Properties

Label 169.2.g.a.14.11
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.11
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00858 - 1.46118i) q^{2} +(-2.49701 + 1.31053i) q^{3} +(-0.408612 - 1.07742i) q^{4} +(2.96132 + 2.62350i) q^{5} +(-0.603512 + 4.97037i) q^{6} +(-1.91869 - 0.472914i) q^{7} +(1.46133 + 0.360186i) q^{8} +(2.81336 - 4.07585i) q^{9} +O(q^{10})\) \(q+(1.00858 - 1.46118i) q^{2} +(-2.49701 + 1.31053i) q^{3} +(-0.408612 - 1.07742i) q^{4} +(2.96132 + 2.62350i) q^{5} +(-0.603512 + 4.97037i) q^{6} +(-1.91869 - 0.472914i) q^{7} +(1.46133 + 0.360186i) q^{8} +(2.81336 - 4.07585i) q^{9} +(6.82015 - 1.68102i) q^{10} +(3.06453 + 4.43973i) q^{11} +(2.43230 + 2.15483i) q^{12} +(-1.73651 - 3.15983i) q^{13} +(-2.62617 + 2.32659i) q^{14} +(-10.8326 - 2.67000i) q^{15} +(3.72519 - 3.30023i) q^{16} +(-0.565818 - 0.139462i) q^{17} +(-3.11807 - 8.22167i) q^{18} -3.58257 q^{19} +(1.61658 - 4.26258i) q^{20} +(5.41075 - 1.33363i) q^{21} +9.57810 q^{22} -1.74257 q^{23} +(-4.12099 + 1.01573i) q^{24} +(1.28398 + 10.5745i) q^{25} +(-6.36851 - 0.649594i) q^{26} +(-0.663696 + 5.46603i) q^{27} +(0.274471 + 2.26047i) q^{28} +(4.70408 - 6.81504i) q^{29} +(-14.8269 + 13.1355i) q^{30} +(-0.154435 + 1.27188i) q^{31} +(-0.702252 - 5.78357i) q^{32} +(-13.4705 - 7.06989i) q^{33} +(-0.774453 + 0.686106i) q^{34} +(-4.44116 - 6.43413i) q^{35} +(-5.54097 - 1.36573i) q^{36} +(0.391295 - 3.22260i) q^{37} +(-3.61332 + 5.23479i) q^{38} +(8.47713 + 5.61437i) q^{39} +(3.38252 + 4.90043i) q^{40} +(-4.06177 + 2.13178i) q^{41} +(3.50851 - 9.25118i) q^{42} +(-0.854533 - 7.03771i) q^{43} +(3.53126 - 5.11591i) q^{44} +(19.0242 - 4.68905i) q^{45} +(-1.75753 + 2.54622i) q^{46} +(2.72075 - 7.17403i) q^{47} +(-4.97677 + 13.1227i) q^{48} +(-2.74047 - 1.43831i) q^{49} +(16.7463 + 8.78913i) q^{50} +(1.59562 - 0.393285i) q^{51} +(-2.69491 + 3.16209i) q^{52} +(-2.36101 - 0.581937i) q^{53} +(7.31748 + 6.48272i) q^{54} +(-2.57260 + 21.1872i) q^{55} +(-2.63350 - 1.38217i) q^{56} +(8.94569 - 4.69506i) q^{57} +(-5.21357 - 13.7471i) q^{58} +(2.54652 + 2.25602i) q^{59} +(1.54962 + 12.7623i) q^{60} +(3.10295 - 0.764809i) q^{61} +(1.70270 + 1.50846i) q^{62} +(-7.32548 + 6.48981i) q^{63} +(-0.345656 - 0.181414i) q^{64} +(3.14746 - 13.9130i) q^{65} +(-23.9166 + 12.5524i) q^{66} +(0.844836 - 2.22765i) q^{67} +(0.0809410 + 0.666609i) q^{68} +(4.35121 - 2.28369i) q^{69} -13.8807 q^{70} +(0.968004 - 0.508048i) q^{71} +(5.57931 - 4.94284i) q^{72} +(4.47920 + 6.48924i) q^{73} +(-4.31416 - 3.82201i) q^{74} +(-17.0643 - 24.7219i) q^{75} +(1.46388 + 3.85993i) q^{76} +(-3.78026 - 9.96772i) q^{77} +(16.7535 - 6.72409i) q^{78} +(3.52518 - 9.29515i) q^{79} +19.6896 q^{80} +(-0.237567 - 0.626414i) q^{81} +(-0.981707 + 8.08508i) q^{82} +(-0.798013 - 0.418830i) q^{83} +(-3.64777 - 5.28471i) q^{84} +(-1.30969 - 1.89741i) q^{85} +(-11.1453 - 5.84948i) q^{86} +(-2.81481 + 23.1820i) q^{87} +(2.87916 + 7.59172i) q^{88} -5.24711 q^{89} +(12.3359 - 32.5272i) q^{90} +(1.83749 + 6.88395i) q^{91} +(0.712035 + 1.87748i) q^{92} +(-1.28122 - 3.37830i) q^{93} +(-7.73849 - 11.2111i) q^{94} +(-10.6091 - 9.39886i) q^{95} +(9.33306 + 13.5213i) q^{96} +(-7.86990 + 6.97212i) q^{97} +(-4.86563 + 2.55368i) q^{98} +26.7173 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00858 1.46118i 0.713176 1.03321i −0.284052 0.958809i \(-0.591679\pi\)
0.997228 0.0744049i \(-0.0237057\pi\)
\(3\) −2.49701 + 1.31053i −1.44165 + 0.756635i −0.990719 0.135926i \(-0.956599\pi\)
−0.450928 + 0.892560i \(0.648907\pi\)
\(4\) −0.408612 1.07742i −0.204306 0.538710i
\(5\) 2.96132 + 2.62350i 1.32434 + 1.17326i 0.971354 + 0.237637i \(0.0763727\pi\)
0.352988 + 0.935628i \(0.385166\pi\)
\(6\) −0.603512 + 4.97037i −0.246383 + 2.02914i
\(7\) −1.91869 0.472914i −0.725196 0.178745i −0.140597 0.990067i \(-0.544902\pi\)
−0.584599 + 0.811322i \(0.698748\pi\)
\(8\) 1.46133 + 0.360186i 0.516659 + 0.127345i
\(9\) 2.81336 4.07585i 0.937786 1.35862i
\(10\) 6.82015 1.68102i 2.15672 0.531584i
\(11\) 3.06453 + 4.43973i 0.923989 + 1.33863i 0.940868 + 0.338772i \(0.110012\pi\)
−0.0168790 + 0.999858i \(0.505373\pi\)
\(12\) 2.43230 + 2.15483i 0.702144 + 0.622045i
\(13\) −1.73651 3.15983i −0.481621 0.876380i
\(14\) −2.62617 + 2.32659i −0.701874 + 0.621806i
\(15\) −10.8326 2.67000i −2.79697 0.689390i
\(16\) 3.72519 3.30023i 0.931298 0.825058i
\(17\) −0.565818 0.139462i −0.137231 0.0338244i 0.170102 0.985426i \(-0.445590\pi\)
−0.307333 + 0.951602i \(0.599436\pi\)
\(18\) −3.11807 8.22167i −0.734936 1.93787i
\(19\) −3.58257 −0.821897 −0.410949 0.911658i \(-0.634802\pi\)
−0.410949 + 0.911658i \(0.634802\pi\)
\(20\) 1.61658 4.26258i 0.361479 0.953141i
\(21\) 5.41075 1.33363i 1.18072 0.291022i
\(22\) 9.57810 2.04206
\(23\) −1.74257 −0.363351 −0.181676 0.983359i \(-0.558152\pi\)
−0.181676 + 0.983359i \(0.558152\pi\)
\(24\) −4.12099 + 1.01573i −0.841193 + 0.207336i
\(25\) 1.28398 + 10.5745i 0.256795 + 2.11490i
\(26\) −6.36851 0.649594i −1.24897 0.127396i
\(27\) −0.663696 + 5.46603i −0.127728 + 1.05194i
\(28\) 0.274471 + 2.26047i 0.0518701 + 0.427189i
\(29\) 4.70408 6.81504i 0.873526 1.26552i −0.0894657 0.995990i \(-0.528516\pi\)
0.962992 0.269531i \(-0.0868687\pi\)
\(30\) −14.8269 + 13.1355i −2.70702 + 2.39821i
\(31\) −0.154435 + 1.27188i −0.0277373 + 0.228437i −0.999985 0.00551754i \(-0.998244\pi\)
0.972247 + 0.233955i \(0.0751668\pi\)
\(32\) −0.702252 5.78357i −0.124142 1.02240i
\(33\) −13.4705 7.06989i −2.34492 1.23071i
\(34\) −0.774453 + 0.686106i −0.132818 + 0.117666i
\(35\) −4.44116 6.43413i −0.750693 1.08757i
\(36\) −5.54097 1.36573i −0.923496 0.227621i
\(37\) 0.391295 3.22260i 0.0643284 0.529792i −0.924549 0.381062i \(-0.875558\pi\)
0.988878 0.148730i \(-0.0475186\pi\)
\(38\) −3.61332 + 5.23479i −0.586157 + 0.849196i
\(39\) 8.47713 + 5.61437i 1.35743 + 0.899019i
\(40\) 3.38252 + 4.90043i 0.534824 + 0.774826i
\(41\) −4.06177 + 2.13178i −0.634343 + 0.332929i −0.751058 0.660237i \(-0.770456\pi\)
0.116715 + 0.993165i \(0.462764\pi\)
\(42\) 3.50851 9.25118i 0.541375 1.42749i
\(43\) −0.854533 7.03771i −0.130315 1.07324i −0.900328 0.435212i \(-0.856673\pi\)
0.770013 0.638028i \(-0.220250\pi\)
\(44\) 3.53126 5.11591i 0.532357 0.771252i
\(45\) 19.0242 4.68905i 2.83597 0.699003i
\(46\) −1.75753 + 2.54622i −0.259133 + 0.375420i
\(47\) 2.72075 7.17403i 0.396863 1.04644i −0.576485 0.817107i \(-0.695576\pi\)
0.973348 0.229333i \(-0.0736545\pi\)
\(48\) −4.97677 + 13.1227i −0.718335 + 1.89409i
\(49\) −2.74047 1.43831i −0.391496 0.205473i
\(50\) 16.7463 + 8.78913i 2.36828 + 1.24297i
\(51\) 1.59562 0.393285i 0.223431 0.0550709i
\(52\) −2.69491 + 3.16209i −0.373717 + 0.438503i
\(53\) −2.36101 0.581937i −0.324310 0.0799352i 0.0737997 0.997273i \(-0.476487\pi\)
−0.398110 + 0.917338i \(0.630334\pi\)
\(54\) 7.31748 + 6.48272i 0.995783 + 0.882187i
\(55\) −2.57260 + 21.1872i −0.346889 + 2.85689i
\(56\) −2.63350 1.38217i −0.351917 0.184700i
\(57\) 8.94569 4.69506i 1.18489 0.621876i
\(58\) −5.21357 13.7471i −0.684576 1.80508i
\(59\) 2.54652 + 2.25602i 0.331529 + 0.293709i 0.812422 0.583070i \(-0.198149\pi\)
−0.480892 + 0.876780i \(0.659687\pi\)
\(60\) 1.54962 + 12.7623i 0.200055 + 1.64760i
\(61\) 3.10295 0.764809i 0.397292 0.0979237i −0.0356075 0.999366i \(-0.511337\pi\)
0.432900 + 0.901442i \(0.357490\pi\)
\(62\) 1.70270 + 1.50846i 0.216243 + 0.191575i
\(63\) −7.32548 + 6.48981i −0.922924 + 0.817639i
\(64\) −0.345656 0.181414i −0.0432070 0.0226768i
\(65\) 3.14746 13.9130i 0.390395 1.72569i
\(66\) −23.9166 + 12.5524i −2.94393 + 1.54509i
\(67\) 0.844836 2.22765i 0.103213 0.272151i −0.873455 0.486905i \(-0.838126\pi\)
0.976668 + 0.214754i \(0.0688951\pi\)
\(68\) 0.0809410 + 0.666609i 0.00981554 + 0.0808382i
\(69\) 4.35121 2.28369i 0.523824 0.274924i
\(70\) −13.8807 −1.65906
\(71\) 0.968004 0.508048i 0.114881 0.0602942i −0.406304 0.913738i \(-0.633183\pi\)
0.521185 + 0.853444i \(0.325490\pi\)
\(72\) 5.57931 4.94284i 0.657528 0.582519i
\(73\) 4.47920 + 6.48924i 0.524251 + 0.759508i 0.992255 0.124218i \(-0.0396423\pi\)
−0.468004 + 0.883726i \(0.655027\pi\)
\(74\) −4.31416 3.82201i −0.501511 0.444300i
\(75\) −17.0643 24.7219i −1.97041 2.85464i
\(76\) 1.46388 + 3.85993i 0.167918 + 0.442764i
\(77\) −3.78026 9.96772i −0.430800 1.13593i
\(78\) 16.7535 6.72409i 1.89696 0.761353i
\(79\) 3.52518 9.29515i 0.396614 1.04579i −0.576831 0.816864i \(-0.695711\pi\)
0.973445 0.228922i \(-0.0735201\pi\)
\(80\) 19.6896 2.20137
\(81\) −0.237567 0.626414i −0.0263964 0.0696016i
\(82\) −0.981707 + 8.08508i −0.108411 + 0.892848i
\(83\) −0.798013 0.418830i −0.0875933 0.0459725i 0.420358 0.907358i \(-0.361905\pi\)
−0.507951 + 0.861386i \(0.669597\pi\)
\(84\) −3.64777 5.28471i −0.398005 0.576609i
\(85\) −1.30969 1.89741i −0.142056 0.205803i
\(86\) −11.1453 5.84948i −1.20182 0.630766i
\(87\) −2.81481 + 23.1820i −0.301779 + 2.48537i
\(88\) 2.87916 + 7.59172i 0.306919 + 0.809280i
\(89\) −5.24711 −0.556192 −0.278096 0.960553i \(-0.589703\pi\)
−0.278096 + 0.960553i \(0.589703\pi\)
\(90\) 12.3359 32.5272i 1.30032 3.42867i
\(91\) 1.83749 + 6.88395i 0.192621 + 0.721634i
\(92\) 0.712035 + 1.87748i 0.0742348 + 0.195741i
\(93\) −1.28122 3.37830i −0.132856 0.350313i
\(94\) −7.73849 11.2111i −0.798164 1.15634i
\(95\) −10.6091 9.39886i −1.08847 0.964303i
\(96\) 9.33306 + 13.5213i 0.952552 + 1.38001i
\(97\) −7.86990 + 6.97212i −0.799067 + 0.707911i −0.960289 0.279007i \(-0.909995\pi\)
0.161222 + 0.986918i \(0.448456\pi\)
\(98\) −4.86563 + 2.55368i −0.491503 + 0.257961i
\(99\) 26.7173 2.68519
\(100\) 10.8685 5.70424i 1.08685 0.570424i
\(101\) 0.403482 + 3.32298i 0.0401480 + 0.330648i 0.998920 + 0.0464709i \(0.0147975\pi\)
−0.958772 + 0.284178i \(0.908279\pi\)
\(102\) 1.03465 2.72815i 0.102446 0.270128i
\(103\) −1.45068 + 0.761376i −0.142940 + 0.0750206i −0.534677 0.845057i \(-0.679567\pi\)
0.391737 + 0.920077i \(0.371874\pi\)
\(104\) −1.39949 5.24303i −0.137231 0.514121i
\(105\) 19.5217 + 10.2458i 1.90512 + 0.999886i
\(106\) −3.23159 + 2.86294i −0.313880 + 0.278074i
\(107\) −4.03996 3.57909i −0.390558 0.346004i 0.444879 0.895591i \(-0.353247\pi\)
−0.835437 + 0.549587i \(0.814785\pi\)
\(108\) 6.16040 1.51840i 0.592785 0.146108i
\(109\) 1.32444 + 10.9077i 0.126858 + 1.04477i 0.907576 + 0.419888i \(0.137931\pi\)
−0.780718 + 0.624884i \(0.785146\pi\)
\(110\) 28.3638 + 25.1281i 2.70438 + 2.39587i
\(111\) 3.24625 + 8.55966i 0.308120 + 0.812447i
\(112\) −8.70821 + 4.57042i −0.822849 + 0.431864i
\(113\) 7.28454 + 3.82322i 0.685272 + 0.359658i 0.771156 0.636647i \(-0.219679\pi\)
−0.0858836 + 0.996305i \(0.527371\pi\)
\(114\) 2.16212 17.8067i 0.202501 1.66775i
\(115\) −5.16031 4.57164i −0.481201 0.426307i
\(116\) −9.26480 2.28357i −0.860215 0.212024i
\(117\) −17.7644 1.81199i −1.64232 0.167518i
\(118\) 5.86485 1.44556i 0.539903 0.133074i
\(119\) 1.01967 + 0.535167i 0.0934734 + 0.0490586i
\(120\) −14.8683 7.80350i −1.35729 0.712359i
\(121\) −6.41925 + 16.9262i −0.583568 + 1.53874i
\(122\) 2.01206 5.30536i 0.182163 0.480324i
\(123\) 7.34851 10.6462i 0.662593 0.959931i
\(124\) 1.43346 0.353316i 0.128728 0.0317287i
\(125\) −12.7028 + 18.4032i −1.13617 + 1.64603i
\(126\) 2.09446 + 17.2494i 0.186589 + 1.53670i
\(127\) −3.44373 + 9.08037i −0.305582 + 0.805753i 0.690978 + 0.722876i \(0.257180\pi\)
−0.996560 + 0.0828771i \(0.973589\pi\)
\(128\) 9.70371 5.09290i 0.857695 0.450153i
\(129\) 11.3569 + 16.4533i 0.999919 + 1.44863i
\(130\) −17.1550 18.6314i −1.50459 1.63409i
\(131\) −6.18642 + 8.96257i −0.540510 + 0.783063i −0.994137 0.108128i \(-0.965514\pi\)
0.453627 + 0.891191i \(0.350130\pi\)
\(132\) −2.11302 + 17.4023i −0.183915 + 1.51467i
\(133\) 6.87383 + 1.69425i 0.596037 + 0.146910i
\(134\) −2.40292 3.48123i −0.207581 0.300732i
\(135\) −16.3055 + 14.4454i −1.40336 + 1.24327i
\(136\) −0.776615 0.407599i −0.0665942 0.0349513i
\(137\) 1.04052 + 8.56949i 0.0888980 + 0.732141i 0.967197 + 0.254028i \(0.0817557\pi\)
−0.878299 + 0.478112i \(0.841321\pi\)
\(138\) 1.05166 8.66122i 0.0895235 0.737292i
\(139\) 15.6469 13.8619i 1.32715 1.17575i 0.356764 0.934194i \(-0.383880\pi\)
0.970386 0.241559i \(-0.0776586\pi\)
\(140\) −5.11755 + 7.41405i −0.432512 + 0.626602i
\(141\) 2.60805 + 21.4792i 0.219638 + 1.80888i
\(142\) 0.233961 1.92684i 0.0196336 0.161697i
\(143\) 8.70723 17.3930i 0.728136 1.45448i
\(144\) −2.97096 24.4681i −0.247580 2.03900i
\(145\) 31.8095 7.84035i 2.64164 0.651105i
\(146\) 13.9996 1.15862
\(147\) 8.72793 0.719867
\(148\) −3.63198 + 0.895203i −0.298547 + 0.0735853i
\(149\) −5.38798 + 14.2069i −0.441401 + 1.16388i 0.511148 + 0.859492i \(0.329220\pi\)
−0.952549 + 0.304385i \(0.901549\pi\)
\(150\) −53.3340 −4.35470
\(151\) −8.06001 21.2525i −0.655915 1.72950i −0.683568 0.729887i \(-0.739573\pi\)
0.0276533 0.999618i \(-0.491197\pi\)
\(152\) −5.23532 1.29039i −0.424640 0.104664i
\(153\) −2.16027 + 1.91383i −0.174648 + 0.154724i
\(154\) −18.3774 4.52962i −1.48089 0.365007i
\(155\) −3.79412 + 3.36130i −0.304751 + 0.269986i
\(156\) 2.58519 11.4275i 0.206981 0.914934i
\(157\) −9.07444 8.03925i −0.724219 0.641602i 0.218251 0.975893i \(-0.429965\pi\)
−0.942470 + 0.334291i \(0.891503\pi\)
\(158\) −10.0265 14.5259i −0.797665 1.15562i
\(159\) 6.65811 1.64108i 0.528022 0.130146i
\(160\) 13.0936 18.9693i 1.03514 1.49966i
\(161\) 3.34345 + 0.824087i 0.263501 + 0.0649472i
\(162\) −1.15491 0.284661i −0.0907385 0.0223650i
\(163\) −2.30709 + 19.0006i −0.180706 + 1.48824i 0.566727 + 0.823906i \(0.308210\pi\)
−0.747432 + 0.664338i \(0.768714\pi\)
\(164\) 3.95651 + 3.50517i 0.308952 + 0.273707i
\(165\) −21.3427 56.2761i −1.66153 4.38109i
\(166\) −1.41685 + 0.743620i −0.109969 + 0.0577161i
\(167\) −2.59340 + 3.75719i −0.200683 + 0.290740i −0.910385 0.413762i \(-0.864214\pi\)
0.709702 + 0.704502i \(0.248830\pi\)
\(168\) 8.38725 0.647090
\(169\) −6.96908 + 10.9741i −0.536083 + 0.844165i
\(170\) −4.09340 −0.313950
\(171\) −10.0790 + 14.6020i −0.770763 + 1.11664i
\(172\) −7.23340 + 3.79638i −0.551541 + 0.289471i
\(173\) 0.400939 + 1.05719i 0.0304829 + 0.0803767i 0.949394 0.314089i \(-0.101699\pi\)
−0.918911 + 0.394466i \(0.870930\pi\)
\(174\) 31.0343 + 27.4940i 2.35270 + 2.08431i
\(175\) 2.53728 20.8964i 0.191800 1.57962i
\(176\) 26.0681 + 6.42521i 1.96496 + 0.484318i
\(177\) −9.31527 2.29601i −0.700179 0.172579i
\(178\) −5.29214 + 7.66699i −0.396663 + 0.574665i
\(179\) −1.41563 + 0.348921i −0.105809 + 0.0260796i −0.291865 0.956460i \(-0.594276\pi\)
0.186056 + 0.982539i \(0.440430\pi\)
\(180\) −12.8256 18.5811i −0.955964 1.38495i
\(181\) −10.0322 8.88776i −0.745688 0.660622i 0.202157 0.979353i \(-0.435205\pi\)
−0.947845 + 0.318731i \(0.896743\pi\)
\(182\) 11.9120 + 4.25813i 0.882975 + 0.315633i
\(183\) −6.74578 + 5.97624i −0.498662 + 0.441776i
\(184\) −2.54648 0.627650i −0.187729 0.0462710i
\(185\) 9.61324 8.51659i 0.706779 0.626152i
\(186\) −6.22853 1.53519i −0.456698 0.112566i
\(187\) −1.11479 2.93946i −0.0815216 0.214955i
\(188\) −8.84118 −0.644809
\(189\) 3.85839 10.1737i 0.280656 0.740030i
\(190\) −24.4337 + 6.02236i −1.77260 + 0.436908i
\(191\) −7.06999 −0.511567 −0.255783 0.966734i \(-0.582333\pi\)
−0.255783 + 0.966734i \(0.582333\pi\)
\(192\) 1.10085 0.0794473
\(193\) −10.5945 + 2.61132i −0.762611 + 0.187967i −0.601394 0.798952i \(-0.705388\pi\)
−0.161217 + 0.986919i \(0.551542\pi\)
\(194\) 2.25011 + 18.5313i 0.161549 + 1.33047i
\(195\) 10.3742 + 38.8657i 0.742909 + 2.78323i
\(196\) −0.429877 + 3.54035i −0.0307055 + 0.252882i
\(197\) −2.97383 24.4917i −0.211876 1.74496i −0.579489 0.814980i \(-0.696748\pi\)
0.367612 0.929979i \(-0.380175\pi\)
\(198\) 26.9466 39.0389i 1.91501 2.77437i
\(199\) −7.65587 + 6.78251i −0.542711 + 0.480800i −0.889368 0.457192i \(-0.848855\pi\)
0.346657 + 0.937992i \(0.387317\pi\)
\(200\) −1.93247 + 15.9153i −0.136646 + 1.12538i
\(201\) 0.809840 + 6.66963i 0.0571217 + 0.470440i
\(202\) 5.26243 + 2.76194i 0.370263 + 0.194329i
\(203\) −12.2486 + 10.8513i −0.859683 + 0.761613i
\(204\) −1.07572 1.55845i −0.0753155 0.109113i
\(205\) −17.6209 4.34317i −1.23070 0.303340i
\(206\) −0.350621 + 2.88762i −0.0244289 + 0.201190i
\(207\) −4.90248 + 7.10246i −0.340746 + 0.493655i
\(208\) −16.8970 6.04010i −1.17160 0.418806i
\(209\) −10.9789 15.9056i −0.759424 1.10022i
\(210\) 34.6603 18.1911i 2.39179 1.25531i
\(211\) 2.05340 5.41436i 0.141362 0.372740i −0.845573 0.533859i \(-0.820741\pi\)
0.986935 + 0.161119i \(0.0515104\pi\)
\(212\) 0.337746 + 2.78159i 0.0231965 + 0.191040i
\(213\) −1.75130 + 2.53720i −0.119997 + 0.173846i
\(214\) −9.30435 + 2.29332i −0.636032 + 0.156768i
\(215\) 15.9329 23.0828i 1.08661 1.57423i
\(216\) −2.93867 + 7.74862i −0.199951 + 0.527227i
\(217\) 0.897805 2.36732i 0.0609470 0.160704i
\(218\) 17.2740 + 9.06611i 1.16994 + 0.614034i
\(219\) −19.6889 10.3335i −1.33045 0.698276i
\(220\) 23.8788 5.88558i 1.60991 0.396806i
\(221\) 0.541872 + 2.03007i 0.0364503 + 0.136557i
\(222\) 15.7814 + 3.88975i 1.05918 + 0.261063i
\(223\) 16.0027 + 14.1772i 1.07162 + 0.949373i 0.998849 0.0479752i \(-0.0152769\pi\)
0.0727725 + 0.997349i \(0.476815\pi\)
\(224\) −1.38773 + 11.4290i −0.0927215 + 0.763630i
\(225\) 46.7123 + 24.5165i 3.11415 + 1.63443i
\(226\) 12.9335 6.78802i 0.860324 0.451533i
\(227\) −6.61622 17.4455i −0.439134 1.15790i −0.953782 0.300499i \(-0.902847\pi\)
0.514648 0.857401i \(-0.327923\pi\)
\(228\) −8.71387 7.71981i −0.577090 0.511257i
\(229\) 1.41336 + 11.6401i 0.0933977 + 0.769199i 0.961879 + 0.273477i \(0.0881736\pi\)
−0.868481 + 0.495723i \(0.834903\pi\)
\(230\) −11.8846 + 2.92929i −0.783648 + 0.193152i
\(231\) 22.5023 + 19.9353i 1.48054 + 1.31165i
\(232\) 9.32890 8.26469i 0.612473 0.542603i
\(233\) 12.1388 + 6.37093i 0.795239 + 0.417374i 0.812851 0.582471i \(-0.197914\pi\)
−0.0176123 + 0.999845i \(0.505606\pi\)
\(234\) −20.5645 + 24.1296i −1.34435 + 1.57740i
\(235\) 26.8781 14.1067i 1.75333 0.920220i
\(236\) 1.39015 3.66551i 0.0904908 0.238605i
\(237\) 3.37916 + 27.8299i 0.219500 + 1.80775i
\(238\) 1.81040 0.950173i 0.117351 0.0615906i
\(239\) 6.56845 0.424878 0.212439 0.977174i \(-0.431859\pi\)
0.212439 + 0.977174i \(0.431859\pi\)
\(240\) −49.1651 + 25.8039i −3.17360 + 1.66563i
\(241\) 12.4176 11.0011i 0.799891 0.708641i −0.160580 0.987023i \(-0.551336\pi\)
0.960471 + 0.278381i \(0.0897979\pi\)
\(242\) 18.2579 + 26.4512i 1.17366 + 1.70035i
\(243\) −10.9501 9.70098i −0.702452 0.622318i
\(244\) −2.09192 3.03067i −0.133922 0.194019i
\(245\) −4.34201 11.4489i −0.277401 0.731445i
\(246\) −8.14442 21.4751i −0.519269 1.36920i
\(247\) 6.22116 + 11.3203i 0.395843 + 0.720294i
\(248\) −0.683795 + 1.80302i −0.0434211 + 0.114492i
\(249\) 2.54153 0.161063
\(250\) 14.0786 + 37.1222i 0.890409 + 2.34782i
\(251\) −2.24721 + 18.5074i −0.141843 + 1.16818i 0.731768 + 0.681554i \(0.238695\pi\)
−0.873611 + 0.486625i \(0.838228\pi\)
\(252\) 9.98553 + 5.24081i 0.629029 + 0.330140i
\(253\) −5.34016 7.73655i −0.335733 0.486393i
\(254\) 9.79481 + 14.1902i 0.614581 + 0.890375i
\(255\) 5.75692 + 3.02146i 0.360512 + 0.189211i
\(256\) 2.43944 20.0906i 0.152465 1.25566i
\(257\) −10.2048 26.9080i −0.636561 1.67847i −0.730515 0.682897i \(-0.760720\pi\)
0.0939539 0.995577i \(-0.470049\pi\)
\(258\) 35.4957 2.20987
\(259\) −2.27479 + 5.99812i −0.141348 + 0.372705i
\(260\) −16.2762 + 2.29387i −1.00941 + 0.142260i
\(261\) −14.5428 38.3463i −0.900178 2.37357i
\(262\) 6.85646 + 18.0790i 0.423593 + 1.11692i
\(263\) −2.24625 3.25426i −0.138510 0.200666i 0.747590 0.664161i \(-0.231211\pi\)
−0.886100 + 0.463494i \(0.846595\pi\)
\(264\) −17.1385 15.1833i −1.05480 0.934470i
\(265\) −5.46500 7.91741i −0.335712 0.486363i
\(266\) 9.40844 8.33515i 0.576868 0.511061i
\(267\) 13.1021 6.87649i 0.801833 0.420834i
\(268\) −2.74532 −0.167697
\(269\) 21.5357 11.3028i 1.31305 0.689144i 0.344698 0.938714i \(-0.387981\pi\)
0.968357 + 0.249569i \(0.0802890\pi\)
\(270\) 4.66198 + 38.3948i 0.283719 + 2.33663i
\(271\) 0.855256 2.25512i 0.0519531 0.136989i −0.906528 0.422147i \(-0.861277\pi\)
0.958481 + 0.285158i \(0.0920460\pi\)
\(272\) −2.56804 + 1.34781i −0.155710 + 0.0817229i
\(273\) −13.6098 14.7812i −0.823706 0.894598i
\(274\) 13.5711 + 7.12264i 0.819858 + 0.430294i
\(275\) −43.0131 + 38.1063i −2.59379 + 2.29790i
\(276\) −4.23845 3.75494i −0.255125 0.226021i
\(277\) −9.29118 + 2.29007i −0.558253 + 0.137597i −0.508340 0.861157i \(-0.669741\pi\)
−0.0499132 + 0.998754i \(0.515894\pi\)
\(278\) −4.47366 36.8439i −0.268312 2.20975i
\(279\) 4.74953 + 4.20772i 0.284347 + 0.251910i
\(280\) −4.17252 11.0020i −0.249356 0.657498i
\(281\) −1.31539 + 0.690370i −0.0784696 + 0.0411840i −0.503502 0.863994i \(-0.667955\pi\)
0.425032 + 0.905178i \(0.360263\pi\)
\(282\) 34.0156 + 17.8527i 2.02560 + 1.06312i
\(283\) −1.84300 + 15.1785i −0.109555 + 0.902266i 0.829502 + 0.558504i \(0.188624\pi\)
−0.939057 + 0.343762i \(0.888299\pi\)
\(284\) −0.942919 0.835353i −0.0559519 0.0495691i
\(285\) 38.8085 + 9.56545i 2.29882 + 0.566608i
\(286\) −16.6324 30.2652i −0.983497 1.78962i
\(287\) 8.80143 2.16936i 0.519532 0.128053i
\(288\) −25.5486 13.4090i −1.50547 0.790131i
\(289\) −14.7521 7.74247i −0.867768 0.455440i
\(290\) 20.6264 54.3872i 1.21122 3.19373i
\(291\) 10.5140 27.7232i 0.616342 1.62516i
\(292\) 5.16138 7.47756i 0.302047 0.437591i
\(293\) −24.5143 + 6.04222i −1.43214 + 0.352990i −0.877690 0.479228i \(-0.840917\pi\)
−0.554448 + 0.832219i \(0.687070\pi\)
\(294\) 8.80284 12.7531i 0.513392 0.743777i
\(295\) 1.62239 + 13.3616i 0.0944594 + 0.777943i
\(296\) 1.73255 4.56835i 0.100702 0.265530i
\(297\) −26.3016 + 13.8042i −1.52617 + 0.800998i
\(298\) 15.3247 + 22.2017i 0.887738 + 1.28611i
\(299\) 3.02599 + 5.50624i 0.174998 + 0.318434i
\(300\) −19.6632 + 28.4870i −1.13525 + 1.64470i
\(301\) −1.68865 + 13.9073i −0.0973322 + 0.801603i
\(302\) −39.1830 9.65775i −2.25473 0.555741i
\(303\) −5.36236 7.76872i −0.308059 0.446301i
\(304\) −13.3458 + 11.8233i −0.765431 + 0.678113i
\(305\) 11.1953 + 5.87575i 0.641041 + 0.336444i
\(306\) 0.617651 + 5.08682i 0.0353088 + 0.290794i
\(307\) 2.02243 16.6562i 0.115426 0.950622i −0.813809 0.581133i \(-0.802610\pi\)
0.929235 0.369489i \(-0.120467\pi\)
\(308\) −9.19477 + 8.14585i −0.523921 + 0.464153i
\(309\) 2.62455 3.80232i 0.149306 0.216307i
\(310\) 1.08479 + 8.93406i 0.0616120 + 0.507420i
\(311\) −0.936419 + 7.71210i −0.0530994 + 0.437313i 0.941779 + 0.336233i \(0.109153\pi\)
−0.994878 + 0.101080i \(0.967770\pi\)
\(312\) 10.3657 + 11.2578i 0.586841 + 0.637348i
\(313\) −1.27206 10.4763i −0.0719009 0.592157i −0.983478 0.181028i \(-0.942058\pi\)
0.911577 0.411129i \(-0.134865\pi\)
\(314\) −20.8992 + 5.15118i −1.17941 + 0.290698i
\(315\) −38.7191 −2.18157
\(316\) −11.4552 −0.644406
\(317\) 10.9731 2.70462i 0.616309 0.151907i 0.0812116 0.996697i \(-0.474121\pi\)
0.535097 + 0.844790i \(0.320275\pi\)
\(318\) 4.31734 11.3839i 0.242104 0.638377i
\(319\) 44.6727 2.50119
\(320\) −0.547658 1.44405i −0.0306150 0.0807251i
\(321\) 14.7783 + 3.64253i 0.824845 + 0.203306i
\(322\) 4.57629 4.05424i 0.255027 0.225934i
\(323\) 2.02708 + 0.499630i 0.112790 + 0.0278002i
\(324\) −0.577838 + 0.511920i −0.0321021 + 0.0284400i
\(325\) 31.1840 22.4198i 1.72978 1.24363i
\(326\) 25.4365 + 22.5348i 1.40880 + 1.24809i
\(327\) −17.6020 25.5010i −0.973395 1.41021i
\(328\) −6.70344 + 1.65225i −0.370135 + 0.0912302i
\(329\) −8.61298 + 12.4781i −0.474849 + 0.687938i
\(330\) −103.756 25.5735i −5.71157 1.40777i
\(331\) 30.5818 + 7.53774i 1.68093 + 0.414311i 0.960291 0.279001i \(-0.0900033\pi\)
0.720637 + 0.693313i \(0.243849\pi\)
\(332\) −0.125178 + 1.03093i −0.00687004 + 0.0565798i
\(333\) −12.0340 10.6612i −0.659459 0.584229i
\(334\) 2.87429 + 7.57888i 0.157274 + 0.414698i
\(335\) 8.34606 4.38035i 0.455994 0.239324i
\(336\) 15.7548 22.8247i 0.859494 1.24519i
\(337\) −27.6500 −1.50619 −0.753097 0.657910i \(-0.771441\pi\)
−0.753097 + 0.657910i \(0.771441\pi\)
\(338\) 9.00637 + 21.2515i 0.489882 + 1.15593i
\(339\) −23.2000 −1.26005
\(340\) −1.50916 + 2.18639i −0.0818455 + 0.118574i
\(341\) −6.12010 + 3.21208i −0.331422 + 0.173944i
\(342\) 11.1707 + 29.4547i 0.604042 + 1.59273i
\(343\) 14.9319 + 13.2285i 0.806247 + 0.714272i
\(344\) 1.28613 10.5922i 0.0693434 0.571094i
\(345\) 18.8766 + 4.65266i 1.01628 + 0.250491i
\(346\) 1.94913 + 0.480418i 0.104786 + 0.0258274i
\(347\) −10.3670 + 15.0192i −0.556529 + 0.806271i −0.995749 0.0921086i \(-0.970639\pi\)
0.439220 + 0.898379i \(0.355255\pi\)
\(348\) 26.1269 6.43971i 1.40055 0.345205i
\(349\) 14.2003 + 20.5726i 0.760123 + 1.10123i 0.991720 + 0.128416i \(0.0409893\pi\)
−0.231598 + 0.972812i \(0.574395\pi\)
\(350\) −27.9744 24.7832i −1.49529 1.32472i
\(351\) 18.4242 7.39463i 0.983413 0.394696i
\(352\) 23.5254 20.8417i 1.25391 1.11087i
\(353\) 10.1890 + 2.51135i 0.542303 + 0.133666i 0.500946 0.865479i \(-0.332986\pi\)
0.0413575 + 0.999144i \(0.486832\pi\)
\(354\) −12.7501 + 11.2956i −0.677661 + 0.600355i
\(355\) 4.19943 + 1.03507i 0.222883 + 0.0549357i
\(356\) 2.14403 + 5.65334i 0.113633 + 0.299626i
\(357\) −3.24749 −0.171875
\(358\) −0.917940 + 2.42041i −0.0485147 + 0.127923i
\(359\) 4.46156 1.09968i 0.235472 0.0580386i −0.119814 0.992796i \(-0.538230\pi\)
0.355286 + 0.934758i \(0.384384\pi\)
\(360\) 29.4896 1.55424
\(361\) −6.16521 −0.324485
\(362\) −23.1050 + 5.69486i −1.21437 + 0.299315i
\(363\) −6.15335 50.6774i −0.322967 2.65987i
\(364\) 6.66609 4.79261i 0.349398 0.251201i
\(365\) −3.76018 + 30.9679i −0.196817 + 1.62093i
\(366\) 1.92871 + 15.8844i 0.100815 + 0.830289i
\(367\) −17.2695 + 25.0191i −0.901459 + 1.30599i 0.0501709 + 0.998741i \(0.484023\pi\)
−0.951630 + 0.307248i \(0.900592\pi\)
\(368\) −6.49141 + 5.75089i −0.338388 + 0.299786i
\(369\) −2.73839 + 22.5527i −0.142555 + 1.17404i
\(370\) −2.74856 22.6364i −0.142891 1.17681i
\(371\) 4.25484 + 2.23311i 0.220900 + 0.115937i
\(372\) −3.11632 + 2.76082i −0.161574 + 0.143142i
\(373\) 2.29340 + 3.32256i 0.118748 + 0.172036i 0.877850 0.478936i \(-0.158977\pi\)
−0.759102 + 0.650971i \(0.774362\pi\)
\(374\) −5.41946 1.33578i −0.280234 0.0690714i
\(375\) 7.60104 62.6002i 0.392516 3.23266i
\(376\) 6.55991 9.50367i 0.338301 0.490114i
\(377\) −29.7031 3.02974i −1.52979 0.156039i
\(378\) −10.9742 15.8989i −0.564452 0.817750i
\(379\) 13.8529 7.27055i 0.711574 0.373463i −0.0697702 0.997563i \(-0.522227\pi\)
0.781344 + 0.624100i \(0.214534\pi\)
\(380\) −5.79151 + 15.2710i −0.297098 + 0.783384i
\(381\) −3.30108 27.1869i −0.169120 1.39282i
\(382\) −7.13067 + 10.3306i −0.364837 + 0.528558i
\(383\) −1.47263 + 0.362970i −0.0752477 + 0.0185469i −0.276760 0.960939i \(-0.589261\pi\)
0.201512 + 0.979486i \(0.435414\pi\)
\(384\) −17.5558 + 25.4340i −0.895892 + 1.29792i
\(385\) 14.9558 39.4351i 0.762216 2.00980i
\(386\) −6.86985 + 18.1143i −0.349666 + 0.921993i
\(387\) −31.0888 16.3166i −1.58033 0.829421i
\(388\) 10.7276 + 5.63030i 0.544613 + 0.285835i
\(389\) −29.2377 + 7.20645i −1.48241 + 0.365382i −0.895789 0.444479i \(-0.853389\pi\)
−0.586623 + 0.809860i \(0.699543\pi\)
\(390\) 67.2532 + 24.0407i 3.40550 + 1.21735i
\(391\) 0.985978 + 0.243022i 0.0498631 + 0.0122901i
\(392\) −3.48668 3.08893i −0.176104 0.156015i
\(393\) 3.70180 30.4871i 0.186731 1.53787i
\(394\) −38.7862 20.3566i −1.95402 1.02555i
\(395\) 34.8250 18.2776i 1.75224 0.919645i
\(396\) −10.9170 28.7857i −0.548600 1.44654i
\(397\) 3.32524 + 2.94591i 0.166889 + 0.147851i 0.742434 0.669920i \(-0.233671\pi\)
−0.575545 + 0.817770i \(0.695210\pi\)
\(398\) 2.18892 + 18.0274i 0.109721 + 0.903631i
\(399\) −19.3844 + 4.77782i −0.970432 + 0.239190i
\(400\) 39.6813 + 35.1546i 1.98407 + 1.75773i
\(401\) −10.7148 + 9.49248i −0.535071 + 0.474032i −0.886854 0.462050i \(-0.847114\pi\)
0.351783 + 0.936082i \(0.385576\pi\)
\(402\) 10.5624 + 5.54355i 0.526803 + 0.276487i
\(403\) 4.28712 1.72065i 0.213557 0.0857117i
\(404\) 3.41537 1.79253i 0.169921 0.0891815i
\(405\) 0.939884 2.47827i 0.0467032 0.123146i
\(406\) 3.50204 + 28.8419i 0.173803 + 1.43140i
\(407\) 15.5066 8.13850i 0.768635 0.403411i
\(408\) 2.47338 0.122451
\(409\) 8.50933 4.46604i 0.420759 0.220831i −0.241036 0.970516i \(-0.577487\pi\)
0.661795 + 0.749685i \(0.269795\pi\)
\(410\) −24.1184 + 21.3670i −1.19112 + 1.05524i
\(411\) −13.8288 20.0344i −0.682123 0.988225i
\(412\) 1.41309 + 1.25189i 0.0696178 + 0.0616760i
\(413\) −3.81908 5.53290i −0.187925 0.272256i
\(414\) 5.43346 + 14.3268i 0.267040 + 0.704126i
\(415\) −1.26437 3.33387i −0.0620656 0.163653i
\(416\) −17.0556 + 12.2622i −0.836221 + 0.601204i
\(417\) −20.9039 + 55.1190i −1.02367 + 2.69919i
\(418\) −34.3142 −1.67836
\(419\) −4.48047 11.8140i −0.218885 0.577153i 0.779927 0.625870i \(-0.215256\pi\)
−0.998813 + 0.0487173i \(0.984487\pi\)
\(420\) 3.06222 25.2196i 0.149421 1.23059i
\(421\) −9.79439 5.14049i −0.477349 0.250532i 0.208847 0.977948i \(-0.433029\pi\)
−0.686197 + 0.727416i \(0.740721\pi\)
\(422\) −5.84036 8.46122i −0.284304 0.411886i
\(423\) −21.5858 31.2725i −1.04954 1.52052i
\(424\) −3.24062 1.70081i −0.157378 0.0825985i
\(425\) 0.748239 6.16230i 0.0362949 0.298915i
\(426\) 1.94098 + 5.11795i 0.0940409 + 0.247965i
\(427\) −6.31528 −0.305618
\(428\) −2.20541 + 5.81519i −0.106603 + 0.281088i
\(429\) 1.05206 + 54.8416i 0.0507937 + 2.64778i
\(430\) −17.6586 46.5618i −0.851571 2.24541i
\(431\) 8.84728 + 23.3284i 0.426158 + 1.12369i 0.960466 + 0.278397i \(0.0898031\pi\)
−0.534308 + 0.845290i \(0.679428\pi\)
\(432\) 15.5668 + 22.5523i 0.748956 + 1.08505i
\(433\) 17.9109 + 15.8677i 0.860745 + 0.762553i 0.972922 0.231135i \(-0.0742439\pi\)
−0.112177 + 0.993688i \(0.535782\pi\)
\(434\) −2.55358 3.69949i −0.122576 0.177581i
\(435\) −69.1536 + 61.2647i −3.31566 + 2.93742i
\(436\) 11.2110 5.88400i 0.536911 0.281793i
\(437\) 6.24288 0.298638
\(438\) −34.9571 + 18.3469i −1.67032 + 0.876650i
\(439\) 3.97911 + 32.7710i 0.189913 + 1.56407i 0.706422 + 0.707791i \(0.250308\pi\)
−0.516509 + 0.856281i \(0.672769\pi\)
\(440\) −11.3908 + 30.0350i −0.543033 + 1.43186i
\(441\) −13.5723 + 7.12328i −0.646299 + 0.339204i
\(442\) 3.51282 + 1.25571i 0.167088 + 0.0597282i
\(443\) −19.9739 10.4831i −0.948987 0.498067i −0.0821288 0.996622i \(-0.526172\pi\)
−0.866858 + 0.498555i \(0.833864\pi\)
\(444\) 7.89589 6.99515i 0.374722 0.331975i
\(445\) −15.5384 13.7658i −0.736589 0.652561i
\(446\) 36.8555 9.08407i 1.74516 0.430143i
\(447\) −5.16480 42.5359i −0.244286 2.01188i
\(448\) 0.577413 + 0.511543i 0.0272802 + 0.0241682i
\(449\) 8.35639 + 22.0340i 0.394362 + 1.03985i 0.974313 + 0.225196i \(0.0723024\pi\)
−0.579951 + 0.814651i \(0.696928\pi\)
\(450\) 82.9364 43.5284i 3.90966 2.05195i
\(451\) −21.9120 11.5003i −1.03179 0.541527i
\(452\) 1.14267 9.41072i 0.0537466 0.442643i
\(453\) 47.9779 + 42.5048i 2.25420 + 1.99705i
\(454\) −32.1642 7.92775i −1.50954 0.372068i
\(455\) −12.6187 + 25.2062i −0.591572 + 1.18169i
\(456\) 14.7637 3.63893i 0.691374 0.170409i
\(457\) 36.3950 + 19.1016i 1.70249 + 0.893534i 0.979177 + 0.203009i \(0.0650722\pi\)
0.723309 + 0.690524i \(0.242620\pi\)
\(458\) 18.4338 + 9.67482i 0.861356 + 0.452075i
\(459\) 1.13783 3.00022i 0.0531094 0.140038i
\(460\) −2.81701 + 7.42785i −0.131344 + 0.346325i
\(461\) 16.6601 24.1364i 0.775940 1.12414i −0.213178 0.977013i \(-0.568381\pi\)
0.989117 0.147129i \(-0.0470033\pi\)
\(462\) 51.8247 12.7736i 2.41110 0.594283i
\(463\) 3.54342 5.13352i 0.164677 0.238575i −0.731955 0.681353i \(-0.761392\pi\)
0.896631 + 0.442778i \(0.146007\pi\)
\(464\) −4.96760 40.9119i −0.230615 1.89929i
\(465\) 5.06886 13.3655i 0.235063 0.619810i
\(466\) 21.5521 11.3114i 0.998381 0.523991i
\(467\) 12.1274 + 17.5696i 0.561191 + 0.813025i 0.996172 0.0874142i \(-0.0278603\pi\)
−0.434981 + 0.900440i \(0.643245\pi\)
\(468\) 5.30648 + 19.8801i 0.245292 + 0.918960i
\(469\) −2.67446 + 3.87463i −0.123495 + 0.178914i
\(470\) 6.49628 53.5016i 0.299651 2.46785i
\(471\) 33.1946 + 8.18174i 1.52953 + 0.376995i
\(472\) 2.90873 + 4.21402i 0.133885 + 0.193966i
\(473\) 28.6268 25.3611i 1.31626 1.16611i
\(474\) 44.0728 + 23.1312i 2.02433 + 1.06245i
\(475\) −4.59993 37.8838i −0.211059 1.73823i
\(476\) 0.159948 1.31729i 0.00733122 0.0603780i
\(477\) −9.01426 + 7.98593i −0.412734 + 0.365651i
\(478\) 6.62482 9.59772i 0.303012 0.438989i
\(479\) −4.32582 35.6264i −0.197652 1.62781i −0.667183 0.744894i \(-0.732500\pi\)
0.469531 0.882916i \(-0.344423\pi\)
\(480\) −7.83489 + 64.5261i −0.357612 + 2.94520i
\(481\) −10.8624 + 4.35965i −0.495281 + 0.198783i
\(482\) −3.55038 29.2400i −0.161715 1.33184i
\(483\) −9.42861 + 2.32394i −0.429017 + 0.105743i
\(484\) 20.8596 0.948163
\(485\) −41.5966 −1.88881
\(486\) −25.2191 + 6.21594i −1.14396 + 0.281961i
\(487\) −10.8172 + 28.5227i −0.490175 + 1.29249i 0.430653 + 0.902518i \(0.358283\pi\)
−0.920828 + 0.389968i \(0.872486\pi\)
\(488\) 4.80991 0.217735
\(489\) −19.1401 50.4682i −0.865544 2.28225i
\(490\) −21.1083 5.20272i −0.953575 0.235035i
\(491\) 4.42609 3.92118i 0.199747 0.176960i −0.557320 0.830298i \(-0.688170\pi\)
0.757067 + 0.653338i \(0.226632\pi\)
\(492\) −14.4731 3.56729i −0.652496 0.160826i
\(493\) −3.61209 + 3.20003i −0.162680 + 0.144122i
\(494\) 22.8156 + 2.32721i 1.02652 + 0.104706i
\(495\) 79.1184 + 70.0928i 3.55611 + 3.15044i
\(496\) 3.62222 + 5.24769i 0.162642 + 0.235628i
\(497\) −2.09756 + 0.517003i −0.0940885 + 0.0231907i
\(498\) 2.56335 3.71365i 0.114866 0.166413i
\(499\) −31.1426 7.67597i −1.39414 0.343624i −0.530477 0.847700i \(-0.677987\pi\)
−0.863659 + 0.504076i \(0.831833\pi\)
\(500\) 25.0184 + 6.16649i 1.11886 + 0.275774i
\(501\) 1.55183 12.7805i 0.0693306 0.570989i
\(502\) 24.7763 + 21.9499i 1.10582 + 0.979671i
\(503\) 12.3090 + 32.4561i 0.548830 + 1.44715i 0.866612 + 0.498983i \(0.166293\pi\)
−0.317781 + 0.948164i \(0.602938\pi\)
\(504\) −13.0425 + 6.84523i −0.580959 + 0.304911i
\(505\) −7.52299 + 10.8989i −0.334768 + 0.484996i
\(506\) −16.6905 −0.741984
\(507\) 3.01988 36.5357i 0.134118 1.62261i
\(508\) 11.1905 0.496499
\(509\) 14.8199 21.4703i 0.656879 0.951653i −0.343045 0.939319i \(-0.611458\pi\)
0.999924 0.0123345i \(-0.00392628\pi\)
\(510\) 10.2212 5.36452i 0.452604 0.237545i
\(511\) −5.52533 14.5691i −0.244426 0.644499i
\(512\) −10.4898 9.29316i −0.463589 0.410704i
\(513\) 2.37774 19.5824i 0.104980 0.864585i
\(514\) −49.6100 12.2278i −2.18820 0.539343i
\(515\) −6.29340 1.55118i −0.277320 0.0683533i
\(516\) 13.0866 18.9592i 0.576104 0.834631i
\(517\) 40.1886 9.90560i 1.76749 0.435648i
\(518\) 6.47005 + 9.37349i 0.284278 + 0.411847i
\(519\) −2.38663 2.11437i −0.104761 0.0928105i
\(520\) 9.61075 19.1978i 0.421459 0.841881i
\(521\) −5.98847 + 5.30532i −0.262359 + 0.232430i −0.784039 0.620711i \(-0.786844\pi\)
0.521680 + 0.853141i \(0.325306\pi\)
\(522\) −70.6986 17.4256i −3.09439 0.762700i
\(523\) 15.7133 13.9208i 0.687097 0.608715i −0.245602 0.969371i \(-0.578986\pi\)
0.932699 + 0.360656i \(0.117447\pi\)
\(524\) 12.1843 + 3.00316i 0.532273 + 0.131194i
\(525\) 21.0497 + 55.5035i 0.918685 + 2.42237i
\(526\) −7.02061 −0.306113
\(527\) 0.264761 0.698117i 0.0115332 0.0304105i
\(528\) −73.5126 + 18.1192i −3.19923 + 0.788538i
\(529\) −19.9634 −0.867976
\(530\) −17.0807 −0.741939
\(531\) 16.3595 4.03225i 0.709942 0.174985i
\(532\) −0.983311 8.09829i −0.0426319 0.351106i
\(533\) 13.7894 + 9.13266i 0.597284 + 0.395580i
\(534\) 3.16669 26.0800i 0.137036 1.12859i
\(535\) −2.57386 21.1977i −0.111278 0.916455i
\(536\) 2.03695 2.95103i 0.0879829 0.127465i
\(537\) 3.07756 2.72648i 0.132807 0.117656i
\(538\) 5.20505 42.8675i 0.224406 1.84815i
\(539\) −2.01253 16.5747i −0.0866860 0.713923i
\(540\) 22.2264 + 11.6653i 0.956474 + 0.501996i
\(541\) 24.1928 21.4329i 1.04013 0.921473i 0.0431434 0.999069i \(-0.486263\pi\)
0.996985 + 0.0775956i \(0.0247243\pi\)
\(542\) −2.43256 3.52417i −0.104487 0.151376i
\(543\) 36.6982 + 9.04528i 1.57487 + 0.388170i
\(544\) −0.409238 + 3.37038i −0.0175460 + 0.144504i
\(545\) −24.6943 + 35.7759i −1.05779 + 1.53247i
\(546\) −35.3247 + 4.97845i −1.51176 + 0.213058i
\(547\) −0.876111 1.26927i −0.0374598 0.0542699i 0.803807 0.594891i \(-0.202805\pi\)
−0.841266 + 0.540621i \(0.818189\pi\)
\(548\) 8.80777 4.62267i 0.376249 0.197471i
\(549\) 5.61246 14.7988i 0.239534 0.631599i
\(550\) 12.2980 + 101.284i 0.524390 + 4.31874i
\(551\) −16.8527 + 24.4153i −0.717949 + 1.04013i
\(552\) 7.18112 1.76999i 0.305649 0.0753356i
\(553\) −11.1595 + 16.1674i −0.474552 + 0.687507i
\(554\) −6.02471 + 15.8859i −0.255965 + 0.674926i
\(555\) −12.8431 + 33.8644i −0.545158 + 1.43746i
\(556\) −21.3286 11.1941i −0.904534 0.474736i
\(557\) 29.5274 + 15.4972i 1.25112 + 0.656637i 0.954458 0.298347i \(-0.0964352\pi\)
0.296659 + 0.954983i \(0.404127\pi\)
\(558\) 10.9386 2.69611i 0.463066 0.114135i
\(559\) −20.7541 + 14.9212i −0.877804 + 0.631100i
\(560\) −37.7783 9.31151i −1.59642 0.393483i
\(561\) 6.63590 + 5.87889i 0.280168 + 0.248207i
\(562\) −0.317922 + 2.61833i −0.0134107 + 0.110447i
\(563\) 23.0332 + 12.0887i 0.970732 + 0.509479i 0.874050 0.485836i \(-0.161485\pi\)
0.0966817 + 0.995315i \(0.469177\pi\)
\(564\) 22.0765 11.5866i 0.929587 0.487885i
\(565\) 11.5416 + 30.4328i 0.485560 + 1.28032i
\(566\) 20.3197 + 18.0017i 0.854102 + 0.756668i
\(567\) 0.159578 + 1.31424i 0.00670164 + 0.0551930i
\(568\) 1.59757 0.393765i 0.0670324 0.0165220i
\(569\) −20.7092 18.3468i −0.868175 0.769136i 0.106134 0.994352i \(-0.466153\pi\)
−0.974309 + 0.225216i \(0.927691\pi\)
\(570\) 53.1185 47.0589i 2.22489 1.97108i
\(571\) −12.5880 6.60668i −0.526791 0.276481i 0.180291 0.983613i \(-0.442296\pi\)
−0.707081 + 0.707132i \(0.749989\pi\)
\(572\) −22.2975 2.27436i −0.932304 0.0950958i
\(573\) 17.6538 9.26543i 0.737499 0.387069i
\(574\) 5.70714 15.0485i 0.238211 0.628112i
\(575\) −2.23742 18.4268i −0.0933069 0.768451i
\(576\) −1.71187 + 0.898460i −0.0713280 + 0.0374358i
\(577\) −17.4359 −0.725868 −0.362934 0.931815i \(-0.618225\pi\)
−0.362934 + 0.931815i \(0.618225\pi\)
\(578\) −26.1919 + 13.7465i −1.08944 + 0.571781i
\(579\) 23.0324 20.4049i 0.957194 0.848000i
\(580\) −21.4451 31.0686i −0.890459 1.29005i
\(581\) 1.33307 + 1.18100i 0.0553050 + 0.0489959i
\(582\) −29.9044 43.3240i −1.23958 1.79584i
\(583\) −4.65174 12.2656i −0.192655 0.507990i
\(584\) 4.20826 + 11.0963i 0.174139 + 0.459167i
\(585\) −47.8524 51.9708i −1.97845 2.14873i
\(586\) −15.8959 + 41.9139i −0.656652 + 1.73145i
\(587\) −30.5982 −1.26292 −0.631462 0.775407i \(-0.717545\pi\)
−0.631462 + 0.775407i \(0.717545\pi\)
\(588\) −3.56633 9.40365i −0.147073 0.387800i
\(589\) 0.553273 4.55661i 0.0227972 0.187752i
\(590\) 21.1601 + 11.1057i 0.871148 + 0.457213i
\(591\) 39.5227 + 57.2586i 1.62575 + 2.35530i
\(592\) −9.17768 13.2962i −0.377200 0.546469i
\(593\) −21.3311 11.1954i −0.875963 0.459741i −0.0340912 0.999419i \(-0.510854\pi\)
−0.841872 + 0.539678i \(0.818546\pi\)
\(594\) −6.35694 + 52.3541i −0.260829 + 2.14812i
\(595\) 1.61557 + 4.25992i 0.0662320 + 0.174639i
\(596\) 17.5084 0.717173
\(597\) 10.2281 26.9692i 0.418607 1.10378i
\(598\) 11.0976 + 1.13196i 0.453814 + 0.0462894i
\(599\) 0.124746 + 0.328928i 0.00509699 + 0.0134396i 0.937541 0.347876i \(-0.113097\pi\)
−0.932444 + 0.361316i \(0.882328\pi\)
\(600\) −16.0321 42.2732i −0.654508 1.72580i
\(601\) 10.9535 + 15.8689i 0.446804 + 0.647307i 0.980073 0.198639i \(-0.0636520\pi\)
−0.533269 + 0.845946i \(0.679037\pi\)
\(602\) 18.6180 + 16.4941i 0.758812 + 0.672249i
\(603\) −6.70274 9.71059i −0.272957 0.395446i
\(604\) −19.6045 + 17.3680i −0.797694 + 0.706695i
\(605\) −63.4153 + 33.2829i −2.57820 + 1.35314i
\(606\) −16.7599 −0.680825
\(607\) 26.4862 13.9010i 1.07504 0.564225i 0.168223 0.985749i \(-0.446197\pi\)
0.906817 + 0.421524i \(0.138505\pi\)
\(608\) 2.51587 + 20.7200i 0.102032 + 0.840308i
\(609\) 16.3639 43.1479i 0.663097 1.74844i
\(610\) 19.8769 10.4322i 0.804794 0.422388i
\(611\) −27.3934 + 3.86065i −1.10822 + 0.156185i
\(612\) 2.94471 + 1.54551i 0.119033 + 0.0624734i
\(613\) −7.71748 + 6.83709i −0.311706 + 0.276148i −0.804442 0.594031i \(-0.797535\pi\)
0.492736 + 0.870179i \(0.335997\pi\)
\(614\) −22.2980 19.7543i −0.899876 0.797221i
\(615\) 49.6915 12.2478i 2.00375 0.493881i
\(616\) −1.93398 15.9277i −0.0779222 0.641747i
\(617\) 11.9624 + 10.5977i 0.481586 + 0.426648i 0.868666 0.495398i \(-0.164978\pi\)
−0.387080 + 0.922046i \(0.626516\pi\)
\(618\) −2.90882 7.66992i −0.117010 0.308529i
\(619\) 21.8501 11.4678i 0.878229 0.460930i 0.0355634 0.999367i \(-0.488677\pi\)
0.842666 + 0.538437i \(0.180985\pi\)
\(620\) 5.17185 + 2.71440i 0.207706 + 0.109013i
\(621\) 1.15654 9.52495i 0.0464103 0.382223i
\(622\) 10.3243 + 9.14658i 0.413969 + 0.366744i
\(623\) 10.0676 + 2.48143i 0.403349 + 0.0994165i
\(624\) 50.1077 7.06186i 2.00591 0.282701i
\(625\) −34.1846 + 8.42574i −1.36738 + 0.337030i
\(626\) −16.5908 8.70754i −0.663103 0.348023i
\(627\) 48.2591 + 25.3283i 1.92728 + 1.01152i
\(628\) −4.95373 + 13.0619i −0.197675 + 0.521227i
\(629\) −0.670830 + 1.76883i −0.0267478 + 0.0705280i
\(630\) −39.0514 + 56.5758i −1.55585 + 2.25403i
\(631\) −26.8293 + 6.61282i −1.06806 + 0.263252i −0.733895 0.679263i \(-0.762299\pi\)
−0.334162 + 0.942516i \(0.608453\pi\)
\(632\) 8.49944 12.3136i 0.338090 0.489808i
\(633\) 1.96834 + 16.2107i 0.0782344 + 0.644318i
\(634\) 7.11531 18.7615i 0.282585 0.745115i
\(635\) −34.0203 + 17.8553i −1.35006 + 0.708564i
\(636\) −4.48871 6.50302i −0.177989 0.257861i
\(637\) 0.214032 + 11.1571i 0.00848026 + 0.442059i
\(638\) 45.0562 65.2751i 1.78379 2.58427i
\(639\) 0.652614 5.37476i 0.0258170 0.212622i
\(640\) 42.0970 + 10.3760i 1.66403 + 0.410147i
\(641\) −8.83724 12.8029i −0.349050 0.505686i 0.608656 0.793434i \(-0.291709\pi\)
−0.957706 + 0.287748i \(0.907093\pi\)
\(642\) 20.2276 17.9201i 0.798318 0.707248i
\(643\) −35.1844 18.4662i −1.38754 0.728237i −0.405004 0.914315i \(-0.632730\pi\)
−0.982535 + 0.186078i \(0.940422\pi\)
\(644\) −0.478285 3.93904i −0.0188471 0.155220i
\(645\) −9.53385 + 78.5183i −0.375395 + 3.09166i
\(646\) 2.77453 2.45802i 0.109162 0.0967095i
\(647\) 2.62337 3.80061i 0.103135 0.149417i −0.768018 0.640428i \(-0.778757\pi\)
0.871154 + 0.491011i \(0.163372\pi\)
\(648\) −0.121539 1.00097i −0.00477452 0.0393217i
\(649\) −2.21225 + 18.2195i −0.0868385 + 0.715179i
\(650\) −1.30789 68.1778i −0.0512997 2.67415i
\(651\) 0.860615 + 7.08780i 0.0337302 + 0.277793i
\(652\) 21.4144 5.27817i 0.838651 0.206709i
\(653\) 40.3536 1.57916 0.789579 0.613649i \(-0.210299\pi\)
0.789579 + 0.613649i \(0.210299\pi\)
\(654\) −55.0147 −2.15125
\(655\) −41.8332 + 10.3110i −1.63456 + 0.402883i
\(656\) −8.09551 + 21.3461i −0.316076 + 0.833425i
\(657\) 39.0508 1.52351
\(658\) 9.54584 + 25.1703i 0.372136 + 0.981241i
\(659\) 0.396866 + 0.0978186i 0.0154597 + 0.00381047i 0.247038 0.969006i \(-0.420543\pi\)
−0.231578 + 0.972816i \(0.574389\pi\)
\(660\) −51.9122 + 45.9902i −2.02068 + 1.79016i
\(661\) −15.5088 3.82258i −0.603223 0.148681i −0.0741353 0.997248i \(-0.523620\pi\)
−0.529088 + 0.848567i \(0.677466\pi\)
\(662\) 41.8583 37.0832i 1.62687 1.44128i
\(663\) −4.01352 4.35895i −0.155872 0.169287i
\(664\) −1.01531 0.899482i −0.0394015 0.0349067i
\(665\) 15.9107 + 23.0507i 0.616992 + 0.893868i
\(666\) −27.7152 + 6.83119i −1.07394 + 0.264703i
\(667\) −8.19720 + 11.8757i −0.317397 + 0.459829i
\(668\) 5.10776 + 1.25895i 0.197625 + 0.0487103i
\(669\) −58.5385 14.4284i −2.26323 0.557836i
\(670\) 2.01719 16.6131i 0.0779310 0.641819i
\(671\) 12.9046 + 11.4325i 0.498177 + 0.441347i
\(672\) −11.5128 30.3569i −0.444117 1.17104i
\(673\) −12.4922 + 6.55639i −0.481537 + 0.252730i −0.687982 0.725728i \(-0.741503\pi\)
0.206445 + 0.978458i \(0.433811\pi\)
\(674\) −27.8874 + 40.4018i −1.07418 + 1.55622i
\(675\) −58.6526 −2.25754
\(676\) 14.6714 + 3.02446i 0.564285 + 0.116325i
\(677\) −10.5272 −0.404595 −0.202297 0.979324i \(-0.564841\pi\)
−0.202297 + 0.979324i \(0.564841\pi\)
\(678\) −23.3991 + 33.8995i −0.898638 + 1.30190i
\(679\) 18.3971 9.65554i 0.706016 0.370546i
\(680\) −1.23047 3.24448i −0.0471863 0.124420i
\(681\) 39.3836 + 34.8909i 1.50918 + 1.33702i
\(682\) −1.47919 + 12.1822i −0.0566412 + 0.466482i
\(683\) 41.5990 + 10.2532i 1.59174 + 0.392329i 0.932953 0.359999i \(-0.117223\pi\)
0.658788 + 0.752328i \(0.271069\pi\)
\(684\) 19.8509 + 4.89281i 0.759019 + 0.187081i
\(685\) −19.4007 + 28.1068i −0.741263 + 1.07391i
\(686\) 34.3894 8.47622i 1.31299 0.323623i
\(687\) −18.7839 27.2131i −0.716649 1.03825i
\(688\) −26.4094 23.3967i −1.00685 0.891989i
\(689\) 2.26109 + 8.47094i 0.0861408 + 0.322717i
\(690\) 25.8370 22.8896i 0.983598 0.871392i
\(691\) −26.9354 6.63898i −1.02467 0.252559i −0.309049 0.951046i \(-0.600011\pi\)
−0.715623 + 0.698487i \(0.753857\pi\)
\(692\) 0.975210 0.863960i 0.0370719 0.0328429i
\(693\) −51.2622 12.6350i −1.94729 0.479964i
\(694\) 11.4898 + 30.2961i 0.436147 + 1.15003i
\(695\) 82.7021 3.13707
\(696\) −12.4632 + 32.8628i −0.472417 + 1.24566i
\(697\) 2.59553 0.639740i 0.0983126 0.0242319i
\(698\) 44.3826 1.67991
\(699\) −38.6599 −1.46225
\(700\) −23.5509 + 5.80478i −0.890141 + 0.219400i
\(701\) −5.23550 43.1182i −0.197742 1.62855i −0.666696 0.745330i \(-0.732292\pi\)
0.468954 0.883223i \(-0.344631\pi\)
\(702\) 7.77745 34.3793i 0.293541 1.29756i
\(703\) −1.40184 + 11.5452i −0.0528714 + 0.435435i
\(704\) −0.253841 2.09057i −0.00956700 0.0787913i
\(705\) −48.6275 + 70.4491i −1.83142 + 2.65327i
\(706\) 13.9460 12.3550i 0.524863 0.464988i
\(707\) 0.797326 6.56657i 0.0299865 0.246961i
\(708\) 1.33256 + 10.9746i 0.0500808 + 0.412452i
\(709\) −35.8028 18.7907i −1.34460 0.705701i −0.369871 0.929083i \(-0.620598\pi\)
−0.974731 + 0.223382i \(0.928290\pi\)
\(710\) 5.74790 5.09220i 0.215715 0.191107i
\(711\) −27.9680 40.5187i −1.04888 1.51957i
\(712\) −7.66776 1.88993i −0.287362 0.0708283i
\(713\) 0.269114 2.21635i 0.0100784 0.0830030i
\(714\) −3.27536 + 4.74518i −0.122577 + 0.177584i
\(715\) 71.4155 28.6628i 2.67079 1.07193i
\(716\) 0.954376 + 1.38265i 0.0356667 + 0.0516722i
\(717\) −16.4015 + 8.60815i −0.612523 + 0.321477i
\(718\) 2.89302 7.62827i 0.107967 0.284685i
\(719\) −2.19567 18.0830i −0.0818847 0.674381i −0.974630 0.223820i \(-0.928147\pi\)
0.892746 0.450561i \(-0.148776\pi\)
\(720\) 55.3940 80.2520i 2.06441 2.99082i
\(721\) 3.14347 0.774796i 0.117069 0.0288549i
\(722\) −6.21813 + 9.00851i −0.231415 + 0.335262i
\(723\) −16.5897 + 43.7434i −0.616978 + 1.62684i
\(724\) −5.47657 + 14.4405i −0.203535 + 0.536678i
\(725\) 78.1055 + 40.9929i 2.90076 + 1.52244i
\(726\) −80.2552 42.1212i −2.97855 1.56326i
\(727\) −2.84010 + 0.700023i −0.105334 + 0.0259624i −0.291630 0.956531i \(-0.594198\pi\)
0.186297 + 0.982494i \(0.440351\pi\)
\(728\) 0.205678 + 10.7216i 0.00762293 + 0.397368i
\(729\) 42.0075 + 10.3539i 1.55583 + 0.383478i
\(730\) 41.4573 + 36.7280i 1.53440 + 1.35936i
\(731\) −0.497980 + 4.10124i −0.0184185 + 0.151690i
\(732\) 9.19533 + 4.82608i 0.339869 + 0.178377i
\(733\) −14.9995 + 7.87233i −0.554018 + 0.290771i −0.718405 0.695625i \(-0.755128\pi\)
0.164387 + 0.986396i \(0.447435\pi\)
\(734\) 19.1399 + 50.4678i 0.706466 + 1.86280i
\(735\) 25.8462 + 22.8977i 0.953351 + 0.844595i
\(736\) 1.22372 + 10.0783i 0.0451071 + 0.371490i
\(737\) 12.4792 3.07584i 0.459677 0.113300i
\(738\) 30.1917 + 26.7475i 1.11137 + 0.984590i
\(739\) 33.1754 29.3908i 1.22038 1.08116i 0.226123 0.974099i \(-0.427395\pi\)
0.994253 0.107060i \(-0.0341435\pi\)
\(740\) −13.1040 6.87752i −0.481713 0.252823i
\(741\) −30.3699 20.1139i −1.11567 0.738902i
\(742\) 7.55435 3.96483i 0.277329 0.145553i
\(743\) 14.1278 37.2520i 0.518300 1.36664i −0.379071 0.925368i \(-0.623756\pi\)
0.897371 0.441277i \(-0.145474\pi\)
\(744\) −0.655471 5.39829i −0.0240307 0.197911i
\(745\) −53.2274 + 27.9359i −1.95010 + 1.02349i
\(746\) 7.16795 0.262437
\(747\) −3.95218 + 2.07427i −0.144603 + 0.0758934i
\(748\) −2.71152 + 2.40220i −0.0991430 + 0.0878330i
\(749\) 6.05882 + 8.77772i 0.221385 + 0.320731i
\(750\) −83.8042 74.2440i −3.06010 2.71101i
\(751\) 9.40893 + 13.6312i 0.343337 + 0.497409i 0.956174 0.292800i \(-0.0945871\pi\)
−0.612837 + 0.790210i \(0.709972\pi\)
\(752\) −13.5407 35.7038i −0.493777 1.30198i
\(753\) −18.6433 49.1582i −0.679398 1.79143i
\(754\) −34.3850 + 40.3459i −1.25223 + 1.46931i
\(755\) 31.8877 84.0809i 1.16051 3.06002i
\(756\) −12.5380 −0.456001
\(757\) −0.335966 0.885870i −0.0122109 0.0321975i 0.928772 0.370651i \(-0.120865\pi\)
−0.940983 + 0.338454i \(0.890096\pi\)
\(758\) 3.34816 27.5746i 0.121611 1.00155i
\(759\) 23.4734 + 12.3198i 0.852030 + 0.447180i
\(760\) −12.1181 17.5561i −0.439570 0.636827i
\(761\) −20.6723 29.9490i −0.749370 1.08565i −0.993267 0.115849i \(-0.963041\pi\)
0.243897 0.969801i \(-0.421574\pi\)
\(762\) −43.0544 22.5967i −1.55970 0.818593i
\(763\) 2.61724 21.5549i 0.0947504 0.780339i
\(764\) 2.88888 + 7.61735i 0.104516 + 0.275586i
\(765\) −11.4182 −0.412826
\(766\) −0.954900 + 2.51786i −0.0345019 + 0.0909741i
\(767\) 2.70660 11.9642i 0.0977295 0.432002i
\(768\) 20.2380