 0.316342 0.280255i −0.489977 0.871735i \(-0.662995\pi\)
0.806319 + 0.591481i \(0.201456\pi\)
\(140\) 4.04466 5.85970i 0.341836 0.495235i
\(141\) −0.0180670 0.148795i −0.00152152 0.0125308i
\(142\) −0.601414 + 4.95309i −0.0504696 + 0.415654i
\(143\) 5.66578 + 0.585343i 0.473796 + 0.0489488i
\(144\) 1.79956 + 14.8207i 0.149963 + 1.23506i
\(145\) −10.6871 + 2.63413i −0.887513 + 0.218752i
\(146\) 16.8446 1.39407
\(147\) 0.0243487 0.00200825
\(148\) −4.46278 + 1.09998i −0.366838 + 0.0904174i
\(149\) −4.28426 + 11.2967i −0.350980 + 0.925459i 0.636998 + 0.770866i \(0.280176\pi\)
−0.987978 + 0.154593i \(0.950593\pi\)
\(150\) −0.122621 −0.0100119
\(151\) 3.34153 + 8.81090i 0.271930 + 0.717021i 0.999519 + 0.0310076i \(0.00987161\pi\)
−0.727589 + 0.686013i \(0.759359\pi\)
\(152\) −7.65200 1.88605i −0.620659 0.152979i
\(153\) −1.22212 + 1.08270i −0.0988023 + 0.0875312i
\(154\) −7.41342 1.82724i −0.597390 0.147243i
\(155\) 16.1060 14.2687i 1.29367 1.14609i
\(156\) 0.0615557 0.00859385i 0.00492840 0.000688058i
\(157\) −17.6758 15.6594i −1.41068 1.24975i −0.927287 0.374351i \(-0.877866\pi\)
−0.483393 0.875403i \(-0.660596\pi\)
\(158\) 16.6592 + 24.1350i 1.32534 + 1.92008i
\(159\) −0.208802 + 0.0514650i −0.0165591 + 0.00408144i
\(160\) 7.51261 10.8839i 0.593924 0.860447i
\(161\) 11.6871 + 2.88062i 0.921076 + 0.227025i
\(162\) 14.7436 + 3.63396i 1.15836 + 0.285511i
\(163\) 1.93097 15.9029i 0.151245 1.24561i −0.697412 0.716670i \(-0.745665\pi\)
0.848657 0.528944i \(-0.177412\pi\)
\(164\) 7.25774 + 6.42979i 0.566734 + 0.502082i
\(165\) 0.0333129 + 0.0878389i 0.00259340 + 0.00683825i
\(166\) 11.1672 5.86098i 0.866740 0.454900i
\(167\) −0.654533 + 0.948255i −0.0506493 + 0.0733782i −0.847490 0.530811i \(-0.821887\pi\)
0.796841 + 0.604189i \(0.206503\pi\)
\(168\) 0.112951 0.00871437
\(169\) −2.02746 12.8409i −0.155959 0.987764i
\(170\) 2.69086 0.206379
\(171\) −6.91223 + 10.0141i −0.528592 + 0.765797i
\(172\) 8.01717 4.20774i 0.611304 0.320837i
\(173\) 1.38446 + 3.65052i 0.105259 + 0.277544i 0.977290 0.211906i \(-0.0679670\pi\)
−0.872032 + 0.489450i \(0.837198\pi\)
\(174\) 0.0964051 + 0.0854075i 0.00730845 + 0.00647472i
\(175\) 1.23492 10.1705i 0.0933515 0.768819i
\(176\) −7.63434 1.88170i −0.575460 0.141838i
\(177\) 0.0503404 + 0.0124078i 0.00378382 + 0.000932627i
\(178\) −0.836425 + 1.21177i −0.0626927 + 0.0908261i
\(179\) 14.5807 3.59383i 1.08982 0.268615i 0.346833 0.937927i \(-0.387257\pi\)
0.742982 + 0.669311i \(0.233411\pi\)
\(180\) −4.23699 6.13834i −0.315807 0.457525i
\(181\) −7.17596 6.35735i −0.533385 0.472538i 0.352911 0.935657i \(-0.385192\pi\)
−0.886296 + 0.463119i \(0.846730\pi\)
\(182\) 0.311630 + 17.4234i 0.0230995 + 1.29151i
\(183\) −0.0759765 + 0.0673093i −0.00561634 + 0.00497564i
\(184\) 7.92949 + 1.95444i 0.584570 + 0.144083i
\(185\) −11.8685 + 10.5146i −0.872589 + 0.773047i
\(186\) −0.244467 0.0602556i −0.0179252 0.00441816i
\(187\) −0.304924 0.804017i −0.0222982 0.0587956i
\(188\) −6.26746 −0.457102
\(189\) 0.123690 0.326144i 0.00899712 0.0237235i
\(190\) 19.4711 4.79919i 1.41258 0.348170i
\(191\) −6.67665 −0.483105 −0.241553 0.970388i \(-0.577657\pi\)
−0.241553 + 0.970388i \(0.577657\pi\)
\(192\) 0.0473649 0.00341827
\(193\) −15.5958 + 3.84401i −1.12261 + 0.276698i −0.756577 0.653905i \(-0.773130\pi\)
−0.366031 + 0.930603i \(0.619283\pi\)
\(194\) −0.878874 7.23818i −0.0630995 0.519671i
\(195\) 0.174250 0.124935i 0.0124783 0.00894679i
\(196\) 0.122721 1.01070i 0.00876579 0.0721928i
\(197\) −1.86877 15.3907i −0.133144 1.09654i −0.894140 0.447787i \(-0.852212\pi\)
0.760996 0.648757i \(-0.224711\pi\)
\(198\) −4.54359 + 6.58252i −0.322899 + 0.467799i
\(199\) −6.77049 + 5.99813i −0.479948 + 0.425196i −0.868093 0.496402i \(-0.834654\pi\)
0.388145 + 0.921598i \(0.373116\pi\)
\(200\) 0.837870 6.90048i 0.0592464 0.487938i
\(201\) 0.00518226 + 0.0426798i 0.000365529 + 0.00301040i
\(202\) −7.33626 3.85037i −0.516178 0.270911i
\(203\) −8.05485 + 7.13598i −0.565340 + 0.500847i
\(204\) −0.00533015 0.00772205i −0.000373185 0.000540652i
\(205\) 32.4775 + 8.00498i 2.26832 + 0.559092i
\(206\) 1.85439 15.2723i 0.129201 1.06407i
\(207\) 7.16290 10.3773i 0.497856 0.721269i
\(208\) 0.320917 + 17.9427i 0.0222516 + 1.24410i
\(209\) −3.64041 5.27404i −0.251812 0.364813i
\(210\) −0.254491 + 0.133567i −0.0175616 + 0.00921703i
\(211\) −4.00413 + 10.5580i −0.275656 + 0.726844i 0.723671 + 0.690145i \(0.242453\pi\)
−0.999326 + 0.0366986i \(0.988316\pi\)
\(212\) 1.08389 + 8.92661i 0.0744416 + 0.613082i
\(213\) 0.0340948 0.0493949i 0.00233614 0.00338448i
\(214\) −29.9204 + 7.37471i −2.04532 + 0.504125i
\(215\) 17.7434 25.7058i 1.21009 1.75312i
\(216\) 0.0839211 0.221282i 0.00571010 0.0150563i
\(217\) 7.45983 19.6700i 0.506406 1.33528i
\(218\) −16.5174 8.66899i −1.11870 0.587138i
\(219\) −0.179418 0.0941656i −0.0121239 0.00636312i
\(220\) 3.81403 0.940075i 0.257142 0.0633798i
\(221\) −1.59497 + 1.14357i −0.107289 + 0.0769249i
\(222\) 0.180147 + 0.0444023i 0.0120907 + 0.00298009i
\(223\) −5.24619 4.64772i −0.351311 0.311234i 0.468949 0.883225i \(-0.344633\pi\)
−0.820260 + 0.571991i \(0.806171\pi\)
\(224\) 1.55850 12.8354i 0.104131 0.857600i
\(225\) −9.50306 4.98759i −0.633538 0.332506i
\(226\) −0.282075 + 0.148044i −0.0187633 + 0.00984776i
\(227\) 8.65446 + 22.8199i 0.574417 + 1.51461i 0.835608 + 0.549325i \(0.185115\pi\)
−0.261192 + 0.965287i \(0.584115\pi\)
\(228\) −0.0523414 0.0463705i −0.00346640 0.00307096i
\(229\) −0.752208 6.19499i −0.0497073 0.409376i −0.996231 0.0867417i \(-0.972355\pi\)
0.946524 0.322635i \(-0.104569\pi\)
\(230\) −20.1772 + 4.97323i −1.33044 + 0.327925i
\(231\) 0.0687479 + 0.0609053i 0.00452328 + 0.00400728i
\(232\) −5.46505 + 4.84161i −0.358798 + 0.317867i
\(233\) −2.64558 1.38851i −0.173318 0.0909641i 0.375833 0.926687i \(-0.377357\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(234\) 17.1817 + 6.16700i 1.12320 + 0.403150i
\(235\) −19.1445 + 10.0478i −1.24885 + 0.655447i
\(236\) 0.768762 2.02706i 0.0500422 0.131950i
\(237\) −0.0425218 0.350199i −0.00276209 0.0227479i
\(238\) 2.32944 1.22259i 0.150995 0.0792485i
\(239\) −9.29548 −0.601275 −0.300637 0.953739i \(-0.597199\pi\)
−0.300637 + 0.953739i \(0.597199\pi\)
\(240\) −0.262075 + 0.137548i −0.0169169 + 0.00887867i
\(241\) 10.6048 9.39503i 0.683115 0.605187i −0.248501 0.968632i \(-0.579938\pi\)
0.931616 + 0.363444i \(0.118399\pi\)
\(242\) 8.15425 + 11.8135i 0.524175 + 0.759399i
\(243\) −0.410265 0.363463i −0.0263185 0.0233162i
\(244\) 2.41103 + 3.49298i 0.154350 + 0.223615i
\(245\) −1.24546 3.28401i −0.0795697 0.209808i
\(246\) −0.138794 0.365969i −0.00884917 0.0233333i
\(247\) −9.50162 + 11.1195i −0.604573 + 0.707519i
\(248\) 5.06134 13.3457i 0.321395 0.847450i
\(249\) −0.151709 −0.00961419
\(250\) −2.49285 6.57310i −0.157661 0.415719i
\(251\) −2.16776 + 17.8531i −0.136828 + 1.12688i 0.748903 + 0.662680i \(0.230581\pi\)
−0.885731 + 0.464199i \(0.846342\pi\)
\(252\) −6.45685 3.38882i −0.406743 0.213475i
\(253\) 3.77242 + 5.46530i 0.237170 + 0.343601i
\(254\) 2.63403 + 3.81606i 0.165274 + 0.239441i
\(255\) −0.0286612 0.0150426i −0.00179483 0.000942001i
\(256\) 2.07609 17.0982i 0.129756 1.06864i
\(257\) −4.29442 11.3235i −0.267879 0.706338i −0.999692 0.0248325i \(-0.992095\pi\)
0.731813 0.681506i \(-0.238674\pi\)
\(258\) −0.365491 −0.0227545
\(259\) −5.49713 + 14.4948i −0.341575 + 0.900660i
\(260\) −4.30773 7.86269i −0.267154 0.487623i
\(261\) 3.99742 + 10.5403i 0.247434 + 0.652430i
\(262\) 2.52412 + 6.65555i 0.155940 + 0.411181i
\(263\) 3.16570 + 4.58631i 0.195206 + 0.282804i 0.908348 0.418215i \(-0.137344\pi\)
−0.713142 + 0.701019i \(0.752729\pi\)
\(264\) 0.0466440 + 0.0413230i 0.00287074 + 0.00254326i
\(265\) 17.6217 + 25.5295i 1.08249 + 1.56826i
\(266\) 14.6754 13.0012i 0.899804 0.797157i
\(267\) 0.0156831 0.00823114i 0.000959792 0.000503738i
\(268\) 1.79773 0.109814
\(269\) −19.4964 + 10.2325i −1.18871 + 0.623886i −0.938827 0.344389i \(-0.888086\pi\)
−0.249888 + 0.968275i \(0.580394\pi\)
\(270\) 0.0725873 + 0.597811i 0.00441752 + 0.0363816i
\(271\) −3.40947 + 8.99002i −0.207110 + 0.546105i −0.997813 0.0660949i \(-0.978946\pi\)
0.790703 + 0.612200i \(0.209715\pi\)
\(272\) 2.39886 1.25902i 0.145452 0.0763392i
\(273\) 0.0940820 0.187325i 0.00569410 0.0113374i
\(274\) −31.9786 16.7837i −1.93190 1.01394i
\(275\) 4.23084 3.74820i 0.255129 0.226025i
\(276\) 0.0542395 + 0.0480520i 0.00326484 + 0.00289239i
\(277\) 15.1667 3.73825i 0.911276 0.224609i 0.244310 0.969697i \(-0.421439\pi\)
0.666966 + 0.745088i \(0.267592\pi\)
\(278\) 1.01375 + 8.34900i 0.0608008 + 0.500740i
\(279\) −16.4952 14.6135i −0.987542 0.874886i
\(280\) −5.77757 15.2342i −0.345276 0.910417i
\(281\) −6.42352 + 3.37132i −0.383195 + 0.201116i −0.645311 0.763920i \(-0.723272\pi\)
0.262116 + 0.965036i \(0.415580\pi\)
\(282\) 0.224017 + 0.117573i 0.0133400 + 0.00700138i
\(283\) −2.62070 + 21.5834i −0.155784 + 1.28300i 0.679702 + 0.733489i \(0.262109\pi\)
−0.835486 + 0.549511i \(0.814814\pi\)
\(284\) −1.87851 1.66421i −0.111469 0.0987528i
\(285\) −0.234221 0.0577304i −0.0138741 0.00341965i
\(286\) −6.24565 + 7.30915i −0.369313 + 0.432199i
\(287\) 31.7524 7.82626i 1.87428 0.461969i
\(288\) −11.9930 6.29444i −0.706697 0.370903i
\(289\) −14.7904 7.76260i −0.870024 0.456624i
\(290\) 6.58804 17.3712i 0.386863 1.02007i
\(291\) −0.0311020 + 0.0820092i −0.00182323 + 0.00480747i
\(292\) −4.81304 + 6.97290i −0.281662 + 0.408058i
\(293\) −14.9268 + 3.67911i −0.872030 + 0.214936i −0.649843 0.760068i \(-0.725166\pi\)
−0.222187 + 0.975004i \(0.571319\pi\)
\(294\) −0.0233464 + 0.0338231i −0.00136159 + 0.00197260i
\(295\) −0.901472 7.42429i −0.0524857 0.432259i
\(296\) −3.72969 + 9.83439i −0.216784 + 0.571612i
\(297\) 0.170398 0.0894317i 0.00988748 0.00518935i
\(298\) −11.5844 16.7830i −0.671068 0.972210i
\(299\) 9.84618 11.5228i 0.569420 0.666380i
\(300\) 0.0350366 0.0507592i 0.00202284 0.00293058i
\(301\) 3.68089 30.3149i 0.212163 1.74732i
\(302\) −15.4433 3.80643i −0.888663 0.219036i
\(303\) 0.0566164 + 0.0820230i 0.00325253 + 0.00471210i
\(304\) 15.1127 13.3887i 0.866773 0.767894i
\(305\) 12.9646 + 6.80432i 0.742348 + 0.389614i
\(306\) −0.332185 2.73579i −0.0189897 0.156395i
\(307\) −2.48337 + 20.4524i −0.141733 + 1.16728i 0.732150 + 0.681143i \(0.238517\pi\)
−0.873883 + 0.486135i \(0.838406\pi\)
\(308\) 2.87464 2.54671i 0.163798 0.145112i
\(309\) −0.105127 + 0.152303i −0.00598048 + 0.00866423i
\(310\) 4.37779 + 36.0544i 0.248642 + 2.04775i
\(311\) 4.08027 33.6040i 0.231371 1.90551i −0.163114 0.986607i \(-0.552154\pi\)
0.394485 0.918902i \(-0.370923\pi\)
\(312\) 0.0638327 0.127096i 0.00361382 0.00719539i
\(313\) 0.0993409 + 0.818146i 0.00561508 + 0.0462443i 0.995247 0.0973818i \(-0.0310468\pi\)
−0.989632 + 0.143626i \(0.954124\pi\)
\(314\) 38.7008 9.53888i 2.18401 0.538310i
\(315\) −25.1559 −1.41737
\(316\) −14.7508 −0.829799
\(317\) 20.8136 5.13010i 1.16901 0.288135i 0.393412 0.919362i \(-0.371295\pi\)
0.775598 + 0.631227i \(0.217449\pi\)
\(318\) 0.128716 0.339395i 0.00721802 0.0190323i
\(319\) −5.93700 −0.332408
\(320\) −2.42276 6.38830i −0.135437 0.357117i
\(321\) 0.359918 + 0.0887118i 0.0200887 + 0.00495141i
\(322\) −15.2076 + 13.4727i −0.847484 + 0.750805i
\(323\) 2.14390 + 0.528425i 0.119290 + 0.0294023i
\(324\) −5.71699 + 5.06481i −0.317611 + 0.281379i
\(325\) −10.7463 7.13729i −0.596095 0.395906i
\(326\) 20.2395 + 17.9306i 1.12096 + 0.993085i
\(327\) 0.127470 + 0.184672i 0.00704911 + 0.0102124i
\(328\) 21.5433 5.30995i 1.18953 0.293193i
\(329\) −12.0080 + 17.3965i −0.662020 + 0.959102i
\(330\) −0.153960 0.0379476i −0.00847520 0.00208895i
\(331\) −7.91635 1.95120i −0.435122 0.107248i 0.0156696 0.999877i \(-0.495012\pi\)
−0.450791 + 0.892629i \(0.648858\pi\)
\(332\) −0.764637 + 6.29735i −0.0419649 + 0.345612i
\(333\) 12.1553 + 10.7686i 0.666106 + 0.590118i
\(334\) −0.689643 1.81844i −0.0377356 0.0995006i
\(335\) 5.49132 2.88207i 0.300023 0.157464i
\(336\) −0.164381 + 0.238147i −0.00896771 + 0.0129920i
\(337\) 33.8925 1.84624 0.923120 0.384511i \(-0.125630\pi\)
0.923120 + 0.384511i \(0.125630\pi\)
\(338\) 19.7815 + 9.49595i 1.07597 + 0.516512i
\(339\) 0.00383207 0.000208130
\(340\) −0.768863 + 1.11389i −0.0416974 + 0.0604092i
\(341\) 10.2768 5.39369i 0.556521 0.292085i
\(342\) −7.28302 19.2037i −0.393820 1.03842i
\(343\) 12.4329 + 11.0146i 0.671312 + 0.594730i
\(344\) 2.49741 20.5680i 0.134651 1.10895i
\(345\) 0.242715 + 0.0598239i 0.0130673 + 0.00322081i
\(346\) −6.39845 1.57708i −0.343983 0.0847842i
\(347\) 5.87678 8.51399i 0.315482 0.457055i −0.632877 0.774252i \(-0.718126\pi\)
0.948360 + 0.317197i \(0.102742\pi\)
\(348\) −0.0629007 + 0.0155036i −0.00337183 + 0.000831081i
\(349\) 10.7268 + 15.5405i 0.574195 + 0.831865i 0.997240 0.0742439i \(-0.0236543\pi\)
−0.423045 + 0.906108i \(0.639039\pi\)
\(350\) 12.9439 + 11.4673i 0.691880 + 0.612952i
\(351\) −0.297085 0.323495i −0.0158572 0.0172669i
\(352\) 5.33940 4.73029i 0.284591 0.252126i
\(353\) 15.2883 + 3.76823i 0.813714 + 0.200562i 0.624149 0.781306i \(-0.285446\pi\)
0.189565 + 0.981868i \(0.439292\pi\)
\(354\) −0.0655040 + 0.0580315i −0.00348150 + 0.00308434i
\(355\) −8.40608 2.07191i −0.446149 0.109966i
\(356\) −0.262624 0.692482i −0.0139190 0.0367015i
\(357\) −0.0316462 −0.00167489
\(358\) −8.98829 + 23.7002i −0.475046 + 1.25259i
\(359\) −5.39696 + 1.33023i −0.284841 + 0.0702069i −0.379147 0.925336i \(-0.623783\pi\)
0.0943068 + 0.995543i \(0.469937\pi\)
\(360\) −17.0677 −0.899549
\(361\) −2.54424 −0.133907
\(362\) 15.7116 3.87257i 0.825785 0.203538i
\(363\) −0.0208133 0.171413i −0.00109242 0.00899686i
\(364\) −7.30154 4.84943i −0.382705 0.254179i
\(365\) −3.52312 + 29.0155i −0.184408 + 1.51874i
\(366\) −0.0206512 0.170078i −0.00107946 0.00889014i
\(367\) −15.6505 + 22.6736i −0.816948 + 1.18355i 0.163455 + 0.986551i \(0.447736\pi\)
−0.980403 + 0.197002i \(0.936879\pi\)
\(368\) −15.6607 + 13.8742i −0.816373 + 0.723243i
\(369\) 4.12931 34.0079i 0.214963 1.77038i
\(370\) −3.22599 26.5684i −0.167711 1.38123i
\(371\) 26.8541 + 14.0941i 1.39420 + 0.731732i
\(372\) 0.0947949 0.0839809i 0.00491488 0.00435421i
\(373\) 12.8780 + 18.6570i 0.666796 + 0.966021i 0.999734 + 0.0230723i \(0.00734480\pi\)
−0.332937 + 0.942949i \(0.608040\pi\)
\(374\) 1.40924 + 0.347347i 0.0728702 + 0.0179609i
\(375\) −0.0101931 + 0.0839477i −0.000526369 + 0.00433504i
\(376\) −8.14715 + 11.8032i −0.420157 + 0.608703i
\(377\) 3.47753 + 13.0963i 0.179102 + 0.674496i
\(378\) 0.334452 + 0.484537i 0.0172023 + 0.0249219i
\(379\) 7.27303 3.81718i 0.373590 0.196075i −0.267469 0.963566i \(-0.586187\pi\)
0.641060 + 0.767491i \(0.278495\pi\)
\(380\) −3.57686 + 9.43140i −0.183489 + 0.483821i
\(381\) −0.00672325 0.0553709i −0.000344442 0.00283674i
\(382\) 6.40180 9.27462i 0.327545 0.474531i
\(383\) 7.07887 1.74478i 0.361713 0.0891543i −0.0542707 0.998526i \(-0.517283\pi\)
0.415984 + 0.909372i \(0.363437\pi\)
\(384\) −0.149578 + 0.216700i −0.00763310 + 0.0110585i
\(385\) 4.69803 12.3877i 0.239434 0.631335i
\(386\) 9.61400 25.3500i 0.489340 1.29028i
\(387\) −28.3254 14.8663i −1.43986 0.755698i
\(388\) 3.24739 + 1.70436i 0.164861 + 0.0865259i
\(389\) −9.74434 + 2.40176i −0.494058 + 0.121774i −0.478469 0.878104i \(-0.658808\pi\)
−0.0155882 + 0.999878i \(0.504962\pi\)
\(390\) 0.00647184 + 0.361845i 0.000327714 + 0.0183227i
\(391\) −2.22165 0.547588i −0.112354 0.0276927i
\(392\) −1.74387 1.54494i −0.0880788 0.0780310i
\(393\) 0.0103210 0.0850008i 0.000520624 0.00428772i
\(394\) 23.1713 + 12.1612i 1.16735 + 0.612674i
\(395\) −45.0577 + 23.6481i −2.26710 + 1.18987i
\(396\) −1.42661 3.76167i −0.0716899 0.189031i
\(397\) −3.67279 3.25381i −0.184332 0.163304i 0.565910 0.824467i \(-0.308525\pi\)
−0.750242 + 0.661163i \(0.770063\pi\)
\(398\) −1.84030 15.1562i −0.0922457 0.759711i
\(399\) −0.228992 + 0.0564415i −0.0114639 + 0.00282561i
\(400\) 13.3296 + 11.8090i 0.666481 + 0.590451i
\(401\) 12.1517 10.7655i 0.606828 0.537603i −0.302785 0.953059i \(-0.597916\pi\)
0.909613 + 0.415456i \(0.136378\pi\)
\(402\) −0.0642559 0.0337241i −0.00320479 0.00168201i
\(403\) −17.9174 19.5102i −0.892529 0.971873i
\(404\) 3.69007 1.93670i 0.183588 0.0963544i
\(405\) −9.34330 + 24.6362i −0.464272 + 1.22418i
\(406\) −2.18940 18.0313i −0.108658 0.894879i
\(407\) −7.57297 + 3.97460i −0.375378 + 0.197014i
\(408\) −0.0214713 −0.00106299
\(409\) −19.7656 + 10.3738i −0.977346 + 0.512951i −0.876214 0.481922i \(-0.839939\pi\)
−0.101132 + 0.994873i \(0.532246\pi\)
\(410\) −42.2603 + 37.4394i −2.08709 + 1.84900i
\(411\) 0.246790 + 0.357537i 0.0121732 + 0.0176360i
\(412\) 5.79215 + 5.13139i 0.285359 + 0.252806i
\(413\) −4.15360 6.01753i −0.204385 0.296103i
\(414\) 7.54713 + 19.9001i 0.370921 + 0.978039i
\(415\) 7.76009 + 20.4617i 0.380928 + 1.00442i
\(416\) −13.5620 9.00740i −0.664931 0.441624i
\(417\) 0.0358751 0.0945949i 0.00175681 0.00463233i
\(418\) 10.8168 0.529066
\(419\) 3.06994 + 8.09476i 0.149976 + 0.395455i 0.988859 0.148858i \(-0.0475597\pi\)
−0.838882 + 0.544313i \(0.816790\pi\)
\(420\) 0.0174255 0.143512i 0.000850278 0.00700267i
\(421\) 15.1833 + 7.96881i 0.739988 + 0.388376i 0.792201 0.610260i \(-0.208935\pi\)
−0.0522128 + 0.998636i \(0.516627\pi\)
\(422\) −10.8270 15.6856i −0.527049 0.763562i
\(423\) 12.5790 + 18.2238i 0.611610 + 0.886070i
\(424\) 18.2200 + 9.56258i 0.884841 + 0.464400i
\(425\) −0.234751 + 1.93335i −0.0113871 + 0.0937811i
\(426\) 0.0359237 + 0.0947231i 0.00174051 + 0.00458935i
\(427\) 14.3148 0.692741
\(428\) 5.49641 14.4928i 0.265679 0.700538i
\(429\) 0.107384 0.0429374i 0.00518457 0.00207304i
\(430\) 18.6952 + 49.2953i 0.901564 + 2.37723i
\(431\) 0.472969 + 1.24712i 0.0227821 + 0.0600715i 0.945925 0.324386i \(-0.105158\pi\)
−0.923143 + 0.384458i \(0.874388\pi\)
\(432\) 0.344419 + 0.498976i 0.0165708 + 0.0240070i
\(433\) 7.58547 + 6.72014i 0.364534 + 0.322949i 0.825429 0.564505i \(-0.190933\pi\)
−0.460895 + 0.887455i \(0.652472\pi\)
\(434\) 20.1710 + 29.2228i 0.968240 + 1.40274i
\(435\) −0.167281 + 0.148198i −0.00802050 + 0.00710554i
\(436\) 8.30809 4.36042i 0.397885 0.208826i
\(437\) −17.0525 −0.815732
\(438\) 0.302839 0.158942i 0.0144702 0.00759454i
\(439\) −2.15923 17.7829i −0.103055 0.848730i −0.948960 0.315397i \(-0.897862\pi\)
0.845905 0.533333i \(-0.179061\pi\)
\(440\) 3.18752 8.40479i 0.151959 0.400683i
\(441\) −3.18510 + 1.67167i −0.151671 + 0.0796032i
\(442\) −0.0592388 3.31208i −0.00281770 0.157540i
\(443\) −19.6608 10.3188i −0.934115 0.490261i −0.0722429 0.997387i \(-0.523016\pi\)
−0.861872 + 0.507126i \(0.830708\pi\)
\(444\) −0.0698542 + 0.0618854i −0.00331513 + 0.00293695i
\(445\) −1.91238 1.69422i −0.0906553 0.0803136i
\(446\) 11.4864 2.83115i 0.543898 0.134059i
\(447\) 0.0295687 + 0.243520i 0.00139855 + 0.0115181i
\(448\) −4.99986 4.42949i −0.236221 0.209274i
\(449\) −2.81091 7.41175i −0.132655 0.349782i 0.852187 0.523238i \(-0.175276\pi\)
−0.984842 + 0.173455i \(0.944507\pi\)
\(450\) 16.0402 8.41854i 0.756142 0.396854i
\(451\) 15.9756 + 8.38464i 0.752262 + 0.394817i
\(452\) 0.0193142 0.159067i 0.000908464 0.00748187i
\(453\) 0.143213 + 0.126875i 0.00672872 + 0.00596113i
\(454\) −39.9977 9.85854i −1.87718 0.462684i
\(455\) −30.0777 3.10738i −1.41006 0.145676i
\(456\) −0.155366 + 0.0382944i −0.00727570 + 0.00179330i
\(457\) −32.9671 17.3025i −1.54214 0.809376i −0.542606 0.839988i \(-0.682562\pi\)
−0.999531 + 0.0306116i \(0.990254\pi\)
\(458\) 9.32678 + 4.89507i 0.435812 + 0.228732i
\(459\) −0.0235126 + 0.0619977i −0.00109748 + 0.00289381i
\(460\) 3.70657 9.77342i 0.172820 0.455688i
\(461\) −12.1562 + 17.6113i −0.566171 + 0.820240i −0.996601 0.0823838i \(-0.973747\pi\)
0.430430 + 0.902624i \(0.358362\pi\)
\(462\) −0.150522 + 0.0371004i −0.00700293 + 0.00172607i
\(463\) 16.8003 24.3395i 0.780777 1.13115i −0.207463 0.978243i \(-0.566521\pi\)
0.988240 0.152908i \(-0.0488638\pi\)
\(464\) −2.25464 18.5687i −0.104669 0.862028i
\(465\) 0.154923 0.408500i 0.00718440 0.0189437i
\(466\) 4.46547 2.34366i 0.206859 0.108568i
\(467\) −15.6353 22.6517i −0.723516 1.04819i −0.996285 0.0861148i \(-0.972555\pi\)
0.272769 0.962080i \(-0.412061\pi\)
\(468\) −7.46219 + 5.35030i −0.344940 + 0.247318i
\(469\) 3.44430 4.98994i 0.159043 0.230414i
\(470\) 4.39889 36.2281i 0.202905 1.67108i
\(471\) −0.465539 0.114745i −0.0214509 0.00528717i
\(472\) −2.81813 4.08277i −0.129715 0.187925i
\(473\) 12.6107 11.1721i 0.579841 0.513694i
\(474\) 0.527237 + 0.276715i 0.0242168 + 0.0127100i
\(475\) 1.74950 + 14.4084i 0.0802724 + 0.661103i
\(476\) −0.159501 + 1.31361i −0.00731073 + 0.0602093i
\(477\) 23.7803 21.0675i 1.08883 0.964617i
\(478\) 8.91283 12.9125i 0.407663 0.590602i
\(479\) −4.91825 40.5054i −0.224721 1.85074i −0.471751 0.881732i \(-0.656378\pi\)
0.247030 0.969008i \(-0.420545\pi\)
\(480\) 0.0323664 0.266561i 0.00147732 0.0121668i
\(481\) 13.2033 + 14.3770i 0.602018 + 0.655536i
\(482\) 2.88250 + 23.7395i 0.131294 + 1.08131i
\(483\) 0.237296 0.0584883i 0.0107974 0.00266131i
\(484\) −7.22015 −0.328189
\(485\) 12.6518 0.574490
\(486\) 0.898268 0.221403i 0.0407462 0.0100430i
\(487\) 11.4852 30.2839i 0.520442 1.37229i −0.374963 0.927040i \(-0.622345\pi\)
0.895405 0.445253i \(-0.146886\pi\)
\(488\) 9.71228 0.439654
\(489\) −0.115341 0.304128i −0.00521589 0.0137532i
\(490\) 5.75606 + 1.41874i 0.260032 + 0.0640922i
\(491\) −26.4005 + 23.3888i −1.19144 + 1.05552i −0.194222 + 0.980958i \(0.562218\pi\)
−0.997216 + 0.0745644i \(0.976243\pi\)
\(492\) 0.191152 + 0.0471147i 0.00861779 + 0.00212410i
\(493\) 1.53117 1.35650i 0.0689606 0.0610938i
\(494\) −6.33581 23.8606i −0.285061 1.07354i
\(495\) −10.3883 9.20324i −0.466920 0.413655i
\(496\) 20.7721 + 30.0936i 0.932696 + 1.35124i
\(497\) −8.21841 + 2.02566i −0.368646 + 0.0908631i
\(498\) 0.145464 0.210741i 0.00651841 0.00944355i
\(499\) −23.5086 5.79434i −1.05239 0.259390i −0.325069 0.945690i \(-0.605388\pi\)
−0.727319 + 0.686300i \(0.759234\pi\)
\(500\) 3.43324 + 0.846218i 0.153539 + 0.0378440i
\(501\) −0.00281991 + 0.0232241i −0.000125984 + 0.00103757i
\(502\) −22.7215 20.1295i −1.01411 0.898422i
\(503\) 7.68130 + 20.2539i 0.342492 + 0.903078i 0.990006 + 0.141024i \(0.0450396\pi\)
−0.647514 + 0.762054i \(0.724191\pi\)
\(504\) −14.7753 + 7.75469i −0.658145 + 0.345421i
\(505\) 8.16679 11.8316i 0.363418 0.526501i
\(506\) −11.2090 −0.498303
\(507\) −0.157614 0.211728i −0.00699989 0.00940316i
\(508\) −2.33230 −0.103479
\(509\) −22.7470 + 32.9548i −1.00824 + 1.46069i −0.124787 + 0.992184i \(0.539825\pi\)
−0.883457 + 0.468511i \(0.844791\pi\)
\(510\) 0.0483771 0.0253903i 0.00214218 0.00112430i
\(511\) 10.1332 + 26.7190i 0.448266 + 1.18198i
\(512\) 2.34668 + 2.07898i 0.103710 + 0.0918788i
\(513\) −0.0595637 + 0.490552i −0.00262980 + 0.0216584i
\(514\) 19.8472 + 4.89190i 0.875422 + 0.215772i
\(515\) 25.9191 + 6.38849i 1.14213 + 0.281511i
\(516\) 0.104432 0.151296i 0.00459737 0.00666044i
\(517\) −11.3233 + 2.79094i −0.497997 + 0.122745i
\(518\) −14.8640 21.5342i −0.653086 0.946159i
\(519\) 0.0593357 + 0.0525668i 0.00260455 + 0.00230743i
\(520\) −20.4071 2.10829i −0.894909 0.0924548i
\(521\) −21.1337 + 18.7228i −0.925883 + 0.820261i −0.984022 0.178048i \(-0.943022\pi\)
0.0581390 + 0.998308i \(0.481483\pi\)
\(522\) −18.4746 4.55357i −0.808610 0.199304i
\(523\) 20.3100 17.9931i 0.888093 0.786782i −0.0897843 0.995961i \(-0.528618\pi\)
0.977877 + 0.209180i \(0.0670793\pi\)
\(524\) −3.47631 0.856833i −0.151863 0.0374309i
\(525\) −0.0737646 0.194501i −0.00321935 0.00848873i
\(526\) −9.40629 −0.410134
\(527\) −1.41806 + 3.73913i −0.0617719 + 0.162879i
\(528\) −0.155008 + 0.0382060i −0.00674585 + 0.00166270i
\(529\) −5.32909 −0.231700
\(530\) −52.3596 −2.27436
\(531\) −7.43697 + 1.83305i −0.322737 + 0.0795475i
\(532\) 1.18869 + 9.78978i 0.0515364 + 0.424441i
\(533\) 9.13806 40.1516i 0.395813 1.73916i
\(534\) −0.00360355 + 0.0296779i −0.000155941 + 0.00128429i
\(535\) −6.44524 53.0813i −0.278652 2.29491i
\(536\) 2.33689 3.38557i 0.100938 0.146234i
\(537\) 0.228227 0.202191i 0.00984871 0.00872520i
\(538\) 4.47973 36.8939i 0.193135 1.59061i
\(539\) −0.228353 1.88066i −0.00983585 0.0810056i
\(540\) −0.268206 0.140765i −0.0115418 0.00605758i
\(541\) 29.6569 26.2737i 1.27505 1.12959i 0.290054 0.957010i \(-0.406327\pi\)
0.984995 0.172584i \(-0.0552117\pi\)
\(542\) −9.21904 13.3561i −0.395992 0.573693i
\(543\) −0.188998 0.0465839i −0.00811069 0.00199911i
\(544\) −0.296260 + 2.43992i −0.0127020 + 0.104611i
\(545\) 18.3873 26.6386i 0.787625 1.14107i
\(546\) 0.170006 + 0.310304i 0.00727558 + 0.0132798i
\(547\) −7.12347 10.3201i −0.304578 0.441257i 0.640570 0.767900i \(-0.278698\pi\)
−0.945148 + 0.326643i \(0.894083\pi\)
\(548\) 16.0850 8.44204i 0.687116 0.360626i
\(549\) 5.31747 14.0210i 0.226944 0.598402i
\(550\) 1.14999 + 9.47101i 0.0490357 + 0.403845i
\(551\) 8.66025 12.5465i 0.368939 0.534501i
\(552\) 0.161001 0.0396831i 0.00685264 0.00168902i
\(553\) −28.2614 + 40.9437i −1.20180 + 1.74111i
\(554\) −9.34948 + 24.6526i −0.397221 + 1.04739i
\(555\) −0.114163 + 0.301023i −0.00484594 + 0.0127777i
\(556\) −3.74576 1.96592i −0.158855 0.0833738i
\(557\) 25.2808 + 13.2684i 1.07118 + 0.562199i 0.905659 0.424007i \(-0.139377\pi\)
0.165522 + 0.986206i \(0.447069\pi\)
\(558\) 36.1159 8.90178i 1.52891 0.376842i
\(559\) −32.0310 21.2739i −1.35477 0.899789i
\(560\) 40.5281 + 9.98927i 1.71262 + 0.422124i
\(561\) −0.0130685 0.0115777i −0.000551754 0.000488811i
\(562\) 1.47595 12.1555i 0.0622592 0.512750i
\(563\) 6.26398 + 3.28759i 0.263995 + 0.138555i 0.591528 0.806284i \(-0.298525\pi\)
−0.327533 + 0.944840i \(0.606217\pi\)
\(564\) −0.112678 + 0.0591382i −0.00474462 + 0.00249017i
\(565\) −0.196014 0.516848i −0.00824639 0.0217439i
\(566\) −27.4689 24.3354i −1.15461 1.02289i
\(567\) 3.10505 + 25.5724i 0.130400 + 1.07394i
\(568\) −5.57602 + 1.37437i −0.233965 + 0.0576671i
\(569\) −1.41681 1.25519i −0.0593959 0.0526201i 0.632903 0.774231i \(-0.281863\pi\)
−0.692298 + 0.721611i \(0.743402\pi\)
\(570\) 0.304774 0.270006i 0.0127656 0.0113093i
\(571\) 29.3787 + 15.4191i 1.22946 + 0.645271i 0.949206 0.314655i \(-0.101889\pi\)
0.280254 + 0.959926i \(0.409581\pi\)
\(572\) −1.24107 4.67386i −0.0518918 0.195424i
\(573\) −0.120035 + 0.0629992i −0.00501453 + 0.00263183i
\(574\) −19.5737 + 51.6117i −0.816992 + 2.15423i
\(575\) −1.81294 14.9309i −0.0756049 0.622662i
\(576\) −6.19588 + 3.25185i −0.258162 + 0.135494i
\(577\) −46.4064 −1.93192 −0.965961 0.258688i \(-0.916710\pi\)
−0.965961 + 0.258688i \(0.916710\pi\)
\(578\) 24.9647 13.1025i 1.03839 0.544991i
\(579\) −0.244115 + 0.216267i −0.0101451 + 0.00898774i
\(580\) 5.30847 + 7.69065i 0.220422 + 0.319337i
\(581\) 16.0145 + 14.1876i 0.664394 + 0.588602i
\(582\) −0.0840983 0.121837i −0.00348599 0.00505033i
\(583\) 5.93330 + 15.6448i 0.245732 + 0.647943i
\(584\) 6.87516 + 18.1283i 0.284496 + 0.750155i
\(585\) −14.2165 + 28.3061i −0.587779 + 1.17031i
\(586\) 9.20159 24.2626i 0.380114 1.00228i
\(587\) 19.6329 0.810338 0.405169 0.914242i \(-0.367213\pi\)
0.405169 + 0.914242i \(0.367213\pi\)
\(588\) −0.00733039 0.0193287i −0.000302300 0.000797100i
\(589\) −3.59233 + 29.5855i −0.148019 + 1.21905i
\(590\) 11.1775 + 5.86642i 0.460172 + 0.241517i
\(591\) −0.178820 0.259066i −0.00735569 0.0106566i
\(592\) −15.3069 22.1759i −0.629112 0.911425i
\(593\) 13.1477 + 6.90044i 0.539911 + 0.283367i 0.712554 0.701617i \(-0.247538\pi\)
−0.172643 + 0.984984i \(0.555231\pi\)
\(594\) −0.0391528 + 0.322452i −0.00160646 + 0.0132304i
\(595\) 1.61873 + 4.26825i 0.0663616 + 0.174981i
\(596\) 10.2574 0.420159
\(597\) −0.0651252 + 0.171721i −0.00266540 + 0.00702808i
\(598\) 6.56557 + 24.7259i 0.268486 + 1.01112i
\(599\) 6.89195 + 18.1726i 0.281598 + 0.742512i 0.998951 + 0.0458019i \(0.0145843\pi\)
−0.717353 + 0.696710i \(0.754646\pi\)
\(600\) −0.0500478 0.131965i −0.00204319 0.00538745i
\(601\) −24.4715 35.4531i −0.998214 1.44616i −0.892116 0.451807i \(-0.850780\pi\)
−0.106098 0.994356i \(-0.533836\pi\)
\(602\) 38.5814 + 34.1801i 1.57246 + 1.39308i
\(603\) −3.60809 5.22722i −0.146933 0.212869i
\(604\) 5.98832 5.30519i 0.243661 0.215865i
\(605\) −22.0546 + 11.5751i −0.896647 + 0.470597i
\(606\) −0.168225 −0.00683367
\(607\) −9.05093 + 4.75029i −0.367366 + 0.192808i −0.638297 0.769790i \(-0.720361\pi\)
0.270931 + 0.962599i \(0.412668\pi\)
\(608\) 2.20790 + 18.1837i 0.0895421 + 0.737446i
\(609\) −0.0774795 + 0.204297i −0.00313963 + 0.00827851i
\(610\) −21.8828 + 11.4850i −0.886010 + 0.465014i
\(611\) 12.7890 + 23.3431i 0.517386 + 0.944361i
\(612\) 1.22740 + 0.644192i 0.0496149 + 0.0260399i
\(613\) 13.5017 11.9615i 0.545330 0.483120i −0.344895 0.938641i \(-0.612086\pi\)
0.890225 + 0.455521i \(0.150547\pi\)
\(614\) −26.0295 23.0601i −1.05047 0.930631i
\(615\) 0.659424 0.162533i 0.0265905 0.00655398i
\(616\) −1.05930 8.72416i −0.0426806 0.351506i
\(617\) 31.8666 + 28.2313i 1.28290 + 1.13655i 0.983203 + 0.182516i \(0.0584242\pi\)
0.299697 + 0.954034i \(0.403114\pi\)
\(618\) −0.110767 0.292067i −0.00445568 0.0117487i
\(619\) 19.2067 10.0805i 0.771984 0.405169i −0.0322509 0.999480i \(-0.510268\pi\)
0.804235 + 0.594311i \(0.202575\pi\)
\(620\) −16.1757 8.48967i −0.649632 0.340953i
\(621\) 0.0617238 0.508341i 0.00247689 0.0203990i
\(622\) 42.7675 + 37.8887i 1.71482 + 1.51920i
\(623\) −2.42528 0.597779i −0.0971669 0.0239495i
\(624\) 0.175072 + 0.319551i 0.00700850 + 0.0127923i
\(625\) 29.2137 7.20053i 1.16855 0.288021i
\(626\) −1.23175 0.646471i −0.0492306 0.0258382i
\(627\) −0.115213 0.0604685i −0.00460117 0.00241488i
\(628\) −7.10937 + 18.7459i −0.283695 + 0.748042i
\(629\) 1.04497 2.75536i 0.0416656 0.109863i
\(630\) 24.1203 34.9443i 0.960977 1.39222i
\(631\) −35.1465 + 8.66283i −1.39916 + 0.344862i −0.865530 0.500857i \(-0.833018\pi\)
−0.533629 + 0.845719i \(0.679172\pi\)
\(632\) −19.1748 + 27.7795i −0.762732 + 1.10501i
\(633\) 0.0276353 + 0.227597i 0.00109841 + 0.00904619i
\(634\) −12.8305 + 33.8314i −0.509566 + 1.34362i
\(635\) −7.12421 + 3.73907i −0.282716 + 0.148381i
\(636\) 0.103716 + 0.150258i 0.00411260 + 0.00595813i
\(637\) −4.01476 + 1.60529i −0.159071 + 0.0636040i
\(638\) 5.69260 8.24716i 0.225372 0.326508i
\(639\) −1.06878 + 8.80222i −0.0422804 + 0.348210i
\(640\) 36.8783 + 9.08969i 1.45774 + 0.359302i
\(641\) −20.8480 30.2035i −0.823446 1.19297i −0.978741 0.205100i \(-0.934248\pi\)
0.155295 0.987868i \(-0.450367\pi\)
\(642\) −0.468333 + 0.414906i −0.0184836 + 0.0163751i
\(643\) −8.12695 4.26535i −0.320496 0.168209i 0.296801 0.954939i \(-0.404080\pi\)
−0.617297 + 0.786730i \(0.711772\pi\)
\(644\) −1.23180 10.1448i −0.0485398 0.399761i
\(645\) 0.0764437 0.629570i 0.00300997 0.0247893i
\(646\) −2.78969 + 2.47145i −0.109759 + 0.0972379i
\(647\) 18.7556 27.1722i 0.737360 1.06825i −0.257430 0.966297i \(-0.582876\pi\)
0.994789 0.101953i \(-0.0325091\pi\)
\(648\) 2.10671 + 17.3503i 0.0827595 + 0.681585i
\(649\) 0.486243 4.00458i 0.0190867 0.157193i
\(650\) 20.2184 8.08428i 0.793030 0.317092i
\(651\) −0.0514856 0.424022i −0.00201788 0.0166187i
\(652\) −13.2055 + 3.25486i −0.517167 + 0.127470i
\(653\) −15.9648 −0.624750 −0.312375 0.949959i \(-0.601125\pi\)
−0.312375 + 0.949959i \(0.601125\pi\)
\(654\) −0.378753 −0.0148104
\(655\) −11.9923 + 2.95585i −0.468579 + 0.115494i
\(656\) −20.1570 + 53.1497i −0.787000 + 2.07515i
\(657\) 29.9349 1.16787
\(658\) −12.6521 33.3608i −0.493230 1.30054i
\(659\) −36.5832 9.01696i −1.42508 0.351251i −0.549974 0.835182i \(-0.685362\pi\)
−0.875106 + 0.483931i \(0.839209\pi\)
\(660\) 0.0596996 0.0528893i 0.00232381 0.00205871i
\(661\) −17.8502 4.39968i −0.694293 0.171128i −0.123650 0.992326i \(-0.539460\pi\)
−0.570643 + 0.821198i \(0.693306\pi\)
\(662\) 10.3009 9.12581i 0.400356 0.354685i
\(663\) −0.0178844 + 0.0356092i −0.000694572 + 0.00138295i
\(664\) 10.8655 + 9.62601i 0.421664 + 0.373562i
\(665\) 19.3257 + 27.9981i 0.749418 + 1.08572i
\(666\) −26.6138 + 6.55971i −1.03126 + 0.254183i
\(667\) −8.97431 + 13.0015i −0.347486 + 0.503421i
\(668\) 0.949802 + 0.234105i 0.0367490 + 0.00905780i
\(669\) −0.138172 0.0340564i −0.00534205 0.00131670i
\(670\) −1.26175 + 10.3915i −0.0487458 + 0.401458i
\(671\) 5.91140 + 5.23704i 0.228207 + 0.202174i
\(672\) −0.0930923 0.245464i −0.00359111 0.00946899i
\(673\) 15.1701 7.96191i 0.584766 0.306909i −0.146273 0.989244i \(-0.546728\pi\)
0.731039 + 0.682335i \(0.239036\pi\)
\(674\) −32.4973 + 47.0804i −1.25175 + 1.81347i
\(675\) −0.435852 −0.0167759
\(676\) −9.58308 + 5.47532i −0.368580 + 0.210589i
\(677\) 28.7619 1.10541 0.552705 0.833377i \(-0.313596\pi\)
0.552705 + 0.833377i \(0.313596\pi\)
\(678\) −0.00367433 + 0.00532318i −0.000141112 + 0.000204435i
\(679\) 10.9525 5.74833i 0.420319 0.220601i
\(680\) 1.09828 + 2.89592i 0.0421170 + 0.111053i
\(681\) 0.370916 + 0.328603i 0.0142135 + 0.0125921i
\(682\) −2.36133 + 19.4473i −0.0904200 + 0.744676i
\(683\) −2.77609 0.684245i −0.106224 0.0261819i 0.185845 0.982579i \(-0.440498\pi\)
−0.292069 + 0.956397i \(0.594344\pi\)
\(684\) 10.0304 + 2.47228i 0.383523 + 0.0945300i
\(685\) 35.5989 51.5739i 1.36016 1.97054i
\(686\) −27.2215 + 6.70950i −1.03932 + 0.256170i
\(687\) −0.0719779 0.104278i −0.00274613 0.00397845i
\(688\) 39.7311 + 35.1987i 1.51474 + 1.34194i
\(689\) 31.0354 22.2520i 1.18235 0.847733i
\(690\) −0.315826 + 0.279797i −0.0120233 + 0.0106517i
\(691\) 5.37106 + 1.32385i 0.204325 + 0.0503615i 0.340150 0.940371i \(-0.389522\pi\)
−0.135825 + 0.990733i \(0.543368\pi\)
\(692\) 2.48107 2.19804i 0.0943163 0.0835570i
\(693\) −13.1745 3.24722i −0.500458 0.123352i
\(694\) 6.19202 + 16.3270i 0.235046 + 0.619765i
\(695\) −14.5935 −0.553562
\(696\) −0.0525682 + 0.138611i −0.00199259 + 0.00525403i
\(697\) −6.03592 + 1.48772i −0.228627 + 0.0563514i
\(698\) −31.8728 −1.20640
\(699\) −0.0606647 −0.00229455
\(700\) −8.44540 + 2.08160i −0.319206 + 0.0786773i
\(701\) 0.196205 + 1.61589i 0.00741057 + 0.0610315i 0.995945 0.0899640i \(-0.0286752\pi\)
−0.988534 + 0.150995i \(0.951752\pi\)
\(702\) 0.734226 0.102506i 0.0277116 0.00386884i
\(703\) 2.64718 21.8015i 0.0998404 0.822260i
\(704\) −0.444208 3.65839i −0.0167417 0.137881i
\(705\) −0.249378 + 0.361286i −0.00939211 + 0.0136068i
\(706\) −19.8934 + 17.6241i −0.748700 + 0.663290i
\(707\) 1.69421 13.9531i 0.0637173 0.524759i
\(708\) −0.00530578 0.0436970i −0.000199403 0.00164223i
\(709\) 8.59668 + 4.51189i 0.322855 + 0.169447i 0.618363 0.785893i \(-0.287796\pi\)
−0.295507 + 0.955340i \(0.595489\pi\)
\(710\) 10.9382 9.69037i 0.410502 0.363673i
\(711\) 29.6053 + 42.8907i 1.11029 + 1.60853i
\(712\) −1.64550 0.405580i −0.0616679 0.0151998i
\(713\) 3.72260 30.6584i 0.139413 1.14817i
\(714\) 0.0303435 0.0439601i 0.00113558 0.00164517i
\(715\) −11.2840 12.2871i −0.421996 0.459511i
\(716\) −7.24253 10.4926i −0.270666 0.392127i
\(717\) −0.167117 + 0.0877099i −0.00624111 + 0.00327559i
\(718\) 3.32695 8.77246i 0.124161 0.327385i
\(719\) 1.62342 + 13.3701i 0.0605434 + 0.498620i 0.991165 + 0.132636i \(0.0423443\pi\)
−0.930621 + 0.365984i \(0.880733\pi\)
\(720\) 24.8391 35.9857i 0.925699 1.34111i
\(721\) 25.3405 6.24586i 0.943728 0.232608i
\(722\) 2.43950 3.53423i 0.0907889 0.131530i
\(723\) 0.102007 0.268971i 0.00379369 0.0100031i
\(724\) −2.88624 + 7.61040i −0.107266 + 0.282838i
\(725\) 11.9063 + 6.24889i 0.442188 + 0.232078i
\(726\) 0.258069 + 0.135445i 0.00957783 + 0.00502683i
\(727\) −17.8780 + 4.40652i −0.663057 + 0.163429i −0.556461 0.830874i \(-0.687841\pi\)
−0.106596 + 0.994302i \(0.533995\pi\)
\(728\) −18.6240 + 7.44678i −0.690253 + 0.275996i
\(729\) 26.1938 + 6.45620i 0.970141 + 0.239118i
\(730\) −36.9277 32.7150i −1.36675 1.21084i
\(731\) −0.699714 + 5.76266i −0.0258798 + 0.213140i
\(732\) 0.0763052 + 0.0400481i 0.00282032 + 0.00148022i
\(733\) −1.54232 + 0.809472i −0.0569669 + 0.0298985i −0.492966 0.870049i \(-0.664087\pi\)
0.435999 + 0.899947i \(0.356395\pi\)
\(734\) −16.4900 43.4805i −0.608656 1.60490i
\(735\) −0.0533785 0.0472892i −0.00196890 0.00174429i
\(736\) −2.28797 18.8431i −0.0843356 0.694566i
\(737\) 3.24791 0.800538i 0.119638 0.0294882i
\(738\) 43.2815 + 38.3441i 1.59322 + 1.41147i
\(739\) 28.6869 25.4144i 1.05526 0.934883i 0.0572813 0.998358i \(-0.481757\pi\)
0.997983 + 0.0634751i \(0.0202184\pi\)
\(740\) 11.9198 + 6.25602i 0.438182 + 0.229976i
\(741\) −0.0659019 + 0.289566i −0.00242097 + 0.0106375i
\(742\) −45.3270 + 23.7895i −1.66401 + 0.873339i
\(743\) 7.53059 19.8565i 0.276270 0.728465i −0.723021 0.690826i \(-0.757247\pi\)
0.999291 0.0376392i \(-0.0119838\pi\)
\(744\) −0.0349319 0.287690i −0.00128067 0.0105472i
\(745\) 31.3321 16.4444i 1.14792 0.602475i
\(746\) −38.2645 −1.40096
\(747\) 19.8453 10.4156i 0.726103 0.381088i
\(748\) −0.546450 + 0.484113i −0.0199802 + 0.0177009i
\(749\) −29.6969 43.0234i −1.08510 1.57204i
\(750\) −0.106839 0.0946514i −0.00390122 0.00345618i
\(751\) −3.83888 5.56158i −0.140083 0.202945i 0.746663 0.665203i \(-0.231655\pi\)
−0.886746 + 0.462258i \(0.847039\pi\)
\(752\) −13.0291 34.3550i −0.475123 1.25280i
\(753\) 0.129485 + 0.341424i 0.00471869 + 0.0124422i
\(754\) −21.5267 7.72656i −0.783955 0.281385i
\(755\) 9.78673 25.8055i 0.356176 0.939158i
\(756\) −0.296139 −0.0107705
\(757\) 8.51483 + 22.4517i 0.309477 + 0.816023i 0.996036 + 0.0889492i \(0.0283509\pi\)
−0.686560 + 0.727074i \(0.740880\pi\)
\(758\) −1.67114 + 13.7631i −0.0606986 + 0.499898i
\(759\) 0.119391 + 0.0626613i 0.00433362 + 0.00227446i
\(760\) 13.1121 + 18.9961i 0.475625 + 0.689061i
\(761\) 2.43558 + 3.52855i 0.0882898 + 0.127910i 0.864640 0.502392i \(-0.167547\pi\)
−0.776350 + 0.630302i \(0.782931\pi\)
\(762\) 0.0833629 + 0.0437522i 0.00301992 + 0.00158498i
\(763\) 3.81446 31.4149i 0.138093 1.13730i
\(764\) 2.01006 + 5.30010i 0.0727215 + 0.191751i
\(765\) 4.78197 0.172892
\(766\) −4.36376 + 11.5063i −0.157669 + 0.415740i