Defining parameters
| Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(30\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(169))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 21 | 19 | 2 |
| Cusp forms | 8 | 8 | 0 |
| Eisenstein series | 13 | 11 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(13\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(9\) | \(8\) | \(1\) | \(3\) | \(3\) | \(0\) | \(6\) | \(5\) | \(1\) | |||
| \(-\) | \(12\) | \(11\) | \(1\) | \(5\) | \(5\) | \(0\) | \(7\) | \(6\) | \(1\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(169))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 13 | |||||||
| 169.2.a.a | $2$ | $1.349$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(4\) | \(0\) | \(0\) | $-$ | \(q+\beta q^{2}+2q^{3}+q^{4}-\beta q^{5}+2\beta q^{6}+\cdots\) | |
| 169.2.a.b | $3$ | $1.349$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(-2\) | \(-4\) | \(-3\) | $+$ | \(q+(-1-\beta _{2})q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots\) | |
| 169.2.a.c | $3$ | $1.349$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(-2\) | \(4\) | \(3\) | $-$ | \(q+(1-\beta _{1})q^{2}+(-1-\beta _{2})q^{3}+(1-2\beta _{1}+\cdots)q^{4}+\cdots\) | |