Properties

Label 169.2.g.a.14.10
Level $169$
Weight $2$
Character 169.14
Analytic conductor $1.349$
Analytic rank $0$
Dimension $156$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(14,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.g (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 14.10
Character \(\chi\) \(=\) 169.14
Dual form 169.2.g.a.157.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.711778 - 1.03119i) q^{2} +(-1.78709 + 0.937940i) q^{3} +(0.152488 + 0.402078i) q^{4} +(-0.453990 - 0.402200i) q^{5} +(-0.304822 + 2.51044i) q^{6} +(4.78395 + 1.17914i) q^{7} +(2.95631 + 0.728665i) q^{8} +(0.609782 - 0.883421i) q^{9} +O(q^{10})\) \(q+(0.711778 - 1.03119i) q^{2} +(-1.78709 + 0.937940i) q^{3} +(0.152488 + 0.402078i) q^{4} +(-0.453990 - 0.402200i) q^{5} +(-0.304822 + 2.51044i) q^{6} +(4.78395 + 1.17914i) q^{7} +(2.95631 + 0.728665i) q^{8} +(0.609782 - 0.883421i) q^{9} +(-0.737885 + 0.181872i) q^{10} +(-1.82902 - 2.64980i) q^{11} +(-0.649635 - 0.575526i) q^{12} +(1.59116 + 3.23546i) q^{13} +(4.62103 - 4.09387i) q^{14} +(1.18856 + 0.292954i) q^{15} +(2.21188 - 1.95955i) q^{16} +(1.50016 + 0.369755i) q^{17} +(-0.476945 - 1.25760i) q^{18} -2.25327 q^{19} +(0.0924877 - 0.243870i) q^{20} +(-9.65534 + 2.37983i) q^{21} -4.03430 q^{22} -8.24595 q^{23} +(-5.96665 + 1.47065i) q^{24} +(-0.558341 - 4.59835i) q^{25} +(4.46892 + 0.662149i) q^{26} +(0.468687 - 3.85998i) q^{27} +(0.255390 + 2.10332i) q^{28} +(1.82087 - 2.63799i) q^{29} +(1.14808 - 1.01711i) q^{30} +(-0.939103 + 7.73421i) q^{31} +(0.287715 + 2.36955i) q^{32} +(5.75399 + 3.01993i) q^{33} +(1.44906 - 1.28376i) q^{34} +(-1.69762 - 2.45942i) q^{35} +(0.448188 + 0.110468i) q^{36} +(1.06272 - 8.75226i) q^{37} +(-1.60383 + 2.32354i) q^{38} +(-5.87822 - 4.28967i) q^{39} +(-1.04907 - 1.51984i) q^{40} +(1.66364 - 0.873146i) q^{41} +(-4.41841 + 11.6504i) q^{42} +(-0.731069 - 6.02089i) q^{43} +(0.786520 - 1.13947i) q^{44} +(-0.632147 + 0.155810i) q^{45} +(-5.86929 + 8.50313i) q^{46} +(0.0810172 - 0.213625i) q^{47} +(-2.11489 + 5.57651i) q^{48} +(15.2976 + 8.02882i) q^{49} +(-5.13919 - 2.69725i) q^{50} +(-3.02773 + 0.746268i) q^{51} +(-1.05828 + 1.13314i) q^{52} +(-6.05988 - 1.49363i) q^{53} +(-3.64677 - 3.23076i) q^{54} +(-0.235391 + 1.93862i) q^{55} +(13.2837 + 6.97180i) q^{56} +(4.02680 - 2.11343i) q^{57} +(-1.42421 - 3.75532i) q^{58} +(-4.59429 - 4.07018i) q^{59} +(0.0634511 + 0.522567i) q^{60} +(-2.22262 + 0.547828i) q^{61} +(7.30699 + 6.47343i) q^{62} +(3.95884 - 3.50723i) q^{63} +(7.88135 + 4.13645i) q^{64} +(0.578935 - 2.10883i) q^{65} +(7.20968 - 3.78393i) q^{66} +(-1.39820 + 3.68676i) q^{67} +(0.0800853 + 0.659562i) q^{68} +(14.7363 - 7.73420i) q^{69} -3.74446 q^{70} +(-3.75267 + 1.96956i) q^{71} +(2.44642 - 2.16734i) q^{72} +(-5.78742 - 8.38452i) q^{73} +(-8.26881 - 7.32552i) q^{74} +(5.31079 + 7.69400i) q^{75} +(-0.343596 - 0.905988i) q^{76} +(-5.62548 - 14.8332i) q^{77} +(-8.60744 + 3.00826i) q^{78} +(0.932193 - 2.45799i) q^{79} -1.79230 q^{80} +(3.92478 + 10.3488i) q^{81} +(0.283765 - 2.33701i) q^{82} +(-0.543969 - 0.285497i) q^{83} +(-2.42920 - 3.51930i) q^{84} +(-0.532340 - 0.771228i) q^{85} +(-6.72904 - 3.53167i) q^{86} +(-0.779797 + 6.42220i) q^{87} +(-3.47635 - 9.16637i) q^{88} +18.0185 q^{89} +(-0.289279 + 0.762765i) q^{90} +(3.79696 + 17.3545i) q^{91} +(-1.25741 - 3.31551i) q^{92} +(-5.57595 - 14.7026i) q^{93} +(-0.162621 - 0.235597i) q^{94} +(1.02296 + 0.906264i) q^{95} +(-2.73667 - 3.96474i) q^{96} +(-6.01270 + 5.32678i) q^{97} +(19.1678 - 10.0600i) q^{98} -3.45619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 10 q^{2} - 9 q^{3} - 20 q^{4} - 7 q^{5} - q^{6} - 5 q^{7} + 2 q^{8} - 14 q^{9} + q^{10} - q^{11} + 11 q^{12} - 65 q^{13} + 9 q^{14} - 41 q^{15} + 3 q^{17} - 13 q^{18} - 6 q^{19} + 29 q^{20} + 19 q^{21} - 22 q^{22} - 82 q^{23} - 31 q^{24} + 2 q^{25} + 26 q^{26} + 21 q^{27} + 43 q^{28} + 13 q^{29} - 81 q^{30} - 33 q^{31} - 93 q^{32} + 35 q^{33} - 24 q^{34} + 27 q^{35} + 54 q^{36} + 25 q^{37} - 56 q^{38} - 13 q^{39} - 52 q^{40} + 29 q^{41} - 63 q^{42} + 21 q^{43} + 45 q^{44} + 33 q^{46} - 69 q^{47} + 54 q^{48} - 54 q^{49} + 80 q^{50} - 16 q^{51} + 13 q^{52} - 45 q^{53} + 29 q^{54} - 83 q^{55} + 91 q^{56} - 11 q^{57} + 25 q^{58} - 57 q^{59} + 51 q^{60} + 39 q^{61} + 4 q^{62} + 26 q^{63} + 86 q^{64} + 65 q^{65} - 138 q^{66} - 101 q^{67} + 36 q^{68} + 32 q^{69} - 90 q^{70} + 20 q^{71} + 13 q^{72} + 61 q^{73} - 4 q^{74} - 67 q^{75} - 107 q^{76} + 67 q^{77} + 13 q^{78} + 57 q^{79} + 160 q^{80} + 78 q^{81} - 31 q^{82} - 59 q^{83} - 36 q^{84} - 61 q^{85} + 41 q^{86} - 9 q^{87} - 45 q^{88} - 66 q^{89} + 191 q^{90} + 39 q^{91} + 79 q^{92} - 80 q^{93} - 21 q^{94} - 28 q^{95} + 70 q^{96} + 7 q^{97} + 158 q^{98} + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.711778 1.03119i 0.503303 0.729160i −0.486172 0.873863i \(-0.661607\pi\)
0.989475 + 0.144703i \(0.0462226\pi\)
\(3\) −1.78709 + 0.937940i −1.03178 + 0.541520i −0.893589 0.448886i \(-0.851821\pi\)
−0.138190 + 0.990406i \(0.544129\pi\)
\(4\) 0.152488 + 0.402078i 0.0762440 + 0.201039i
\(5\) −0.453990 0.402200i −0.203031 0.179869i 0.555480 0.831530i \(-0.312534\pi\)
−0.758511 + 0.651660i \(0.774073\pi\)
\(6\) −0.304822 + 2.51044i −0.124443 + 1.02488i
\(7\) 4.78395 + 1.17914i 1.80816 + 0.445672i 0.991352 0.131231i \(-0.0418930\pi\)
0.816812 + 0.576903i \(0.195739\pi\)
\(8\) 2.95631 + 0.728665i 1.04521 + 0.257622i
\(9\) 0.609782 0.883421i 0.203261 0.294474i
\(10\) −0.737885 + 0.181872i −0.233340 + 0.0575130i
\(11\) −1.82902 2.64980i −0.551471 0.798944i 0.443795 0.896128i \(-0.353632\pi\)
−0.995266 + 0.0971842i \(0.969016\pi\)
\(12\) −0.649635 0.575526i −0.187533 0.166140i
\(13\) 1.59116 + 3.23546i 0.441307 + 0.897356i
\(14\) 4.62103 4.09387i 1.23502 1.09413i
\(15\) 1.18856 + 0.292954i 0.306886 + 0.0756405i
\(16\) 2.21188 1.95955i 0.552969 0.489888i
\(17\) 1.50016 + 0.369755i 0.363841 + 0.0896788i 0.416998 0.908907i \(-0.363082\pi\)
−0.0531569 + 0.998586i \(0.516928\pi\)
\(18\) −0.476945 1.25760i −0.112417 0.296419i
\(19\) −2.25327 −0.516935 −0.258467 0.966020i \(-0.583217\pi\)
−0.258467 + 0.966020i \(0.583217\pi\)
\(20\) 0.0924877 0.243870i 0.0206809 0.0545310i
\(21\) −9.65534 + 2.37983i −2.10697 + 0.519321i
\(22\) −4.03430 −0.860116
\(23\) −8.24595 −1.71940 −0.859700 0.510799i \(-0.829350\pi\)
−0.859700 + 0.510799i \(0.829350\pi\)
\(24\) −5.96665 + 1.47065i −1.21794 + 0.300195i
\(25\) −0.558341 4.59835i −0.111668 0.919671i
\(26\) 4.46892 + 0.662149i 0.876428 + 0.129858i
\(27\) 0.468687 3.85998i 0.0901989 0.742854i
\(28\) 0.255390 + 2.10332i 0.0482641 + 0.397491i
\(29\) 1.82087 2.63799i 0.338127 0.489862i −0.616628 0.787255i \(-0.711502\pi\)
0.954755 + 0.297393i \(0.0961170\pi\)
\(30\) 1.14808 1.01711i 0.209611 0.185699i
\(31\) −0.939103 + 7.73421i −0.168668 + 1.38910i 0.624939 + 0.780674i \(0.285124\pi\)
−0.793607 + 0.608431i \(0.791799\pi\)
\(32\) 0.287715 + 2.36955i 0.0508613 + 0.418881i
\(33\) 5.75399 + 3.01993i 1.00164 + 0.525702i
\(34\) 1.44906 1.28376i 0.248513 0.220163i
\(35\) −1.69762 2.45942i −0.286950 0.415719i
\(36\) 0.448188 + 0.110468i 0.0746981 + 0.0184114i
\(37\) 1.06272 8.75226i 0.174709 1.43886i −0.596670 0.802487i \(-0.703510\pi\)
0.771380 0.636375i \(-0.219567\pi\)
\(38\) −1.60383 + 2.32354i −0.260175 + 0.376928i
\(39\) −5.87822 4.28967i −0.941268 0.686897i
\(40\) −1.04907 1.51984i −0.165872 0.240307i
\(41\) 1.66364 0.873146i 0.259817 0.136363i −0.329786 0.944056i \(-0.606977\pi\)
0.589603 + 0.807693i \(0.299284\pi\)
\(42\) −4.41841 + 11.6504i −0.681775 + 1.79769i
\(43\) −0.731069 6.02089i −0.111487 0.918178i −0.935919 0.352216i \(-0.885428\pi\)
0.824432 0.565961i \(-0.191495\pi\)
\(44\) 0.786520 1.13947i 0.118572 0.171782i
\(45\) −0.632147 + 0.155810i −0.0942350 + 0.0232268i
\(46\) −5.86929 + 8.50313i −0.865379 + 1.25372i
\(47\) 0.0810172 0.213625i 0.0118176 0.0311604i −0.928978 0.370136i \(-0.879311\pi\)
0.940795 + 0.338975i \(0.110080\pi\)
\(48\) −2.11489 + 5.57651i −0.305258 + 0.804900i
\(49\) 15.2976 + 8.02882i 2.18538 + 1.14697i
\(50\) −5.13919 2.69725i −0.726791 0.381449i
\(51\) −3.02773 + 0.746268i −0.423967 + 0.104498i
\(52\) −1.05828 + 1.13314i −0.146756 + 0.157138i
\(53\) −6.05988 1.49363i −0.832389 0.205165i −0.199980 0.979800i \(-0.564088\pi\)
−0.632409 + 0.774635i \(0.717934\pi\)
\(54\) −3.64677 3.23076i −0.496263 0.439650i
\(55\) −0.235391 + 1.93862i −0.0317401 + 0.261403i
\(56\) 13.2837 + 6.97180i 1.77510 + 0.931646i
\(57\) 4.02680 2.11343i 0.533363 0.279930i
\(58\) −1.42421 3.75532i −0.187008 0.493098i
\(59\) −4.59429 4.07018i −0.598125 0.529893i 0.308831 0.951117i \(-0.400062\pi\)
−0.906957 + 0.421224i \(0.861601\pi\)
\(60\) 0.0634511 + 0.522567i 0.00819150 + 0.0674631i
\(61\) −2.22262 + 0.547828i −0.284578 + 0.0701422i −0.379021 0.925388i \(-0.623739\pi\)
0.0944430 + 0.995530i \(0.469893\pi\)
\(62\) 7.30699 + 6.47343i 0.927989 + 0.822127i
\(63\) 3.95884 3.50723i 0.498767 0.441869i
\(64\) 7.88135 + 4.13645i 0.985169 + 0.517056i
\(65\) 0.578935 2.10883i 0.0718080 0.261568i
\(66\) 7.20968 3.78393i 0.887450 0.465770i
\(67\) −1.39820 + 3.68676i −0.170818 + 0.450409i −0.992899 0.118961i \(-0.962044\pi\)
0.822081 + 0.569370i \(0.192813\pi\)
\(68\) 0.0800853 + 0.659562i 0.00971177 + 0.0799836i
\(69\) 14.7363 7.73420i 1.77404 0.931089i
\(70\) −3.74446 −0.447548
\(71\) −3.75267 + 1.96956i −0.445360 + 0.233743i −0.672468 0.740127i \(-0.734766\pi\)
0.227107 + 0.973870i \(0.427073\pi\)
\(72\) 2.44642 2.16734i 0.288314 0.255424i
\(73\) −5.78742 8.38452i −0.677366 0.981334i −0.999401 0.0346065i \(-0.988982\pi\)
0.322035 0.946728i \(-0.395633\pi\)
\(74\) −8.26881 7.32552i −0.961229 0.851575i
\(75\) 5.31079 + 7.69400i 0.613237 + 0.888427i
\(76\) −0.343596 0.905988i −0.0394131 0.103924i
\(77\) −5.62548 14.8332i −0.641083 1.69040i
\(78\) −8.60744 + 3.00826i −0.974601 + 0.340618i
\(79\) 0.932193 2.45799i 0.104880 0.276546i −0.872296 0.488979i \(-0.837370\pi\)
0.977176 + 0.212433i \(0.0681388\pi\)
\(80\) −1.79230 −0.200386
\(81\) 3.92478 + 10.3488i 0.436087 + 1.14987i
\(82\) 0.283765 2.33701i 0.0313366 0.258080i
\(83\) −0.543969 0.285497i −0.0597084 0.0313374i 0.434605 0.900621i \(-0.356888\pi\)
−0.494313 + 0.869284i \(0.664580\pi\)
\(84\) −2.42920 3.51930i −0.265047 0.383987i
\(85\) −0.532340 0.771228i −0.0577404 0.0836514i
\(86\) −6.72904 3.53167i −0.725611 0.380830i
\(87\) −0.779797 + 6.42220i −0.0836030 + 0.688532i
\(88\) −3.47635 9.16637i −0.370580 0.977139i
\(89\) 18.0185 1.90995 0.954977 0.296679i \(-0.0958791\pi\)
0.954977 + 0.296679i \(0.0958791\pi\)
\(90\) −0.289279 + 0.762765i −0.0304927 + 0.0804025i
\(91\) 3.79696 + 17.3545i 0.398029 + 1.81925i
\(92\) −1.25741 3.31551i −0.131094 0.345666i
\(93\) −5.57595 14.7026i −0.578200 1.52459i
\(94\) −0.162621 0.235597i −0.0167731 0.0243000i
\(95\) 1.02296 + 0.906264i 0.104954 + 0.0929807i
\(96\) −2.73667 3.96474i −0.279310 0.404650i
\(97\) −6.01270 + 5.32678i −0.610497 + 0.540853i −0.910724 0.413015i \(-0.864476\pi\)
0.300228 + 0.953868i \(0.402937\pi\)
\(98\) 19.1678 10.0600i 1.93624 1.01622i
\(99\) −3.45619 −0.347361
\(100\) 1.76375 0.925690i 0.176375 0.0925690i
\(101\) 0.643619 + 5.30068i 0.0640425 + 0.527438i 0.989060 + 0.147513i \(0.0471269\pi\)
−0.925018 + 0.379924i \(0.875950\pi\)
\(102\) −1.38553 + 3.65333i −0.137188 + 0.361734i
\(103\) −10.0567 + 5.27817i −0.990917 + 0.520073i −0.880619 0.473825i \(-0.842873\pi\)
−0.110298 + 0.993899i \(0.535181\pi\)
\(104\) 2.34638 + 10.7245i 0.230082 + 1.05162i
\(105\) 5.34060 + 2.80296i 0.521189 + 0.273541i
\(106\) −5.85350 + 5.18575i −0.568542 + 0.503685i
\(107\) −5.70612 5.05518i −0.551632 0.488703i 0.340645 0.940192i \(-0.389355\pi\)
−0.892277 + 0.451489i \(0.850893\pi\)
\(108\) 1.62348 0.400153i 0.156220 0.0385047i
\(109\) −1.18538 9.76245i −0.113538 0.935073i −0.932486 0.361205i \(-0.882365\pi\)
0.818948 0.573868i \(-0.194558\pi\)
\(110\) 1.83153 + 1.62260i 0.174630 + 0.154709i
\(111\) 6.30991 + 16.6379i 0.598910 + 1.57920i
\(112\) 12.8921 6.76629i 1.21819 0.639355i
\(113\) 18.3548 + 9.63334i 1.72667 + 0.906228i 0.966561 + 0.256436i \(0.0825484\pi\)
0.760112 + 0.649792i \(0.225144\pi\)
\(114\) 0.686845 5.65668i 0.0643290 0.529797i
\(115\) 3.74358 + 3.31652i 0.349091 + 0.309267i
\(116\) 1.33834 + 0.329870i 0.124261 + 0.0306277i
\(117\) 3.82854 + 0.567265i 0.353948 + 0.0524436i
\(118\) −7.46724 + 1.84051i −0.687415 + 0.169433i
\(119\) 6.74068 + 3.53778i 0.617917 + 0.324308i
\(120\) 3.30030 + 1.73213i 0.301274 + 0.158121i
\(121\) 0.224552 0.592094i 0.0204138 0.0538267i
\(122\) −1.01710 + 2.68188i −0.0920841 + 0.242806i
\(123\) −2.15413 + 3.12079i −0.194231 + 0.281392i
\(124\) −3.25295 + 0.801781i −0.292124 + 0.0720021i
\(125\) −3.31870 + 4.80797i −0.296834 + 0.430038i
\(126\) −0.798797 6.57868i −0.0711625 0.586076i
\(127\) 0.207774 0.547856i 0.0184370 0.0486144i −0.925482 0.378792i \(-0.876339\pi\)
0.943919 + 0.330178i \(0.107109\pi\)
\(128\) 5.64815 2.96438i 0.499231 0.262017i
\(129\) 6.95372 + 10.0742i 0.612241 + 0.886984i
\(130\) −1.76253 2.09801i −0.154584 0.184008i
\(131\) −0.476298 + 0.690037i −0.0416144 + 0.0602888i −0.843239 0.537539i \(-0.819354\pi\)
0.801624 + 0.597828i \(0.203969\pi\)
\(132\) −0.336831 + 2.77405i −0.0293174 + 0.241450i
\(133\) −10.7795 2.65691i −0.934703 0.230384i
\(134\) 2.80653 + 4.06597i 0.242448 + 0.351246i
\(135\) −1.76527 + 1.56389i −0.151930 + 0.134598i
\(136\) 4.16550 + 2.18622i 0.357189 + 0.187467i
\(137\) −2.38027 19.6033i −0.203360 1.67482i −0.634797 0.772679i \(-0.718916\pi\)
0.431437 0.902143i \(-0.358007\pi\)
\(138\) 2.51355 20.7009i 0.213967 1.76218i
\(139\) −10.1891 + 9.02671i −0.864224 + 0.765636i −0.973575 0.228367i \(-0.926661\pi\)
0.109351 + 0.994003i \(0.465123\pi\)
\(140\) 0.730013 1.05761i 0.0616974 0.0893841i
\(141\) 0.0555818 + 0.457757i 0.00468083 + 0.0385501i
\(142\) −0.640088 + 5.27160i −0.0537150 + 0.442383i
\(143\) 5.66306 10.1340i 0.473569 0.847446i
\(144\) −0.382348 3.14892i −0.0318623 0.262410i
\(145\) −1.88766 + 0.465266i −0.156761 + 0.0386382i
\(146\) −12.7654 −1.05647
\(147\) −34.8689 −2.87594
\(148\) 3.68114 0.907319i 0.302588 0.0745811i
\(149\) −7.09531 + 18.7088i −0.581270 + 1.53268i 0.245066 + 0.969506i \(0.421190\pi\)
−0.826336 + 0.563177i \(0.809579\pi\)
\(150\) 11.7141 0.956450
\(151\) 3.08714 + 8.14011i 0.251228 + 0.662433i 1.00000 0.000394387i \(-0.000125537\pi\)
−0.748772 + 0.662827i \(0.769356\pi\)
\(152\) −6.66136 1.64188i −0.540307 0.133174i
\(153\) 1.24142 1.09980i 0.100363 0.0889135i
\(154\) −19.2999 4.75700i −1.55523 0.383330i
\(155\) 3.53704 3.13355i 0.284102 0.251693i
\(156\) 0.828423 3.01762i 0.0663269 0.241603i
\(157\) 7.93276 + 7.02781i 0.633103 + 0.560880i 0.917455 0.397840i \(-0.130240\pi\)
−0.284352 + 0.958720i \(0.591778\pi\)
\(158\) −1.87114 2.71081i −0.148860 0.215661i
\(159\) 12.2305 3.01455i 0.969943 0.239069i
\(160\) 0.822412 1.19147i 0.0650174 0.0941940i
\(161\) −39.4482 9.72312i −3.10896 0.766289i
\(162\) 13.4651 + 3.31886i 1.05792 + 0.260754i
\(163\) −1.48223 + 12.2073i −0.116097 + 0.956146i 0.811961 + 0.583711i \(0.198400\pi\)
−0.928058 + 0.372435i \(0.878523\pi\)
\(164\) 0.604758 + 0.535769i 0.0472236 + 0.0418365i
\(165\) −1.39764 3.68527i −0.108806 0.286898i
\(166\) −0.681587 + 0.357724i −0.0529014 + 0.0277648i
\(167\) 2.66157 3.85595i 0.205959 0.298383i −0.706369 0.707844i \(-0.749668\pi\)
0.912327 + 0.409461i \(0.134283\pi\)
\(168\) −30.2783 −2.33602
\(169\) −7.93644 + 10.2963i −0.610496 + 0.792020i
\(170\) −1.17419 −0.0900562
\(171\) −1.37400 + 1.99058i −0.105072 + 0.152224i
\(172\) 2.30939 1.21206i 0.176089 0.0924187i
\(173\) 0.356782 + 0.940758i 0.0271257 + 0.0715245i 0.947895 0.318583i \(-0.103207\pi\)
−0.920769 + 0.390108i \(0.872438\pi\)
\(174\) 6.06746 + 5.37530i 0.459973 + 0.407500i
\(175\) 2.75102 22.6567i 0.207957 1.71268i
\(176\) −9.23799 2.27696i −0.696340 0.171632i
\(177\) 12.0280 + 2.96464i 0.904080 + 0.222836i
\(178\) 12.8252 18.5804i 0.961286 1.39266i
\(179\) 6.99346 1.72373i 0.522716 0.128838i 0.0308754 0.999523i \(-0.490170\pi\)
0.491840 + 0.870685i \(0.336324\pi\)
\(180\) −0.159043 0.230413i −0.0118543 0.0171740i
\(181\) 1.86860 + 1.65543i 0.138892 + 0.123047i 0.729708 0.683759i \(-0.239656\pi\)
−0.590817 + 0.806806i \(0.701194\pi\)
\(182\) 20.5984 + 8.43717i 1.52685 + 0.625405i
\(183\) 3.45821 3.06371i 0.255638 0.226476i
\(184\) −24.3776 6.00854i −1.79714 0.442955i
\(185\) −4.00262 + 3.54601i −0.294279 + 0.260708i
\(186\) −19.1300 4.71512i −1.40268 0.345729i
\(187\) −1.76404 4.65140i −0.129000 0.340144i
\(188\) 0.0982479 0.00716546
\(189\) 6.79363 17.9133i 0.494164 1.30300i
\(190\) 1.66265 0.409806i 0.120621 0.0297305i
\(191\) 1.42233 0.102917 0.0514583 0.998675i \(-0.483613\pi\)
0.0514583 + 0.998675i \(0.483613\pi\)
\(192\) −17.9645 −1.29647
\(193\) −2.80225 + 0.690693i −0.201710 + 0.0497172i −0.338876 0.940831i \(-0.610047\pi\)
0.137166 + 0.990548i \(0.456201\pi\)
\(194\) 1.21321 + 9.99171i 0.0871037 + 0.717363i
\(195\) 0.943346 + 4.31169i 0.0675544 + 0.308766i
\(196\) −0.895504 + 7.37514i −0.0639646 + 0.526796i
\(197\) 1.19443 + 9.83702i 0.0850996 + 0.700858i 0.971350 + 0.237652i \(0.0763779\pi\)
−0.886251 + 0.463206i \(0.846699\pi\)
\(198\) −2.46004 + 3.56399i −0.174828 + 0.253282i
\(199\) 1.40139 1.24152i 0.0993420 0.0880094i −0.611990 0.790866i \(-0.709631\pi\)
0.711332 + 0.702856i \(0.248092\pi\)
\(200\) 1.70003 14.0010i 0.120210 0.990021i
\(201\) −0.959236 7.90002i −0.0676593 0.557224i
\(202\) 5.92412 + 3.10922i 0.416819 + 0.218764i
\(203\) 11.8215 10.4730i 0.829708 0.735057i
\(204\) −0.761749 1.10358i −0.0533331 0.0772664i
\(205\) −1.10646 0.272717i −0.0772783 0.0190474i
\(206\) −1.71536 + 14.1272i −0.119515 + 0.984292i
\(207\) −5.02823 + 7.28465i −0.349486 + 0.506318i
\(208\) 9.85950 + 4.03849i 0.683633 + 0.280019i
\(209\) 4.12128 + 5.97070i 0.285075 + 0.413002i
\(210\) 6.69170 3.51207i 0.461771 0.242356i
\(211\) 7.67190 20.2291i 0.528155 1.39263i −0.359941 0.932975i \(-0.617203\pi\)
0.888097 0.459656i \(-0.152027\pi\)
\(212\) −0.323505 2.66430i −0.0222184 0.182985i
\(213\) 4.85906 7.03956i 0.332937 0.482343i
\(214\) −9.27434 + 2.28592i −0.633981 + 0.156262i
\(215\) −2.08971 + 3.02746i −0.142517 + 0.206471i
\(216\) 4.19822 11.0698i 0.285653 0.753205i
\(217\) −13.6123 + 35.8928i −0.924065 + 2.43656i
\(218\) −10.9107 5.72635i −0.738963 0.387838i
\(219\) 18.2068 + 9.55569i 1.23030 + 0.645714i
\(220\) −0.815368 + 0.200970i −0.0549721 + 0.0135494i
\(221\) 1.19065 + 5.44203i 0.0800920 + 0.366071i
\(222\) 21.6480 + 5.33576i 1.45292 + 0.358113i
\(223\) −5.70573 5.05483i −0.382084 0.338497i 0.450118 0.892969i \(-0.351382\pi\)
−0.832202 + 0.554472i \(0.812920\pi\)
\(224\) −1.41761 + 11.6751i −0.0947179 + 0.780072i
\(225\) −4.40275 2.31074i −0.293517 0.154049i
\(226\) 22.9983 12.0705i 1.52983 0.802915i
\(227\) −3.95018 10.4158i −0.262183 0.691319i −0.999869 0.0161757i \(-0.994851\pi\)
0.737686 0.675144i \(-0.235918\pi\)
\(228\) 1.46380 + 1.29681i 0.0969425 + 0.0858836i
\(229\) 0.635772 + 5.23605i 0.0420130 + 0.346008i 0.998524 + 0.0543120i \(0.0172966\pi\)
−0.956511 + 0.291696i \(0.905780\pi\)
\(230\) 6.08456 1.49971i 0.401204 0.0988879i
\(231\) 23.9659 + 21.2319i 1.57684 + 1.39696i
\(232\) 7.30528 6.47191i 0.479615 0.424902i
\(233\) −0.784662 0.411822i −0.0514049 0.0269794i 0.438825 0.898573i \(-0.355395\pi\)
−0.490230 + 0.871593i \(0.663087\pi\)
\(234\) 3.31002 3.54418i 0.216383 0.231690i
\(235\) −0.122701 + 0.0643984i −0.00800413 + 0.00420089i
\(236\) 0.935956 2.46791i 0.0609255 0.160647i
\(237\) 0.639530 + 5.26700i 0.0415419 + 0.342129i
\(238\) 8.44599 4.43280i 0.547472 0.287335i
\(239\) 3.96777 0.256654 0.128327 0.991732i \(-0.459039\pi\)
0.128327 + 0.991732i \(0.459039\pi\)
\(240\) 3.20301 1.68107i 0.206754 0.108513i
\(241\) 3.65869 3.24132i 0.235677 0.208792i −0.537015 0.843573i \(-0.680448\pi\)
0.772692 + 0.634781i \(0.218910\pi\)
\(242\) −0.450730 0.652995i −0.0289740 0.0419761i
\(243\) −7.98912 7.07775i −0.512503 0.454038i
\(244\) −0.559193 0.810130i −0.0357986 0.0518633i
\(245\) −3.71579 9.79772i −0.237393 0.625954i
\(246\) 1.68486 + 4.44262i 0.107423 + 0.283251i
\(247\) −3.58530 7.29036i −0.228127 0.463874i
\(248\) −8.41193 + 22.1804i −0.534158 + 1.40846i
\(249\) 1.23990 0.0785757
\(250\) 2.59575 + 6.84442i 0.164169 + 0.432879i
\(251\) −2.53708 + 20.8948i −0.160139 + 1.31887i 0.661967 + 0.749533i \(0.269722\pi\)
−0.822107 + 0.569334i \(0.807201\pi\)
\(252\) 2.01385 + 1.05695i 0.126861 + 0.0665817i
\(253\) 15.0820 + 21.8501i 0.948200 + 1.37370i
\(254\) −0.417054 0.604207i −0.0261683 0.0379113i
\(255\) 1.67471 + 0.878954i 0.104874 + 0.0550423i
\(256\) −1.18237 + 9.73770i −0.0738982 + 0.608606i
\(257\) 1.92476 + 5.07518i 0.120063 + 0.316581i 0.981552 0.191196i \(-0.0612367\pi\)
−0.861489 + 0.507777i \(0.830467\pi\)
\(258\) 15.3379 0.954897
\(259\) 15.4041 40.6173i 0.957164 2.52384i
\(260\) 0.936195 0.0887948i 0.0580603 0.00550682i
\(261\) −1.22012 3.21719i −0.0755236 0.199139i
\(262\) 0.372540 + 0.982307i 0.0230156 + 0.0606871i
\(263\) 10.2576 + 14.8608i 0.632513 + 0.916353i 0.999906 0.0137124i \(-0.00436492\pi\)
−0.367393 + 0.930066i \(0.619750\pi\)
\(264\) 14.8101 + 13.1206i 0.911496 + 0.807515i
\(265\) 2.15039 + 3.11538i 0.132097 + 0.191376i
\(266\) −10.4124 + 9.22458i −0.638425 + 0.565595i
\(267\) −32.2007 + 16.9002i −1.97065 + 1.03428i
\(268\) −1.69557 −0.103574
\(269\) −0.438435 + 0.230108i −0.0267318 + 0.0140299i −0.478036 0.878340i \(-0.658651\pi\)
0.451304 + 0.892370i \(0.350959\pi\)
\(270\) 0.356187 + 2.93346i 0.0216769 + 0.178525i
\(271\) 1.21815 3.21200i 0.0739974 0.195115i −0.892914 0.450227i \(-0.851343\pi\)
0.966912 + 0.255112i \(0.0821123\pi\)
\(272\) 4.04271 2.12178i 0.245125 0.128652i
\(273\) −23.0630 27.4528i −1.39584 1.66152i
\(274\) −21.9089 11.4987i −1.32357 0.694661i
\(275\) −11.1635 + 9.88999i −0.673184 + 0.596389i
\(276\) 5.35686 + 4.74576i 0.322445 + 0.285661i
\(277\) 23.3988 5.76728i 1.40590 0.346522i 0.537865 0.843031i \(-0.319231\pi\)
0.868032 + 0.496509i \(0.165385\pi\)
\(278\) 2.05590 + 16.9319i 0.123305 + 1.01551i
\(279\) 6.25992 + 5.54580i 0.374771 + 0.332019i
\(280\) −3.22659 8.50782i −0.192826 0.508439i
\(281\) 15.9500 8.37120i 0.951497 0.499384i 0.0838026 0.996482i \(-0.473293\pi\)
0.867694 + 0.497098i \(0.165601\pi\)
\(282\) 0.511596 + 0.268506i 0.0304651 + 0.0159893i
\(283\) 3.53153 29.0848i 0.209928 1.72891i −0.383083 0.923714i \(-0.625138\pi\)
0.593010 0.805195i \(-0.297939\pi\)
\(284\) −1.36415 1.20853i −0.0809475 0.0717132i
\(285\) −2.67815 0.660104i −0.158640 0.0391012i
\(286\) −6.41920 13.0528i −0.379575 0.771830i
\(287\) 8.98834 2.21543i 0.530565 0.130773i
\(288\) 2.26875 + 1.19073i 0.133687 + 0.0701646i
\(289\) −12.9390 6.79091i −0.761118 0.399466i
\(290\) −0.863817 + 2.27770i −0.0507251 + 0.133751i
\(291\) 5.74906 15.1590i 0.337016 0.888637i
\(292\) 2.48872 3.60553i 0.145641 0.210998i
\(293\) −21.0768 + 5.19497i −1.23132 + 0.303493i −0.800714 0.599047i \(-0.795546\pi\)
−0.430606 + 0.902540i \(0.641700\pi\)
\(294\) −24.8189 + 35.9564i −1.44747 + 2.09702i
\(295\) 0.448733 + 3.69565i 0.0261262 + 0.215169i
\(296\) 9.51919 25.1000i 0.553291 1.45891i
\(297\) −11.0854 + 5.81808i −0.643241 + 0.337599i
\(298\) 14.2420 + 20.6331i 0.825017 + 1.19524i
\(299\) −13.1206 26.6795i −0.758784 1.54291i
\(300\) −2.28376 + 3.30859i −0.131853 + 0.191022i
\(301\) 3.60207 29.6657i 0.207620 1.70990i
\(302\) 10.5913 + 2.61053i 0.609464 + 0.150219i
\(303\) −6.12193 8.86914i −0.351696 0.509519i
\(304\) −4.98395 + 4.41539i −0.285849 + 0.253240i
\(305\) 1.22939 + 0.645232i 0.0703945 + 0.0369459i
\(306\) −0.250487 2.06295i −0.0143194 0.117931i
\(307\) −1.98592 + 16.3556i −0.113343 + 0.933461i 0.819476 + 0.573114i \(0.194265\pi\)
−0.932818 + 0.360347i \(0.882658\pi\)
\(308\) 5.10627 4.52376i 0.290957 0.257765i
\(309\) 13.0217 18.8652i 0.740778 1.07320i
\(310\) −0.713688 5.87775i −0.0405348 0.333834i
\(311\) −0.736957 + 6.06938i −0.0417890 + 0.344163i 0.956786 + 0.290793i \(0.0939193\pi\)
−0.998575 + 0.0533697i \(0.983004\pi\)
\(312\) −14.2521 16.9649i −0.806866 0.960446i
\(313\) −0.325546 2.68111i −0.0184010 0.151546i 0.980612 0.195958i \(-0.0627816\pi\)
−0.999013 + 0.0444123i \(0.985858\pi\)
\(314\) 12.8934 3.17793i 0.727614 0.179341i
\(315\) −3.20788 −0.180744
\(316\) 1.13045 0.0635928
\(317\) −22.7041 + 5.59605i −1.27519 + 0.314306i −0.818079 0.575105i \(-0.804961\pi\)
−0.457109 + 0.889411i \(0.651115\pi\)
\(318\) 5.59684 14.7577i 0.313855 0.827568i
\(319\) −10.3206 −0.577840
\(320\) −1.91437 5.04779i −0.107017 0.282180i
\(321\) 14.9388 + 3.68209i 0.833805 + 0.205514i
\(322\) −38.1048 + 33.7579i −2.12350 + 1.88125i
\(323\) −3.38025 0.833156i −0.188082 0.0463581i
\(324\) −3.56254 + 3.15613i −0.197919 + 0.175341i
\(325\) 13.9894 9.12319i 0.775992 0.506064i
\(326\) 11.5330 + 10.2173i 0.638752 + 0.565885i
\(327\) 11.2750 + 16.3346i 0.623507 + 0.903306i
\(328\) 5.55447 1.36905i 0.306694 0.0755934i
\(329\) 0.639476 0.926441i 0.0352554 0.0510763i
\(330\) −4.79502 1.18187i −0.263957 0.0650596i
\(331\) 26.0630 + 6.42396i 1.43255 + 0.353093i 0.877843 0.478949i \(-0.158982\pi\)
0.554712 + 0.832042i \(0.312828\pi\)
\(332\) 0.0318432 0.262253i 0.00174762 0.0143930i
\(333\) −7.08390 6.27579i −0.388196 0.343911i
\(334\) −2.08177 5.48917i −0.113909 0.300354i
\(335\) 2.11759 1.11140i 0.115696 0.0607220i
\(336\) −16.6930 + 24.1840i −0.910679 + 1.31935i
\(337\) 13.2123 0.719719 0.359859 0.933007i \(-0.382825\pi\)
0.359859 + 0.933007i \(0.382825\pi\)
\(338\) 4.96840 + 15.5126i 0.270245 + 0.843775i
\(339\) −41.8372 −2.27229
\(340\) 0.228918 0.331645i 0.0124148 0.0179860i
\(341\) 22.2117 11.6576i 1.20283 0.631295i
\(342\) 1.07468 + 2.83371i 0.0581122 + 0.153229i
\(343\) 37.9001 + 33.5765i 2.04641 + 1.81296i
\(344\) 2.22595 18.3323i 0.120015 0.988414i
\(345\) −9.80083 2.41569i −0.527659 0.130056i
\(346\) 1.22405 + 0.301701i 0.0658052 + 0.0162195i
\(347\) −4.89543 + 7.09226i −0.262801 + 0.380732i −0.932064 0.362292i \(-0.881994\pi\)
0.669264 + 0.743025i \(0.266610\pi\)
\(348\) −2.70113 + 0.665770i −0.144796 + 0.0356890i
\(349\) 9.69269 + 14.0423i 0.518838 + 0.751666i 0.991575 0.129538i \(-0.0413493\pi\)
−0.472737 + 0.881204i \(0.656734\pi\)
\(350\) −21.4052 18.9633i −1.14416 1.01363i
\(351\) 13.2346 4.62542i 0.706410 0.246887i
\(352\) 5.75258 5.09634i 0.306614 0.271636i
\(353\) −20.1579 4.96848i −1.07290 0.264445i −0.336976 0.941513i \(-0.609404\pi\)
−0.735920 + 0.677068i \(0.763250\pi\)
\(354\) 11.6184 10.2930i 0.617510 0.547066i
\(355\) 2.49583 + 0.615168i 0.132465 + 0.0326497i
\(356\) 2.74760 + 7.24483i 0.145622 + 0.383975i
\(357\) −15.3645 −0.813173
\(358\) 3.20030 8.43849i 0.169141 0.445988i
\(359\) −35.1334 + 8.65960i −1.85427 + 0.457036i −0.998208 0.0598386i \(-0.980941\pi\)
−0.856061 + 0.516875i \(0.827095\pi\)
\(360\) −1.98236 −0.104479
\(361\) −13.9228 −0.732779
\(362\) 3.03709 0.748576i 0.159626 0.0393443i
\(363\) 0.154053 + 1.26874i 0.00808571 + 0.0665918i
\(364\) −6.39886 + 4.17302i −0.335392 + 0.218726i
\(365\) −0.744826 + 6.13419i −0.0389860 + 0.321078i
\(366\) −0.697781 5.74675i −0.0364736 0.300387i
\(367\) 10.1164 14.6562i 0.528074 0.765048i −0.464645 0.885497i \(-0.653818\pi\)
0.992719 + 0.120449i \(0.0384335\pi\)
\(368\) −18.2390 + 16.1584i −0.950775 + 0.842313i
\(369\) 0.243102 2.00213i 0.0126554 0.104226i
\(370\) 0.807630 + 6.65143i 0.0419867 + 0.345792i
\(371\) −27.2290 14.2909i −1.41366 0.741946i
\(372\) 5.06131 4.48393i 0.262417 0.232481i
\(373\) −8.58672 12.4400i −0.444604 0.644119i 0.535049 0.844821i \(-0.320293\pi\)
−0.979652 + 0.200702i \(0.935678\pi\)
\(374\) −6.05208 1.49170i −0.312945 0.0771341i
\(375\) 1.42125 11.7050i 0.0733930 0.604446i
\(376\) 0.395173 0.572507i 0.0203795 0.0295248i
\(377\) 11.4324 + 1.69391i 0.588799 + 0.0872409i
\(378\) −13.6365 19.7558i −0.701384 1.01613i
\(379\) 10.5223 5.52253i 0.540494 0.283673i −0.172303 0.985044i \(-0.555121\pi\)
0.712796 + 0.701371i \(0.247428\pi\)
\(380\) −0.208399 + 0.549504i −0.0106907 + 0.0281890i
\(381\) 0.142543 + 1.17395i 0.00730272 + 0.0601433i
\(382\) 1.01239 1.46670i 0.0517982 0.0750427i
\(383\) −13.6082 + 3.35412i −0.695347 + 0.171388i −0.571120 0.820866i \(-0.693491\pi\)
−0.124226 + 0.992254i \(0.539645\pi\)
\(384\) −7.31338 + 10.5953i −0.373209 + 0.540687i
\(385\) −3.41199 + 8.99669i −0.173891 + 0.458514i
\(386\) −1.28235 + 3.38127i −0.0652697 + 0.172102i
\(387\) −5.76478 3.02559i −0.293040 0.153799i
\(388\) −3.05864 1.60530i −0.155279 0.0814968i
\(389\) 7.71708 1.90209i 0.391271 0.0964397i −0.0387718 0.999248i \(-0.512345\pi\)
0.430043 + 0.902808i \(0.358498\pi\)
\(390\) 5.11762 + 2.09620i 0.259141 + 0.106145i
\(391\) −12.3702 3.04898i −0.625588 0.154194i
\(392\) 39.3743 + 34.8826i 1.98870 + 1.76184i
\(393\) 0.203977 1.67990i 0.0102893 0.0847398i
\(394\) 10.9940 + 5.77009i 0.553869 + 0.290693i
\(395\) −1.41181 + 0.740976i −0.0710359 + 0.0372825i
\(396\) −0.527028 1.38966i −0.0264841 0.0698329i
\(397\) 20.3351 + 18.0153i 1.02059 + 0.904164i 0.995428 0.0955198i \(-0.0304513\pi\)
0.0251622 + 0.999683i \(0.491990\pi\)
\(398\) −0.282766 2.32879i −0.0141738 0.116732i
\(399\) 21.7560 5.36238i 1.08916 0.268455i
\(400\) −10.2457 9.07690i −0.512285 0.453845i
\(401\) −3.39309 + 3.00601i −0.169443 + 0.150113i −0.743583 0.668644i \(-0.766875\pi\)
0.574140 + 0.818757i \(0.305337\pi\)
\(402\) −8.82917 4.63391i −0.440359 0.231118i
\(403\) −26.5180 + 9.26790i −1.32096 + 0.461667i
\(404\) −2.03314 + 1.06707i −0.101153 + 0.0530890i
\(405\) 2.38048 6.27680i 0.118287 0.311897i
\(406\) −2.38529 19.6446i −0.118380 0.974947i
\(407\) −25.1354 + 13.1921i −1.24592 + 0.653908i
\(408\) −9.49468 −0.470057
\(409\) −14.6523 + 7.69010i −0.724508 + 0.380251i −0.786306 0.617838i \(-0.788009\pi\)
0.0617979 + 0.998089i \(0.480317\pi\)
\(410\) −1.06877 + 0.946851i −0.0527830 + 0.0467617i
\(411\) 22.6405 + 32.8004i 1.11677 + 1.61792i
\(412\) −3.65576 3.23872i −0.180106 0.159560i
\(413\) −17.1795 24.8889i −0.845350 1.22470i
\(414\) 3.93286 + 10.3701i 0.193290 + 0.509663i
\(415\) 0.132130 + 0.348397i 0.00648599 + 0.0171022i
\(416\) −7.20878 + 4.70121i −0.353440 + 0.230496i
\(417\) 9.74229 25.6883i 0.477082 1.25796i
\(418\) 9.09035 0.444624
\(419\) −6.24800 16.4746i −0.305235 0.804838i −0.996605 0.0823366i \(-0.973762\pi\)
0.691370 0.722501i \(-0.257008\pi\)
\(420\) −0.312631 + 2.57475i −0.0152549 + 0.125635i
\(421\) 24.6315 + 12.9276i 1.20046 + 0.630052i 0.941884 0.335938i \(-0.109053\pi\)
0.258580 + 0.965990i \(0.416746\pi\)
\(422\) −15.3994 22.3098i −0.749629 1.08603i
\(423\) −0.139318 0.201837i −0.00677387 0.00981364i
\(424\) −16.8265 8.83125i −0.817169 0.428884i
\(425\) 0.862666 7.10469i 0.0418455 0.344628i
\(426\) −3.80054 10.0212i −0.184137 0.485529i
\(427\) −11.2789 −0.545824
\(428\) 1.16246 3.06516i 0.0561897 0.148160i
\(429\) −0.615363 + 23.4220i −0.0297100 + 1.13082i
\(430\) 1.63448 + 4.30976i 0.0788215 + 0.207835i
\(431\) 0.317628 + 0.837517i 0.0152996 + 0.0403418i 0.942448 0.334351i \(-0.108517\pi\)
−0.927149 + 0.374693i \(0.877748\pi\)
\(432\) −6.52716 9.45623i −0.314038 0.454963i
\(433\) 4.99347 + 4.42383i 0.239971 + 0.212596i 0.774533 0.632534i \(-0.217985\pi\)
−0.534562 + 0.845129i \(0.679523\pi\)
\(434\) 27.3232 + 39.5846i 1.31156 + 1.90012i
\(435\) 2.93703 2.60198i 0.140820 0.124756i
\(436\) 3.74451 1.96527i 0.179329 0.0941193i
\(437\) 18.5803 0.888817
\(438\) 22.8129 11.9732i 1.09004 0.572100i
\(439\) 1.41918 + 11.6880i 0.0677335 + 0.557836i 0.986587 + 0.163237i \(0.0521934\pi\)
−0.918853 + 0.394599i \(0.870883\pi\)
\(440\) −2.10849 + 5.55963i −0.100518 + 0.265045i
\(441\) 16.4211 8.61844i 0.781955 0.410402i
\(442\) 6.45924 + 2.64573i 0.307235 + 0.125845i
\(443\) 16.3415 + 8.57669i 0.776409 + 0.407491i 0.805883 0.592075i \(-0.201691\pi\)
−0.0294740 + 0.999566i \(0.509383\pi\)
\(444\) −5.72753 + 5.07415i −0.271817 + 0.240808i
\(445\) −8.18021 7.24704i −0.387779 0.343542i
\(446\) −9.27370 + 2.28576i −0.439122 + 0.108234i
\(447\) −4.86773 40.0893i −0.230236 1.89616i
\(448\) 32.8266 + 29.0818i 1.55091 + 1.37399i
\(449\) 9.80065 + 25.8422i 0.462521 + 1.21957i 0.940075 + 0.340967i \(0.110754\pi\)
−0.477554 + 0.878602i \(0.658476\pi\)
\(450\) −5.51659 + 2.89533i −0.260055 + 0.136487i
\(451\) −5.35650 2.81131i −0.252228 0.132379i
\(452\) −1.07447 + 8.84902i −0.0505386 + 0.416223i
\(453\) −13.1519 11.6516i −0.617932 0.547440i
\(454\) −13.5523 3.34034i −0.636040 0.156770i
\(455\) 5.25620 9.40591i 0.246414 0.440956i
\(456\) 13.4445 3.31376i 0.629594 0.155181i
\(457\) −18.2340 9.56992i −0.852949 0.447662i −0.0192062 0.999816i \(-0.506114\pi\)
−0.833742 + 0.552154i \(0.813806\pi\)
\(458\) 5.85189 + 3.07131i 0.273441 + 0.143513i
\(459\) 2.13035 5.61728i 0.0994363 0.262192i
\(460\) −0.762649 + 2.01094i −0.0355587 + 0.0937606i
\(461\) −8.99781 + 13.0356i −0.419070 + 0.607127i −0.974487 0.224445i \(-0.927943\pi\)
0.555417 + 0.831572i \(0.312559\pi\)
\(462\) 38.9525 9.60093i 1.81224 0.446676i
\(463\) 5.14668 7.45625i 0.239186 0.346521i −0.684946 0.728594i \(-0.740174\pi\)
0.924132 + 0.382073i \(0.124790\pi\)
\(464\) −1.14173 9.40300i −0.0530035 0.436523i
\(465\) −3.38195 + 8.91748i −0.156834 + 0.413538i
\(466\) −0.983172 + 0.516008i −0.0455446 + 0.0239036i
\(467\) 9.89714 + 14.3385i 0.457985 + 0.663506i 0.982147 0.188112i \(-0.0602369\pi\)
−0.524163 + 0.851618i \(0.675622\pi\)
\(468\) 0.355721 + 1.62587i 0.0164432 + 0.0751558i
\(469\) −11.0361 + 15.9886i −0.509602 + 0.738285i
\(470\) −0.0209289 + 0.172365i −0.000965380 + 0.00795062i
\(471\) −20.7682 5.11891i −0.956950 0.235867i
\(472\) −10.6163 15.3804i −0.488657 0.707941i
\(473\) −14.6170 + 12.9495i −0.672091 + 0.595420i
\(474\) 5.88648 + 3.08946i 0.270375 + 0.141904i
\(475\) 1.25809 + 10.3613i 0.0577252 + 0.475410i
\(476\) −0.394590 + 3.24974i −0.0180860 + 0.148952i
\(477\) −5.01471 + 4.44264i −0.229608 + 0.203415i
\(478\) 2.82417 4.09152i 0.129175 0.187142i
\(479\) 4.28664 + 35.3037i 0.195862 + 1.61307i 0.676702 + 0.736257i \(0.263409\pi\)
−0.480840 + 0.876808i \(0.659668\pi\)
\(480\) −0.352202 + 2.90064i −0.0160757 + 0.132396i
\(481\) 30.0085 10.4878i 1.36827 0.478204i
\(482\) −0.738234 6.07990i −0.0336256 0.276932i
\(483\) 79.6174 19.6239i 3.62272 0.892920i
\(484\) 0.272309 0.0123777
\(485\) 4.87214 0.221232
\(486\) −12.9850 + 3.20051i −0.589010 + 0.145178i
\(487\) 6.82054 17.9843i 0.309068 0.814945i −0.687025 0.726634i \(-0.741084\pi\)
0.996093 0.0883115i \(-0.0281471\pi\)
\(488\) −6.96995 −0.315515
\(489\) −8.80079 23.2058i −0.397985 1.04940i
\(490\) −12.7481 3.14213i −0.575901 0.141947i
\(491\) −20.0189 + 17.7352i −0.903439 + 0.800377i −0.980474 0.196651i \(-0.936993\pi\)
0.0770342 + 0.997028i \(0.475455\pi\)
\(492\) −1.58328 0.390243i −0.0713797 0.0175935i
\(493\) 3.70700 3.28412i 0.166955 0.147909i
\(494\) −10.0697 1.49200i −0.453056 0.0671282i
\(495\) 1.56908 + 1.39008i 0.0705248 + 0.0624795i
\(496\) 13.0784 + 18.9473i 0.587238 + 0.850761i
\(497\) −20.2750 + 4.99734i −0.909458 + 0.224161i
\(498\) 0.882536 1.27857i 0.0395474 0.0572943i
\(499\) −22.8936 5.64275i −1.02486 0.252604i −0.309155 0.951012i \(-0.600046\pi\)
−0.715701 + 0.698407i \(0.753892\pi\)
\(500\) −2.43924 0.601219i −0.109086 0.0268873i
\(501\) −1.13983 + 9.38735i −0.0509239 + 0.419396i
\(502\) 19.7406 + 17.4887i 0.881067 + 0.780557i
\(503\) −10.4118 27.4536i −0.464238 1.22409i −0.938981 0.343970i \(-0.888228\pi\)
0.474743 0.880125i \(-0.342541\pi\)
\(504\) 14.2592 7.48379i 0.635154 0.333355i
\(505\) 1.83974 2.66532i 0.0818673 0.118605i
\(506\) 33.2666 1.47888
\(507\) 4.52591 25.8443i 0.201003 1.14778i
\(508\) 0.251964 0.0111791
\(509\) −9.63164 + 13.9538i −0.426915 + 0.618493i −0.976130 0.217188i \(-0.930312\pi\)
0.549215 + 0.835681i \(0.314927\pi\)
\(510\) 2.09839 1.10132i 0.0929182 0.0487672i
\(511\) −17.8002 46.9353i −0.787436 2.07630i
\(512\) 18.7490 + 16.6102i 0.828598 + 0.734074i
\(513\) −1.05608 + 8.69757i −0.0466269 + 0.384007i
\(514\) 6.60347 + 1.62761i 0.291266 + 0.0717907i
\(515\) 6.68853 + 1.64857i 0.294732 + 0.0726449i
\(516\) −2.99025 + 4.33213i −0.131639 + 0.190711i
\(517\) −0.714245 + 0.176046i −0.0314125 + 0.00774248i
\(518\) −30.9198 44.7950i −1.35854 1.96818i
\(519\) −1.51998 1.34658i −0.0667196 0.0591084i
\(520\) 3.24814 5.81252i 0.142441 0.254896i
\(521\) 31.4013 27.8191i 1.37571 1.21878i 0.426366 0.904551i \(-0.359794\pi\)
0.949348 0.314226i \(-0.101745\pi\)
\(522\) −4.18599 1.03175i −0.183216 0.0451586i
\(523\) −0.437333 + 0.387443i −0.0191232 + 0.0169417i −0.672630 0.739979i \(-0.734835\pi\)
0.653507 + 0.756921i \(0.273297\pi\)
\(524\) −0.350078 0.0862865i −0.0152932 0.00376944i
\(525\) 16.3343 + 43.0699i 0.712885 + 1.87972i
\(526\) 22.6254 0.986515
\(527\) −4.26856 + 11.2553i −0.185942 + 0.490287i
\(528\) 18.6448 4.59553i 0.811411 0.199995i
\(529\) 44.9957 1.95634
\(530\) 4.74314 0.206029
\(531\) −6.39720 + 1.57677i −0.277615 + 0.0684259i
\(532\) −0.575461 4.73935i −0.0249494 0.205477i
\(533\) 5.47215 + 3.99334i 0.237025 + 0.172971i
\(534\) −5.49243 + 45.2342i −0.237681 + 1.95748i
\(535\) 0.557328 + 4.59001i 0.0240954 + 0.198443i
\(536\) −6.81994 + 9.88039i −0.294577 + 0.426768i
\(537\) −10.8812 + 9.63992i −0.469559 + 0.415993i
\(538\) −0.0747832 + 0.615895i −0.00322413 + 0.0265531i
\(539\) −6.70499 55.2206i −0.288804 2.37852i
\(540\) −0.897987 0.471300i −0.0386432 0.0202815i
\(541\) −29.2388 + 25.9033i −1.25708 + 1.11367i −0.268447 + 0.963295i \(0.586510\pi\)
−0.988629 + 0.150377i \(0.951951\pi\)
\(542\) −2.44513 3.54238i −0.105027 0.152158i
\(543\) −4.89206 1.20578i −0.209938 0.0517452i
\(544\) −0.444535 + 3.66107i −0.0190593 + 0.156967i
\(545\) −3.38831 + 4.90882i −0.145139 + 0.210271i
\(546\) −44.7248 + 4.24199i −1.91404 + 0.181540i
\(547\) −1.28683 1.86429i −0.0550207 0.0797113i 0.794508 0.607254i \(-0.207729\pi\)
−0.849529 + 0.527543i \(0.823114\pi\)
\(548\) 7.51908 3.94632i 0.321199 0.168578i
\(549\) −0.871353 + 2.29757i −0.0371884 + 0.0980579i
\(550\) 2.25252 + 18.5511i 0.0960476 + 0.791023i
\(551\) −4.10291 + 5.94409i −0.174790 + 0.253227i
\(552\) 49.2007 12.1269i 2.09412 0.516155i
\(553\) 7.35788 10.6597i 0.312889 0.453298i
\(554\) 10.7076 28.2336i 0.454922 1.19953i
\(555\) 3.82712 10.0913i 0.162452 0.428351i
\(556\) −5.18315 2.72033i −0.219814 0.115368i
\(557\) −17.0695 8.95879i −0.723260 0.379596i 0.0625685 0.998041i \(-0.480071\pi\)
−0.785828 + 0.618445i \(0.787763\pi\)
\(558\) 10.1744 2.50777i 0.430718 0.106163i
\(559\) 18.3171 11.9455i 0.774732 0.505242i
\(560\) −8.57429 2.11337i −0.362330 0.0893063i
\(561\) 7.51524 + 6.65792i 0.317294 + 0.281098i
\(562\) 2.72057 22.4059i 0.114760 0.945135i
\(563\) 11.4985 + 6.03488i 0.484604 + 0.254340i 0.689287 0.724488i \(-0.257924\pi\)
−0.204683 + 0.978828i \(0.565616\pi\)
\(564\) −0.175578 + 0.0921506i −0.00739318 + 0.00388024i
\(565\) −4.45837 11.7557i −0.187565 0.494568i
\(566\) −27.4782 24.3436i −1.15499 1.02324i
\(567\) 6.57330 + 54.1360i 0.276053 + 2.27350i
\(568\) −12.5292 + 3.08818i −0.525714 + 0.129577i
\(569\) 19.9049 + 17.6342i 0.834459 + 0.739266i 0.967777 0.251807i \(-0.0810249\pi\)
−0.133319 + 0.991073i \(0.542563\pi\)
\(570\) −2.58694 + 2.29183i −0.108355 + 0.0959941i
\(571\) 13.9323 + 7.31225i 0.583050 + 0.306008i 0.730339 0.683085i \(-0.239362\pi\)
−0.147289 + 0.989094i \(0.547055\pi\)
\(572\) 4.93819 + 0.731680i 0.206476 + 0.0305931i
\(573\) −2.54185 + 1.33406i −0.106187 + 0.0557313i
\(574\) 4.11318 10.8456i 0.171681 0.452685i
\(575\) 4.60406 + 37.9178i 0.192002 + 1.58128i
\(576\) 8.46013 4.44022i 0.352506 0.185009i
\(577\) −35.2462 −1.46732 −0.733660 0.679516i \(-0.762190\pi\)
−0.733660 + 0.679516i \(0.762190\pi\)
\(578\) −16.2124 + 8.50893i −0.674348 + 0.353925i
\(579\) 4.36006 3.86268i 0.181198 0.160527i
\(580\) −0.474918 0.688037i −0.0197199 0.0285692i
\(581\) −2.26568 2.00722i −0.0939963 0.0832735i
\(582\) −11.5397 16.7182i −0.478338 0.692992i
\(583\) 7.12586 + 18.7893i 0.295123 + 0.778175i
\(584\) −10.9999 29.0044i −0.455179 1.20021i
\(585\) −1.50996 1.79737i −0.0624293 0.0743121i
\(586\) −9.64502 + 25.4318i −0.398432 + 1.05058i
\(587\) −15.9028 −0.656378 −0.328189 0.944612i \(-0.606438\pi\)
−0.328189 + 0.944612i \(0.606438\pi\)
\(588\) −5.31708 14.0200i −0.219273 0.578175i
\(589\) 2.11605 17.4272i 0.0871903 0.718076i
\(590\) 4.13031 + 2.16775i 0.170042 + 0.0892449i
\(591\) −11.3611 16.4594i −0.467333 0.677048i
\(592\) −14.7999 21.4414i −0.608272 0.881234i
\(593\) 4.42204 + 2.32087i 0.181592 + 0.0953066i 0.553069 0.833135i \(-0.313456\pi\)
−0.371478 + 0.928442i \(0.621149\pi\)
\(594\) −1.89082 + 15.5723i −0.0775815 + 0.638941i
\(595\) −1.63731 4.31722i −0.0671230 0.176989i
\(596\) −8.60433 −0.352447
\(597\) −1.33994 + 3.53314i −0.0548403 + 0.144602i
\(598\) −36.8505 5.46005i −1.50693 0.223278i
\(599\) 12.1314 + 31.9878i 0.495674 + 1.30699i 0.916569 + 0.399876i \(0.130947\pi\)
−0.420895 + 0.907109i \(0.638284\pi\)
\(600\) 10.0940 + 26.6157i 0.412085 + 1.08658i
\(601\) −14.4800 20.9779i −0.590653 0.855708i 0.407698 0.913117i \(-0.366332\pi\)
−0.998351 + 0.0574087i \(0.981716\pi\)
\(602\) −28.0271 24.8298i −1.14230 1.01199i
\(603\) 2.40436 + 3.48332i 0.0979132 + 0.141852i
\(604\) −2.80221 + 2.48254i −0.114020 + 0.101013i
\(605\) −0.340085 + 0.178490i −0.0138264 + 0.00725666i
\(606\) −13.5032 −0.548531
\(607\) 39.5596 20.7625i 1.60567 0.842723i 0.606822 0.794838i \(-0.292444\pi\)
0.998853 0.0478848i \(-0.0152480\pi\)
\(608\) −0.648299 5.33922i −0.0262920 0.216534i
\(609\) −11.3032 + 29.8040i −0.458028 + 1.20772i
\(610\) 1.54041 0.808467i 0.0623692 0.0327339i
\(611\) 0.820086 0.0777824i 0.0331771 0.00314674i
\(612\) 0.631506 + 0.331440i 0.0255271 + 0.0133977i
\(613\) −24.2776 + 21.5081i −0.980565 + 0.868705i −0.991351 0.131237i \(-0.958105\pi\)
0.0107861 + 0.999942i \(0.496567\pi\)
\(614\) 15.4521 + 13.6894i 0.623597 + 0.552459i
\(615\) 2.23313 0.550418i 0.0900487 0.0221950i
\(616\) −5.82226 47.9506i −0.234585 1.93198i
\(617\) −36.0473 31.9351i −1.45121 1.28566i −0.888397 0.459076i \(-0.848181\pi\)
−0.562813 0.826584i \(-0.690281\pi\)
\(618\) −10.1850 26.8556i −0.409701 1.08029i
\(619\) −38.9793 + 20.4579i −1.56671 + 0.822273i −0.999999 0.00164299i \(-0.999477\pi\)
−0.566712 + 0.823916i \(0.691785\pi\)
\(620\) 1.79929 + 0.944338i 0.0722611 + 0.0379255i
\(621\) −3.86477 + 31.8293i −0.155088 + 1.27726i
\(622\) 5.73413 + 5.08000i 0.229918 + 0.203689i
\(623\) 86.1995 + 21.2463i 3.45351 + 0.851214i
\(624\) −21.4077 + 2.03045i −0.856995 + 0.0812830i
\(625\) −19.0472 + 4.69471i −0.761888 + 0.187789i
\(626\) −2.99645 1.57266i −0.119762 0.0628561i
\(627\) −12.9653 6.80470i −0.517783 0.271753i
\(628\) −1.61607 + 4.26124i −0.0644884 + 0.170042i
\(629\) 4.83043 12.7368i 0.192602 0.507849i
\(630\) −2.28330 + 3.30793i −0.0909689 + 0.131791i
\(631\) 16.7250 4.12233i 0.665810 0.164108i 0.108096 0.994140i \(-0.465525\pi\)
0.557714 + 0.830033i \(0.311678\pi\)
\(632\) 4.54691 6.58733i 0.180866 0.262030i
\(633\) 5.26330 + 43.3472i 0.209197 + 1.72289i
\(634\) −10.3897 + 27.3953i −0.412627 + 1.08801i
\(635\) −0.314675 + 0.165154i −0.0124875 + 0.00655395i
\(636\) 3.07709 + 4.45793i 0.122015 + 0.176769i
\(637\) −1.63601 + 62.2701i −0.0648212 + 2.46723i
\(638\) −7.34594 + 10.6424i −0.290829 + 0.421338i
\(639\) −0.548365 + 4.51619i −0.0216930 + 0.178658i
\(640\) −3.75648 0.925889i −0.148488 0.0365990i
\(641\) −5.44136 7.88317i −0.214921 0.311367i 0.700664 0.713491i \(-0.252887\pi\)
−0.915585 + 0.402125i \(0.868272\pi\)
\(642\) 14.4301 12.7839i 0.569510 0.504541i
\(643\) 10.6127 + 5.56997i 0.418523 + 0.219658i 0.660820 0.750544i \(-0.270209\pi\)
−0.242297 + 0.970202i \(0.577901\pi\)
\(644\) −2.10593 17.3439i −0.0829854 0.683446i
\(645\) 0.894926 7.37038i 0.0352377 0.290208i
\(646\) −3.26513 + 2.89265i −0.128465 + 0.113810i
\(647\) 15.2476 22.0899i 0.599444 0.868445i −0.399387 0.916782i \(-0.630777\pi\)
0.998831 + 0.0483378i \(0.0153924\pi\)
\(648\) 4.06207 + 33.4541i 0.159573 + 1.31420i
\(649\) −2.38210 + 19.6184i −0.0935057 + 0.770089i
\(650\) 0.549613 20.9194i 0.0215576 0.820526i
\(651\) −9.33872 76.9113i −0.366013 3.01439i
\(652\) −5.13429 + 1.26549i −0.201074 + 0.0495603i
\(653\) 18.5406 0.725548 0.362774 0.931877i \(-0.381830\pi\)
0.362774 + 0.931877i \(0.381830\pi\)
\(654\) 24.8693 0.972468
\(655\) 0.493768 0.121703i 0.0192931 0.00475532i
\(656\) 1.96879 5.19128i 0.0768685 0.202686i
\(657\) −10.9361 −0.426659
\(658\) −0.500170 1.31884i −0.0194987 0.0514137i
\(659\) 22.8272 + 5.62641i 0.889223 + 0.219174i 0.657362 0.753575i \(-0.271672\pi\)
0.231861 + 0.972749i \(0.425518\pi\)
\(660\) 1.26864 1.12392i 0.0493818 0.0437485i
\(661\) 21.4451 + 5.28575i 0.834118 + 0.205592i 0.633172 0.774011i \(-0.281752\pi\)
0.200946 + 0.979602i \(0.435599\pi\)
\(662\) 25.1754 22.3035i 0.978471 0.866849i
\(663\) −7.23211 8.60867i −0.280872 0.334333i
\(664\) −1.40011 1.24039i −0.0543348 0.0481365i
\(665\) 3.82518 + 5.54174i 0.148334 + 0.214899i
\(666\) −11.5137 + 2.83787i −0.446147 + 0.109965i
\(667\) −15.0148 + 21.7527i −0.581376 + 0.842269i
\(668\) 1.95625 + 0.482172i 0.0756896 + 0.0186558i
\(669\) 14.9378 + 3.68184i 0.577529 + 0.142348i
\(670\) 0.361194 2.97470i 0.0139541 0.114923i
\(671\) 5.51687 + 4.88752i 0.212976 + 0.188680i
\(672\) −8.41710 22.1941i −0.324697 0.856154i
\(673\) −3.24327 + 1.70220i −0.125019 + 0.0656150i −0.526073 0.850439i \(-0.676336\pi\)
0.401054 + 0.916054i \(0.368644\pi\)
\(674\) 9.40421 13.6243i 0.362237 0.524790i
\(675\) −18.0113 −0.693254
\(676\) −5.35011 1.62101i −0.205773 0.0623466i
\(677\) −38.9883 −1.49844 −0.749221 0.662321i \(-0.769572\pi\)
−0.749221 + 0.662321i \(0.769572\pi\)
\(678\) −29.7788 + 43.1421i −1.14365 + 1.65686i
\(679\) −35.0455 + 18.3933i −1.34492 + 0.705869i
\(680\) −1.01180 2.66789i −0.0388006 0.102309i
\(681\) 16.8287 + 14.9089i 0.644878 + 0.571312i
\(682\) 3.78862 31.2021i 0.145074 1.19479i
\(683\) 36.5257 + 9.00278i 1.39762 + 0.344482i 0.864957 0.501847i \(-0.167346\pi\)
0.532661 + 0.846329i \(0.321192\pi\)
\(684\) −1.00989 0.248915i −0.0386140 0.00951750i
\(685\) −6.80383 + 9.85705i −0.259961 + 0.376618i
\(686\) 61.6002 15.1831i 2.35191 0.579693i
\(687\) −6.04729 8.76101i −0.230718 0.334253i
\(688\) −13.4153 11.8849i −0.511453 0.453108i
\(689\) −4.80965 21.9831i −0.183233 0.837490i
\(690\) −9.46705 + 8.38707i −0.360404 + 0.319290i
\(691\) −10.4696 2.58052i −0.398281 0.0981675i 0.0350874 0.999384i \(-0.488829\pi\)
−0.433369 + 0.901217i \(0.642675\pi\)
\(692\) −0.323853 + 0.286908i −0.0123110 + 0.0109066i
\(693\) −16.5343 4.07533i −0.628085 0.154809i
\(694\) 3.82899 + 10.0962i 0.145347 + 0.383248i
\(695\) 8.25628 0.313178
\(696\) −6.98496 + 18.4178i −0.264764 + 0.698126i
\(697\) 2.81857 0.694715i 0.106761 0.0263142i
\(698\) 21.3793 0.809218
\(699\) 1.78853 0.0676484
\(700\) 9.52924 2.34875i 0.360171 0.0887743i
\(701\) 1.53806 + 12.6671i 0.0580918 + 0.478429i 0.992502 + 0.122230i \(0.0390045\pi\)
−0.934410 + 0.356199i \(0.884072\pi\)
\(702\) 4.65041 16.9396i 0.175518 0.639345i
\(703\) −2.39458 + 19.7212i −0.0903134 + 0.743798i
\(704\) −3.45441 28.4496i −0.130193 1.07224i
\(705\) 0.158876 0.230172i 0.00598363 0.00866879i
\(706\) −19.4714 + 17.2501i −0.732815 + 0.649218i
\(707\) −3.17119 + 26.1171i −0.119265 + 0.982236i
\(708\) 0.642111 + 5.28826i 0.0241320 + 0.198745i
\(709\) −14.7557 7.74437i −0.554160 0.290846i 0.164304 0.986410i \(-0.447462\pi\)
−0.718464 + 0.695564i \(0.755155\pi\)
\(710\) 2.41083 2.13581i 0.0904769 0.0801556i
\(711\) −1.60301 2.32236i −0.0601175 0.0870952i
\(712\) 53.2682 + 13.1294i 1.99631 + 0.492047i
\(713\) 7.74380 63.7759i 0.290008 2.38843i
\(714\) −10.9361 + 15.8437i −0.409273 + 0.592934i
\(715\) −6.64686 + 2.32304i −0.248579 + 0.0868769i
\(716\) 1.75949 + 2.54907i 0.0657553 + 0.0952631i
\(717\) −7.09078 + 3.72153i −0.264810 + 0.138983i
\(718\) −16.0775 + 42.3929i −0.600007 + 1.58209i
\(719\) 4.09088 + 33.6914i 0.152564 + 1.25648i 0.844909 + 0.534910i \(0.179655\pi\)
−0.692345 + 0.721567i \(0.743422\pi\)
\(720\) −1.09291 + 1.58336i −0.0407305 + 0.0590083i
\(721\) −54.3345 + 13.3923i −2.02352 + 0.498754i
\(722\) −9.90994 + 14.3570i −0.368810 + 0.534313i
\(723\) −3.49827 + 9.22418i −0.130102 + 0.343051i
\(724\) −0.380674 + 1.00376i −0.0141476 + 0.0373043i
\(725\) −13.1471 6.90012i −0.488270 0.256264i
\(726\) 1.41797 + 0.744206i 0.0526257 + 0.0276201i
\(727\) −5.17994 + 1.27674i −0.192113 + 0.0473517i −0.334198 0.942503i \(-0.608466\pi\)
0.142085 + 0.989854i \(0.454619\pi\)
\(728\) −1.42063 + 54.0720i −0.0526519 + 2.00404i
\(729\) −11.3235 2.79098i −0.419387 0.103370i
\(730\) 5.79536 + 5.13424i 0.214496 + 0.190027i
\(731\) 1.12954 9.30259i 0.0417775 0.344069i
\(732\) 1.75918 + 0.923291i 0.0650213 + 0.0341258i
\(733\) 25.9333 13.6109i 0.957870 0.502729i 0.0880597 0.996115i \(-0.471933\pi\)
0.869810 + 0.493386i \(0.164241\pi\)
\(734\) −7.91265 20.8639i −0.292061 0.770102i
\(735\) 15.8301 + 14.0243i 0.583903 + 0.517293i
\(736\) −2.37248 19.5392i −0.0874509 0.720223i
\(737\) 12.3265 3.03821i 0.454053 0.111914i
\(738\) −1.89153 1.67575i −0.0696283 0.0616853i
\(739\) 10.3402 9.16059i 0.380369 0.336978i −0.451176 0.892435i \(-0.648995\pi\)
0.831545 + 0.555457i \(0.187457\pi\)
\(740\) −2.03612 1.06864i −0.0748494 0.0392840i
\(741\) 13.2452 + 9.66577i 0.486574 + 0.355081i
\(742\) −34.1176 + 17.9063i −1.25250 + 0.657361i
\(743\) 6.37358 16.8058i 0.233824 0.616543i −0.765825 0.643049i \(-0.777669\pi\)
0.999649 + 0.0265063i \(0.00843820\pi\)
\(744\) −5.77099 47.5284i −0.211575 1.74248i
\(745\) 10.7459 5.63987i 0.393698 0.206629i
\(746\) −18.9398 −0.693437
\(747\) −0.583917 + 0.306463i −0.0213644 + 0.0112129i
\(748\) 1.60123 1.41856i 0.0585467 0.0518678i
\(749\) −21.3371 30.9121i −0.779639 1.12950i
\(750\) −11.0585 9.79697i −0.403799 0.357735i
\(751\) −26.3818 38.2206i −0.962685 1.39469i −0.918392 0.395671i \(-0.870512\pi\)
−0.0442922 0.999019i \(-0.514103\pi\)
\(752\) −0.239409 0.631269i −0.00873034 0.0230200i
\(753\) −15.0640 39.7206i −0.548964 1.44750i
\(754\) 9.88408 10.5833i 0.359957 0.385420i
\(755\) 1.87243 4.93718i 0.0681445 0.179682i
\(756\) 8.23850 0.299631
\(757\) 3.80209 + 10.0253i 0.138189 + 0.364375i 0.986190 0.165621i \(-0.0529627\pi\)
−0.848000 + 0.529996i \(0.822193\pi\)
\(758\) 1.79477 14.7813i 0.0651891 0.536880i
\(759\) −47.4471 24.9022i −1.72222 0.903891i
\(760\) 2.36383 + 3.42459i 0.0857450 + 0.124223i
\(761\) −5.72839 8.29900i −0.207654 0.300839i 0.705294 0.708915i \(-0.250815\pi\)
−0.912948 + 0.408076i \(0.866200\pi\)
\(762\) 1.31202 + 0.688603i 0.0475296 + 0.0249455i
\(763\) 5.84050 48.1008i 0.211440 1.74137i
\(764\) 0.216889 + 0.571889i 0.00784676 + 0.0206902i
\(765\) −1.00593 −0.0363695
\(766\) −6.22729 + 16.4200i −0.225001 + 0.593279i
\(767\) 5.85870 21.3409i 0.211545