Properties

Label 169.2.e
Level $169$
Weight $2$
Character orbit 169.e
Rep. character $\chi_{169}(23,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $14$
Newform subspaces $2$
Sturm bound $30$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(169, [\chi])\).

Total New Old
Modular forms 46 34 12
Cusp forms 18 14 4
Eisenstein series 28 20 8

Trace form

\( 14 q + 3 q^{2} + 2 q^{3} + q^{4} - 6 q^{6} + 5 q^{9} + 7 q^{10} - 4 q^{12} - 20 q^{14} - 6 q^{15} + q^{16} - q^{17} + 6 q^{19} - 3 q^{20} - 6 q^{22} - 4 q^{23} + 6 q^{24} + 24 q^{25} - 4 q^{27} - q^{29}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(169, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
169.2.e.a 169.e 13.e $2$ $1.349$ \(\Q(\sqrt{-3}) \) None 13.2.e.a \(3\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
169.2.e.b 169.e 13.e $12$ $1.349$ 12.0.\(\cdots\).1 None 169.2.a.b \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{8}+\beta _{10})q^{2}+(1-\beta _{3}+\beta _{4}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(169, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(169, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)