Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.e (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.34947179416\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 12.0.17213603549184.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -25\nu^{11} + 95\nu^{9} - 361\nu^{7} + 155\nu^{5} - 30\nu^{3} - 1563\nu ) / 559 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 25\nu^{10} - 95\nu^{8} + 361\nu^{6} - 155\nu^{4} + 30\nu^{2} + 1004 ) / 559 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 3\nu^{10} - 20\nu^{8} + 76\nu^{6} - 139\nu^{4} + 124\nu^{2} - 24 ) / 43 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 45\nu^{10} - 171\nu^{8} + 538\nu^{6} - 279\nu^{4} + 54\nu^{2} + 242 ) / 559 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 70\nu^{11} - 266\nu^{9} + 899\nu^{7} - 434\nu^{5} + 84\nu^{3} + 1246\nu ) / 559 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 114\nu^{10} - 545\nu^{8} + 2071\nu^{6} - 2831\nu^{4} + 3379\nu^{2} - 95 ) / 559 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 114\nu^{11} - 545\nu^{9} + 2071\nu^{7} - 2831\nu^{5} + 3379\nu^{3} - 95\nu ) / 559 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -128\nu^{10} + 710\nu^{8} - 2698\nu^{6} + 4483\nu^{4} - 4402\nu^{2} + 852 ) / 559 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -242\nu^{11} + 1255\nu^{9} - 4769\nu^{7} + 7314\nu^{5} - 7781\nu^{3} + 1506\nu ) / 559 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -317\nu^{11} + 1540\nu^{9} - 5852\nu^{7} + 8338\nu^{5} - 9548\nu^{3} + 1848\nu ) / 559 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{9} + \beta_{7} + \beta_{4} - \beta_{3} + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{11} + 3\beta_{8} + \beta_{2} \)
|
\(\nu^{4}\) | \(=\) |
\( 3\beta_{9} + 2\beta_{7} + 4\beta_{4} - 2 \)
|
\(\nu^{5}\) | \(=\) |
\( 4\beta_{11} - \beta_{10} + 9\beta_{8} - 9\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -5\beta_{5} + 9\beta_{3} - 14 \)
|
\(\nu^{7}\) | \(=\) |
\( -5\beta_{6} - 14\beta_{2} - 28\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( -28\beta_{9} - 14\beta_{7} - 19\beta_{5} - 47\beta_{4} + 28\beta_{3} - 28 \)
|
\(\nu^{9}\) | \(=\) |
\( -47\beta_{11} + 19\beta_{10} - 89\beta_{8} - 19\beta_{6} - 47\beta_{2} \)
|
\(\nu^{10}\) | \(=\) |
\( -89\beta_{9} - 42\beta_{7} - 155\beta_{4} + 42 \)
|
\(\nu^{11}\) | \(=\) |
\( -155\beta_{11} + 66\beta_{10} - 286\beta_{8} + 286\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(1 - \beta_{7}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 |
|
−1.94594 | + | 1.12349i | 0.277479 | + | 0.480608i | 1.52446 | − | 2.64044i | − | 1.44504i | −1.07992 | − | 0.623490i | 1.77441 | + | 1.02446i | 2.35690i | 1.34601 | − | 2.33136i | 1.62349 | + | 2.81197i | |||||||||||||||||||||||||||||||||||||||
23.2 | −0.694498 | + | 0.400969i | 1.12349 | + | 1.94594i | −0.678448 | + | 1.17511i | − | 0.246980i | −1.56052 | − | 0.900969i | 2.04113 | + | 1.17845i | − | 2.69202i | −1.02446 | + | 1.77441i | 0.0990311 | + | 0.171527i | |||||||||||||||||||||||||||||||||||||||
23.3 | −0.480608 | + | 0.277479i | −0.400969 | − | 0.694498i | −0.846011 | + | 1.46533i | − | 2.80194i | 0.385418 | + | 0.222521i | −2.33136 | − | 1.34601i | − | 2.04892i | 1.17845 | − | 2.04113i | 0.777479 | + | 1.34663i | |||||||||||||||||||||||||||||||||||||||
23.4 | 0.480608 | − | 0.277479i | −0.400969 | − | 0.694498i | −0.846011 | + | 1.46533i | 2.80194i | −0.385418 | − | 0.222521i | 2.33136 | + | 1.34601i | 2.04892i | 1.17845 | − | 2.04113i | 0.777479 | + | 1.34663i | |||||||||||||||||||||||||||||||||||||||||
23.5 | 0.694498 | − | 0.400969i | 1.12349 | + | 1.94594i | −0.678448 | + | 1.17511i | 0.246980i | 1.56052 | + | 0.900969i | −2.04113 | − | 1.17845i | 2.69202i | −1.02446 | + | 1.77441i | 0.0990311 | + | 0.171527i | |||||||||||||||||||||||||||||||||||||||||
23.6 | 1.94594 | − | 1.12349i | 0.277479 | + | 0.480608i | 1.52446 | − | 2.64044i | 1.44504i | 1.07992 | + | 0.623490i | −1.77441 | − | 1.02446i | − | 2.35690i | 1.34601 | − | 2.33136i | 1.62349 | + | 2.81197i | ||||||||||||||||||||||||||||||||||||||||
147.1 | −1.94594 | − | 1.12349i | 0.277479 | − | 0.480608i | 1.52446 | + | 2.64044i | 1.44504i | −1.07992 | + | 0.623490i | 1.77441 | − | 1.02446i | − | 2.35690i | 1.34601 | + | 2.33136i | 1.62349 | − | 2.81197i | ||||||||||||||||||||||||||||||||||||||||
147.2 | −0.694498 | − | 0.400969i | 1.12349 | − | 1.94594i | −0.678448 | − | 1.17511i | 0.246980i | −1.56052 | + | 0.900969i | 2.04113 | − | 1.17845i | 2.69202i | −1.02446 | − | 1.77441i | 0.0990311 | − | 0.171527i | |||||||||||||||||||||||||||||||||||||||||
147.3 | −0.480608 | − | 0.277479i | −0.400969 | + | 0.694498i | −0.846011 | − | 1.46533i | 2.80194i | 0.385418 | − | 0.222521i | −2.33136 | + | 1.34601i | 2.04892i | 1.17845 | + | 2.04113i | 0.777479 | − | 1.34663i | |||||||||||||||||||||||||||||||||||||||||
147.4 | 0.480608 | + | 0.277479i | −0.400969 | + | 0.694498i | −0.846011 | − | 1.46533i | − | 2.80194i | −0.385418 | + | 0.222521i | 2.33136 | − | 1.34601i | − | 2.04892i | 1.17845 | + | 2.04113i | 0.777479 | − | 1.34663i | |||||||||||||||||||||||||||||||||||||||
147.5 | 0.694498 | + | 0.400969i | 1.12349 | − | 1.94594i | −0.678448 | − | 1.17511i | − | 0.246980i | 1.56052 | − | 0.900969i | −2.04113 | + | 1.17845i | − | 2.69202i | −1.02446 | − | 1.77441i | 0.0990311 | − | 0.171527i | |||||||||||||||||||||||||||||||||||||||
147.6 | 1.94594 | + | 1.12349i | 0.277479 | − | 0.480608i | 1.52446 | + | 2.64044i | − | 1.44504i | 1.07992 | − | 0.623490i | −1.77441 | + | 1.02446i | 2.35690i | 1.34601 | + | 2.33136i | 1.62349 | − | 2.81197i | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.2.e.b | 12 | |
13.b | even | 2 | 1 | inner | 169.2.e.b | 12 | |
13.c | even | 3 | 1 | 169.2.b.b | 6 | ||
13.c | even | 3 | 1 | inner | 169.2.e.b | 12 | |
13.d | odd | 4 | 1 | 169.2.c.b | 6 | ||
13.d | odd | 4 | 1 | 169.2.c.c | 6 | ||
13.e | even | 6 | 1 | 169.2.b.b | 6 | ||
13.e | even | 6 | 1 | inner | 169.2.e.b | 12 | |
13.f | odd | 12 | 1 | 169.2.a.b | ✓ | 3 | |
13.f | odd | 12 | 1 | 169.2.a.c | yes | 3 | |
13.f | odd | 12 | 1 | 169.2.c.b | 6 | ||
13.f | odd | 12 | 1 | 169.2.c.c | 6 | ||
39.h | odd | 6 | 1 | 1521.2.b.l | 6 | ||
39.i | odd | 6 | 1 | 1521.2.b.l | 6 | ||
39.k | even | 12 | 1 | 1521.2.a.o | 3 | ||
39.k | even | 12 | 1 | 1521.2.a.r | 3 | ||
52.i | odd | 6 | 1 | 2704.2.f.o | 6 | ||
52.j | odd | 6 | 1 | 2704.2.f.o | 6 | ||
52.l | even | 12 | 1 | 2704.2.a.z | 3 | ||
52.l | even | 12 | 1 | 2704.2.a.ba | 3 | ||
65.s | odd | 12 | 1 | 4225.2.a.bb | 3 | ||
65.s | odd | 12 | 1 | 4225.2.a.bg | 3 | ||
91.bc | even | 12 | 1 | 8281.2.a.bf | 3 | ||
91.bc | even | 12 | 1 | 8281.2.a.bj | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.2.a.b | ✓ | 3 | 13.f | odd | 12 | 1 | |
169.2.a.c | yes | 3 | 13.f | odd | 12 | 1 | |
169.2.b.b | 6 | 13.c | even | 3 | 1 | ||
169.2.b.b | 6 | 13.e | even | 6 | 1 | ||
169.2.c.b | 6 | 13.d | odd | 4 | 1 | ||
169.2.c.b | 6 | 13.f | odd | 12 | 1 | ||
169.2.c.c | 6 | 13.d | odd | 4 | 1 | ||
169.2.c.c | 6 | 13.f | odd | 12 | 1 | ||
169.2.e.b | 12 | 1.a | even | 1 | 1 | trivial | |
169.2.e.b | 12 | 13.b | even | 2 | 1 | inner | |
169.2.e.b | 12 | 13.c | even | 3 | 1 | inner | |
169.2.e.b | 12 | 13.e | even | 6 | 1 | inner | |
1521.2.a.o | 3 | 39.k | even | 12 | 1 | ||
1521.2.a.r | 3 | 39.k | even | 12 | 1 | ||
1521.2.b.l | 6 | 39.h | odd | 6 | 1 | ||
1521.2.b.l | 6 | 39.i | odd | 6 | 1 | ||
2704.2.a.z | 3 | 52.l | even | 12 | 1 | ||
2704.2.a.ba | 3 | 52.l | even | 12 | 1 | ||
2704.2.f.o | 6 | 52.i | odd | 6 | 1 | ||
2704.2.f.o | 6 | 52.j | odd | 6 | 1 | ||
4225.2.a.bb | 3 | 65.s | odd | 12 | 1 | ||
4225.2.a.bg | 3 | 65.s | odd | 12 | 1 | ||
8281.2.a.bf | 3 | 91.bc | even | 12 | 1 | ||
8281.2.a.bj | 3 | 91.bc | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 6T_{2}^{10} + 31T_{2}^{8} - 28T_{2}^{6} + 19T_{2}^{4} - 5T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(169, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} - 6 T^{10} + 31 T^{8} - 28 T^{6} + \cdots + 1 \)
$3$
\( (T^{6} - 2 T^{5} + 5 T^{4} + 3 T^{2} - T + 1)^{2} \)
$5$
\( (T^{6} + 10 T^{4} + 17 T^{2} + 1)^{2} \)
$7$
\( T^{12} - 17 T^{10} + 195 T^{8} + \cdots + 28561 \)
$11$
\( T^{12} - 26 T^{10} + 523 T^{8} + \cdots + 28561 \)
$13$
\( T^{12} \)
$17$
\( (T^{6} + 2 T^{5} + 19 T^{4} - 56 T^{3} + \cdots + 169)^{2} \)
$19$
\( T^{12} - 38 T^{10} + 1315 T^{8} + \cdots + 1 \)
$23$
\( (T^{6} + 5 T^{5} + 26 T^{4} + 21 T^{3} + \cdots + 169)^{2} \)
$29$
\( (T^{6} - T^{5} + 45 T^{4} + 210 T^{3} + \cdots + 6889)^{2} \)
$31$
\( (T^{6} + 97 T^{4} + 2966 T^{2} + \cdots + 27889)^{2} \)
$37$
\( T^{12} - 62 T^{10} + 2859 T^{8} + \cdots + 707281 \)
$41$
\( T^{12} - 147 T^{10} + 19894 T^{8} + \cdots + 5764801 \)
$43$
\( (T^{6} - 13 T^{5} + 129 T^{4} - 546 T^{3} + \cdots + 169)^{2} \)
$47$
\( (T^{6} + 122 T^{4} + 4189 T^{2} + \cdots + 27889)^{2} \)
$53$
\( (T^{3} - T^{2} - 86 T + 337)^{4} \)
$59$
\( T^{12} - 195 T^{10} + 31174 T^{8} + \cdots + 1 \)
$61$
\( (T^{6} + 4 T^{5} + 83 T^{4} + 210 T^{3} + \cdots + 57121)^{2} \)
$67$
\( T^{12} - 145 T^{10} + 15923 T^{8} + \cdots + 2825761 \)
$71$
\( T^{12} - 285 T^{10} + \cdots + 89526025681 \)
$73$
\( (T^{6} + 321 T^{4} + 30798 T^{2} + \cdots + 829921)^{2} \)
$79$
\( (T^{3} + 5 T^{2} - 162 T + 127)^{4} \)
$83$
\( (T^{6} + 329 T^{4} + 16758 T^{2} + \cdots + 41209)^{2} \)
$89$
\( T^{12} - 269 T^{10} + \cdots + 6234839521 \)
$97$
\( T^{12} - 217 T^{10} + \cdots + 8208541201 \)
show more
show less