Defining parameters
| Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 169.c (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(30\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(169, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 44 | 36 | 8 |
| Cusp forms | 16 | 16 | 0 |
| Eisenstein series | 28 | 20 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(169, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 169.2.c.a | $4$ | $1.349$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-\beta_{2} q^{2}-2\beta_1 q^{3}+(\beta_1-1)q^{4}+\cdots\) |
| 169.2.c.b | $6$ | $1.349$ | 6.0.64827.1 | None | \(-2\) | \(2\) | \(8\) | \(-3\) | \(q+(-1+\beta _{4}+\beta _{5})q^{2}+(1-\beta _{1}-\beta _{5})q^{3}+\cdots\) |
| 169.2.c.c | $6$ | $1.349$ | 6.0.64827.1 | None | \(2\) | \(2\) | \(-8\) | \(3\) | \(q+(\beta _{1}+\beta _{4})q^{2}+(1-\beta _{4}-\beta _{5})q^{3}+(2\beta _{1}+\cdots)q^{4}+\cdots\) |