Properties

Label 169.10.a.g.1.4
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 11
Dimension 2727
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,-65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 11
Dimension: 2727
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q40.6641q2254.108q3+1141.57q41761.73q5+10333.1q6+1279.48q725601.0q8+44887.8q9+71639.4q1052620.5q11290082.q1252029.0q14+447670.q15+456557.q16223297.q171.82532e6q18545238.q192.01114e6q20325126.q21+2.13977e6q221.10556e6q23+6.50541e6q24+1.15058e6q256.40472e6q27+1.46062e6q281.27842e6q291.82041e7q307.41062e6q315.45779e6q32+1.33713e7q33+9.08018e6q342.25411e6q35+5.12426e7q36+4.37006e6q37+2.21716e7q38+4.51021e7q401.41271e7q41+1.32210e7q42+2.97937e7q436.00701e7q447.90803e7q45+4.49568e7q46+1.62162e7q471.16015e8q483.87165e7q494.67873e7q50+5.67415e7q51+8.73853e7q53+2.60443e8q54+9.27033e7q553.27560e7q56+1.38549e8q57+5.19860e7q581.01196e8q59+5.11047e8q60+2.03191e8q61+3.01346e8q62+5.74331e7q631.18209e7q645.43732e8q66+1.43897e8q672.54909e8q68+2.80932e8q69+9.16612e7q706.26152e7q711.14917e9q72+3.27462e8q731.77705e8q742.92371e8q756.22428e8q766.73270e7q77+2.96852e8q798.04331e8q80+7.43965e8q81+5.74466e8q826.46415e8q833.71155e8q84+3.93390e8q851.21154e9q86+3.24857e8q87+1.34714e9q885.31202e8q89+3.21573e9q901.26208e9q92+1.88310e9q936.59420e8q94+9.60564e8q95+1.38687e9q968.88218e8q97+1.57437e9q982.36202e9q99+O(q100)q-40.6641 q^{2} -254.108 q^{3} +1141.57 q^{4} -1761.73 q^{5} +10333.1 q^{6} +1279.48 q^{7} -25601.0 q^{8} +44887.8 q^{9} +71639.4 q^{10} -52620.5 q^{11} -290082. q^{12} -52029.0 q^{14} +447670. q^{15} +456557. q^{16} -223297. q^{17} -1.82532e6 q^{18} -545238. q^{19} -2.01114e6 q^{20} -325126. q^{21} +2.13977e6 q^{22} -1.10556e6 q^{23} +6.50541e6 q^{24} +1.15058e6 q^{25} -6.40472e6 q^{27} +1.46062e6 q^{28} -1.27842e6 q^{29} -1.82041e7 q^{30} -7.41062e6 q^{31} -5.45779e6 q^{32} +1.33713e7 q^{33} +9.08018e6 q^{34} -2.25411e6 q^{35} +5.12426e7 q^{36} +4.37006e6 q^{37} +2.21716e7 q^{38} +4.51021e7 q^{40} -1.41271e7 q^{41} +1.32210e7 q^{42} +2.97937e7 q^{43} -6.00701e7 q^{44} -7.90803e7 q^{45} +4.49568e7 q^{46} +1.62162e7 q^{47} -1.16015e8 q^{48} -3.87165e7 q^{49} -4.67873e7 q^{50} +5.67415e7 q^{51} +8.73853e7 q^{53} +2.60443e8 q^{54} +9.27033e7 q^{55} -3.27560e7 q^{56} +1.38549e8 q^{57} +5.19860e7 q^{58} -1.01196e8 q^{59} +5.11047e8 q^{60} +2.03191e8 q^{61} +3.01346e8 q^{62} +5.74331e7 q^{63} -1.18209e7 q^{64} -5.43732e8 q^{66} +1.43897e8 q^{67} -2.54909e8 q^{68} +2.80932e8 q^{69} +9.16612e7 q^{70} -6.26152e7 q^{71} -1.14917e9 q^{72} +3.27462e8 q^{73} -1.77705e8 q^{74} -2.92371e8 q^{75} -6.22428e8 q^{76} -6.73270e7 q^{77} +2.96852e8 q^{79} -8.04331e8 q^{80} +7.43965e8 q^{81} +5.74466e8 q^{82} -6.46415e8 q^{83} -3.71155e8 q^{84} +3.93390e8 q^{85} -1.21154e9 q^{86} +3.24857e8 q^{87} +1.34714e9 q^{88} -5.31202e8 q^{89} +3.21573e9 q^{90} -1.26208e9 q^{92} +1.88310e9 q^{93} -6.59420e8 q^{94} +9.60564e8 q^{95} +1.38687e9 q^{96} -8.88218e8 q^{97} +1.57437e9 q^{98} -2.36202e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 27q65q2+q3+7169q43238q58490q617378q754204q8+191118q9+11697q10164171q11181941q1277651q14614110q15+3012565q16+5866875443q99+O(q100) 27 q - 65 q^{2} + q^{3} + 7169 q^{4} - 3238 q^{5} - 8490 q^{6} - 17378 q^{7} - 54204 q^{8} + 191118 q^{9} + 11697 q^{10} - 164171 q^{11} - 181941 q^{12} - 77651 q^{14} - 614110 q^{15} + 3012565 q^{16}+ \cdots - 5866875443 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −40.6641 −1.79712 −0.898559 0.438853i 0.855385π-0.855385\pi
−0.898559 + 0.438853i 0.855385π0.855385\pi
33 −254.108 −1.81122 −0.905612 0.424107i 0.860588π-0.860588\pi
−0.905612 + 0.424107i 0.860588π0.860588\pi
44 1141.57 2.22963
55 −1761.73 −1.26059 −0.630297 0.776354i 0.717067π-0.717067\pi
−0.630297 + 0.776354i 0.717067π0.717067\pi
66 10333.1 3.25498
77 1279.48 0.201416 0.100708 0.994916i 0.467889π-0.467889\pi
0.100708 + 0.994916i 0.467889π0.467889\pi
88 −25601.0 −2.20979
99 44887.8 2.28053
1010 71639.4 2.26544
1111 −52620.5 −1.08365 −0.541824 0.840492i 0.682266π-0.682266\pi
−0.541824 + 0.840492i 0.682266π0.682266\pi
1212 −290082. −4.03836
1313 0 0
1414 −52029.0 −0.361967
1515 447670. 2.28322
1616 456557. 1.74163
1717 −223297. −0.648429 −0.324215 0.945984i 0.605100π-0.605100\pi
−0.324215 + 0.945984i 0.605100π0.605100\pi
1818 −1.82532e6 −4.09839
1919 −545238. −0.959831 −0.479916 0.877315i 0.659333π-0.659333\pi
−0.479916 + 0.877315i 0.659333π0.659333\pi
2020 −2.01114e6 −2.81066
2121 −325126. −0.364809
2222 2.13977e6 1.94744
2323 −1.10556e6 −0.823775 −0.411888 0.911235i 0.635130π-0.635130\pi
−0.411888 + 0.911235i 0.635130π0.635130\pi
2424 6.50541e6 4.00243
2525 1.15058e6 0.589097
2626 0 0
2727 −6.40472e6 −2.31934
2828 1.46062e6 0.449082
2929 −1.27842e6 −0.335648 −0.167824 0.985817i 0.553674π-0.553674\pi
−0.167824 + 0.985817i 0.553674π0.553674\pi
3030 −1.82041e7 −4.10321
3131 −7.41062e6 −1.44121 −0.720605 0.693346i 0.756136π-0.756136\pi
−0.720605 + 0.693346i 0.756136π0.756136\pi
3232 −5.45779e6 −0.920114
3333 1.33713e7 1.96273
3434 9.08018e6 1.16530
3535 −2.25411e6 −0.253903
3636 5.12426e7 5.08475
3737 4.37006e6 0.383336 0.191668 0.981460i 0.438610π-0.438610\pi
0.191668 + 0.981460i 0.438610π0.438610\pi
3838 2.21716e7 1.72493
3939 0 0
4040 4.51021e7 2.78565
4141 −1.41271e7 −0.780775 −0.390387 0.920651i 0.627659π-0.627659\pi
−0.390387 + 0.920651i 0.627659π0.627659\pi
4242 1.32210e7 0.655604
4343 2.97937e7 1.32898 0.664488 0.747299i 0.268650π-0.268650\pi
0.664488 + 0.747299i 0.268650π0.268650\pi
4444 −6.00701e7 −2.41613
4545 −7.90803e7 −2.87483
4646 4.49568e7 1.48042
4747 1.62162e7 0.484741 0.242371 0.970184i 0.422075π-0.422075\pi
0.242371 + 0.970184i 0.422075π0.422075\pi
4848 −1.16015e8 −3.15448
4949 −3.87165e7 −0.959432
5050 −4.67873e7 −1.05868
5151 5.67415e7 1.17445
5252 0 0
5353 8.73853e7 1.52124 0.760619 0.649199i 0.224896π-0.224896\pi
0.760619 + 0.649199i 0.224896π0.224896\pi
5454 2.60443e8 4.16812
5555 9.27033e7 1.36604
5656 −3.27560e7 −0.445087
5757 1.38549e8 1.73847
5858 5.19860e7 0.603199
5959 −1.01196e8 −1.08725 −0.543625 0.839329i 0.682948π-0.682948\pi
−0.543625 + 0.839329i 0.682948π0.682948\pi
6060 5.11047e8 5.09074
6161 2.03191e8 1.87897 0.939487 0.342585i 0.111303π-0.111303\pi
0.939487 + 0.342585i 0.111303π0.111303\pi
6262 3.01346e8 2.59002
6363 5.74331e7 0.459335
6464 −1.18209e7 −0.0880729
6565 0 0
6666 −5.43732e8 −3.52725
6767 1.43897e8 0.872398 0.436199 0.899850i 0.356324π-0.356324\pi
0.436199 + 0.899850i 0.356324π0.356324\pi
6868 −2.54909e8 −1.44576
6969 2.80932e8 1.49204
7070 9.16612e7 0.456294
7171 −6.26152e7 −0.292427 −0.146213 0.989253i 0.546709π-0.546709\pi
−0.146213 + 0.989253i 0.546709π0.546709\pi
7272 −1.14917e9 −5.03951
7373 3.27462e8 1.34961 0.674805 0.737996i 0.264228π-0.264228\pi
0.674805 + 0.737996i 0.264228π0.264228\pi
7474 −1.77705e8 −0.688900
7575 −2.92371e8 −1.06699
7676 −6.22428e8 −2.14007
7777 −6.73270e7 −0.218263
7878 0 0
7979 2.96852e8 0.857468 0.428734 0.903431i 0.358960π-0.358960\pi
0.428734 + 0.903431i 0.358960π0.358960\pi
8080 −8.04331e8 −2.19548
8181 7.43965e8 1.92030
8282 5.74466e8 1.40314
8383 −6.46415e8 −1.49507 −0.747533 0.664225i 0.768762π-0.768762\pi
−0.747533 + 0.664225i 0.768762π0.768762\pi
8484 −3.71155e8 −0.813389
8585 3.93390e8 0.817406
8686 −1.21154e9 −2.38832
8787 3.24857e8 0.607934
8888 1.34714e9 2.39464
8989 −5.31202e8 −0.897438 −0.448719 0.893673i 0.648120π-0.648120\pi
−0.448719 + 0.893673i 0.648120π0.648120\pi
9090 3.21573e9 5.16640
9191 0 0
9292 −1.26208e9 −1.83672
9393 1.88310e9 2.61035
9494 −6.59420e8 −0.871137
9595 9.60564e8 1.20996
9696 1.38687e9 1.66653
9797 −8.88218e8 −1.01870 −0.509351 0.860559i 0.670114π-0.670114\pi
−0.509351 + 0.860559i 0.670114π0.670114\pi
9898 1.57437e9 1.72421
9999 −2.36202e9 −2.47130
100100 1.31347e9 1.31347
101101 3.45113e8 0.330001 0.165000 0.986294i 0.447237π-0.447237\pi
0.165000 + 0.986294i 0.447237π0.447237\pi
102102 −2.30734e9 −2.11063
103103 −1.65802e9 −1.45151 −0.725757 0.687951i 0.758510π-0.758510\pi
−0.725757 + 0.687951i 0.758510π0.758510\pi
104104 0 0
105105 5.72786e8 0.459876
106106 −3.55345e9 −2.73384
107107 9.87711e8 0.728455 0.364228 0.931310i 0.381333π-0.381333\pi
0.364228 + 0.931310i 0.381333π0.381333\pi
108108 −7.31145e9 −5.17126
109109 1.10461e9 0.749529 0.374765 0.927120i 0.377723π-0.377723\pi
0.374765 + 0.927120i 0.377723π0.377723\pi
110110 −3.76970e9 −2.45493
111111 −1.11047e9 −0.694307
112112 5.84156e8 0.350791
113113 −353967. −0.000204226 0 −0.000102113 1.00000i 0.500033π-0.500033\pi
−0.000102113 1.00000i 0.500033π0.500033\pi
114114 −5.63398e9 −3.12423
115115 1.94771e9 1.03845
116116 −1.45941e9 −0.748371
117117 0 0
118118 4.11504e9 1.95391
119119 −2.85704e8 −0.130604
120120 −1.14608e10 −5.04544
121121 4.10971e8 0.174292
122122 −8.26259e9 −3.37674
123123 3.58981e9 1.41416
124124 −8.45975e9 −3.21337
125125 1.41387e9 0.517982
126126 −2.33547e9 −0.825479
127127 3.21555e9 1.09683 0.548415 0.836207i 0.315232π-0.315232\pi
0.548415 + 0.836207i 0.315232π0.315232\pi
128128 3.27508e9 1.07839
129129 −7.57082e9 −2.40707
130130 0 0
131131 1.09467e9 0.324761 0.162380 0.986728i 0.448083π-0.448083\pi
0.162380 + 0.986728i 0.448083π0.448083\pi
132132 1.52643e10 4.37616
133133 −6.97622e8 −0.193325
134134 −5.85144e9 −1.56780
135135 1.12834e10 2.92374
136136 5.71662e9 1.43289
137137 1.47148e9 0.356872 0.178436 0.983952i 0.442896π-0.442896\pi
0.178436 + 0.983952i 0.442896π0.442896\pi
138138 −1.14239e10 −2.68137
139139 3.79795e9 0.862943 0.431472 0.902127i 0.357995π-0.357995\pi
0.431472 + 0.902127i 0.357995π0.357995\pi
140140 −2.57322e9 −0.566110
141141 −4.12068e9 −0.877975
142142 2.54619e9 0.525526
143143 0 0
144144 2.04938e10 3.97184
145145 2.25224e9 0.423116
146146 −1.33160e10 −2.42541
147147 9.83817e9 1.73775
148148 4.98873e9 0.854698
149149 1.56982e9 0.260922 0.130461 0.991453i 0.458354π-0.458354\pi
0.130461 + 0.991453i 0.458354π0.458354\pi
150150 1.18890e10 1.91750
151151 5.16487e9 0.808469 0.404235 0.914655i 0.367538π-0.367538\pi
0.404235 + 0.914655i 0.367538π0.367538\pi
152152 1.39586e10 2.12103
153153 −1.00233e10 −1.47877
154154 2.73779e9 0.392245
155155 1.30555e10 1.81678
156156 0 0
157157 6.83691e9 0.898073 0.449037 0.893513i 0.351767π-0.351767\pi
0.449037 + 0.893513i 0.351767π0.351767\pi
158158 −1.20712e10 −1.54097
159159 −2.22053e10 −2.75530
160160 9.61517e9 1.15989
161161 −1.41455e9 −0.165921
162162 −3.02527e10 −3.45101
163163 −6.22569e9 −0.690786 −0.345393 0.938458i 0.612254π-0.612254\pi
−0.345393 + 0.938458i 0.612254π0.612254\pi
164164 −1.61271e10 −1.74084
165165 −2.35566e10 −2.47420
166166 2.62859e10 2.68681
167167 1.18052e10 1.17449 0.587244 0.809410i 0.300213π-0.300213\pi
0.587244 + 0.809410i 0.300213π0.300213\pi
168168 8.32355e9 0.806152
169169 0 0
170170 −1.59969e10 −1.46897
171171 −2.44745e10 −2.18893
172172 3.40117e10 2.96312
173173 −2.25103e9 −0.191062 −0.0955310 0.995426i 0.530455π-0.530455\pi
−0.0955310 + 0.995426i 0.530455π0.530455\pi
174174 −1.32100e10 −1.09253
175175 1.47215e9 0.118653
176176 −2.40243e10 −1.88731
177177 2.57147e10 1.96925
178178 2.16009e10 1.61280
179179 −6.08458e9 −0.442988 −0.221494 0.975162i 0.571093π-0.571093\pi
−0.221494 + 0.975162i 0.571093π0.571093\pi
180180 −9.02758e10 −6.40981
181181 −9.34985e9 −0.647517 −0.323758 0.946140i 0.604947π-0.604947\pi
−0.323758 + 0.946140i 0.604947π0.604947\pi
182182 0 0
183183 −5.16325e10 −3.40324
184184 2.83035e10 1.82037
185185 −7.69888e9 −0.483231
186186 −7.65745e10 −4.69111
187187 1.17500e10 0.702669
188188 1.85120e10 1.08079
189189 −8.19473e9 −0.467150
190190 −3.90605e10 −2.17444
191191 −2.72447e10 −1.48126 −0.740631 0.671912i 0.765473π-0.765473\pi
−0.740631 + 0.671912i 0.765473π0.765473\pi
192192 3.00379e9 0.159520
193193 2.75300e10 1.42823 0.714115 0.700029i 0.246829π-0.246829\pi
0.714115 + 0.700029i 0.246829π0.246829\pi
194194 3.61186e10 1.83073
195195 0 0
196196 −4.41977e10 −2.13918
197197 2.77018e10 1.31042 0.655208 0.755448i 0.272581π-0.272581\pi
0.655208 + 0.755448i 0.272581π0.272581\pi
198198 9.60494e10 4.44121
199199 2.44000e10 1.10294 0.551469 0.834196i 0.314068π-0.314068\pi
0.551469 + 0.834196i 0.314068π0.314068\pi
200200 −2.94560e10 −1.30178
201201 −3.65653e10 −1.58011
202202 −1.40337e10 −0.593050
203203 −1.63572e9 −0.0676047
204204 6.47745e10 2.61859
205205 2.48882e10 0.984240
206206 6.74218e10 2.60854
207207 −4.96263e10 −1.87865
208208 0 0
209209 2.86907e10 1.04012
210210 −2.32918e10 −0.826451
211211 −1.26026e10 −0.437711 −0.218855 0.975757i 0.570232π-0.570232\pi
−0.218855 + 0.975757i 0.570232π0.570232\pi
212212 9.97566e10 3.39180
213213 1.59110e10 0.529651
214214 −4.01644e10 −1.30912
215215 −5.24886e10 −1.67530
216216 1.63967e11 5.12525
217217 −9.48175e9 −0.290282
218218 −4.49179e10 −1.34699
219219 −8.32107e10 −2.44445
220220 1.05827e11 3.04576
221221 0 0
222222 4.51561e10 1.24775
223223 2.40428e10 0.651048 0.325524 0.945534i 0.394459π-0.394459\pi
0.325524 + 0.945534i 0.394459π0.394459\pi
224224 −6.98314e9 −0.185325
225225 5.16469e10 1.34346
226226 1.43938e7 0.000367017 0
227227 1.50190e10 0.375426 0.187713 0.982224i 0.439893π-0.439893\pi
0.187713 + 0.982224i 0.439893π0.439893\pi
228228 1.58164e11 3.87615
229229 −2.06015e9 −0.0495038 −0.0247519 0.999694i 0.507880π-0.507880\pi
−0.0247519 + 0.999694i 0.507880π0.507880\pi
230230 −7.92019e10 −1.86621
231231 1.71083e10 0.395324
232232 3.27289e10 0.741712
233233 −2.46956e10 −0.548932 −0.274466 0.961597i 0.588501π-0.588501\pi
−0.274466 + 0.961597i 0.588501π0.588501\pi
234234 0 0
235235 −2.85687e10 −0.611062
236236 −1.15522e11 −2.42416
237237 −7.54324e10 −1.55307
238238 1.16179e10 0.234710
239239 2.81577e10 0.558222 0.279111 0.960259i 0.409960π-0.409960\pi
0.279111 + 0.960259i 0.409960π0.409960\pi
240240 2.04387e11 3.97651
241241 8.07535e10 1.54200 0.771000 0.636835i 0.219757π-0.219757\pi
0.771000 + 0.636835i 0.219757π0.219757\pi
242242 −1.67118e10 −0.313223
243243 −6.29830e10 −1.15876
244244 2.31957e11 4.18942
245245 6.82082e10 1.20945
246246 −1.45976e11 −2.54141
247247 0 0
248248 1.89719e11 3.18477
249249 1.64259e11 2.70790
250250 −5.74938e10 −0.930875
251251 1.04221e11 1.65738 0.828692 0.559705i 0.189086π-0.189086\pi
0.828692 + 0.559705i 0.189086π0.189086\pi
252252 6.55639e10 1.02415
253253 5.81754e10 0.892682
254254 −1.30758e11 −1.97113
255255 −9.99634e10 −1.48051
256256 −1.27126e11 −1.84992
257257 −1.04145e11 −1.48915 −0.744575 0.667539i 0.767348π-0.767348\pi
−0.744575 + 0.667539i 0.767348π0.767348\pi
258258 3.07861e11 4.32579
259259 5.59141e9 0.0772098
260260 0 0
261261 −5.73856e10 −0.765456
262262 −4.45139e10 −0.583634
263263 1.03028e11 1.32787 0.663936 0.747790i 0.268885π-0.268885\pi
0.663936 + 0.747790i 0.268885π0.268885\pi
264264 −3.42318e11 −4.33722
265265 −1.53950e11 −1.91766
266266 2.83682e10 0.347428
267267 1.34983e11 1.62546
268268 1.64268e11 1.94513
269269 1.14754e11 1.33624 0.668118 0.744055i 0.267100π-0.267100\pi
0.668118 + 0.744055i 0.267100π0.267100\pi
270270 −4.58830e11 −5.25430
271271 −1.23193e11 −1.38747 −0.693734 0.720232i 0.744036π-0.744036\pi
−0.693734 + 0.720232i 0.744036π0.744036\pi
272272 −1.01948e11 −1.12932
273273 0 0
274274 −5.98365e10 −0.641341
275275 −6.05441e10 −0.638373
276276 3.20704e11 3.32670
277277 −1.77863e10 −0.181521 −0.0907603 0.995873i 0.528930π-0.528930\pi
−0.0907603 + 0.995873i 0.528930π0.528930\pi
278278 −1.54440e11 −1.55081
279279 −3.32646e11 −3.28673
280280 5.77073e10 0.561073
281281 −5.40996e10 −0.517625 −0.258813 0.965928i 0.583331π-0.583331\pi
−0.258813 + 0.965928i 0.583331π0.583331\pi
282282 1.67564e11 1.57783
283283 −2.25498e10 −0.208980 −0.104490 0.994526i 0.533321π-0.533321\pi
−0.104490 + 0.994526i 0.533321π0.533321\pi
284284 −7.14797e10 −0.652004
285285 −2.44087e11 −2.19150
286286 0 0
287287 −1.80754e10 −0.157260
288288 −2.44988e11 −2.09835
289289 −6.87263e10 −0.579539
290290 −9.15855e10 −0.760389
291291 2.25703e11 1.84510
292292 3.73822e11 3.00913
293293 2.73911e10 0.217123 0.108561 0.994090i 0.465376π-0.465376\pi
0.108561 + 0.994090i 0.465376π0.465376\pi
294294 −4.00061e11 −3.12293
295295 1.78280e11 1.37058
296296 −1.11878e11 −0.847093
297297 3.37020e11 2.51334
298298 −6.38353e10 −0.468908
299299 0 0
300300 −3.33763e11 −2.37899
301301 3.81205e10 0.267676
302302 −2.10025e11 −1.45291
303303 −8.76958e10 −0.597705
304304 −2.48932e11 −1.67167
305305 −3.57969e11 −2.36862
306306 4.07589e11 2.65752
307307 −2.35180e11 −1.51104 −0.755522 0.655124i 0.772617π-0.772617\pi
−0.755522 + 0.655124i 0.772617π0.772617\pi
308308 −7.68586e10 −0.486647
309309 4.21315e11 2.62902
310310 −5.30892e11 −3.26497
311311 −3.92759e10 −0.238070 −0.119035 0.992890i 0.537980π-0.537980\pi
−0.119035 + 0.992890i 0.537980π0.537980\pi
312312 0 0
313313 −4.58563e10 −0.270054 −0.135027 0.990842i 0.543112π-0.543112\pi
−0.135027 + 0.990842i 0.543112π0.543112\pi
314314 −2.78017e11 −1.61394
315315 −1.01182e11 −0.579035
316316 3.38878e11 1.91184
317317 1.39591e9 0.00776409 0.00388205 0.999992i 0.498764π-0.498764\pi
0.00388205 + 0.999992i 0.498764π0.498764\pi
318318 9.02959e11 4.95160
319319 6.72713e10 0.363724
320320 2.08253e10 0.111024
321321 −2.50985e11 −1.31940
322322 5.75214e10 0.298180
323323 1.21750e11 0.622383
324324 8.49289e11 4.28157
325325 0 0
326326 2.53162e11 1.24142
327327 −2.80689e11 −1.35757
328328 3.61668e11 1.72535
329329 2.07484e10 0.0976344
330330 9.57910e11 4.44644
331331 −2.54109e11 −1.16358 −0.581788 0.813341i 0.697647π-0.697647\pi
−0.581788 + 0.813341i 0.697647π0.697647\pi
332332 −7.37929e11 −3.33345
333333 1.96162e11 0.874211
334334 −4.80048e11 −2.11069
335335 −2.53508e11 −1.09974
336336 −1.48439e11 −0.635360
337337 4.04480e8 0.00170829 0.000854147 1.00000i 0.499728π-0.499728\pi
0.000854147 1.00000i 0.499728π0.499728\pi
338338 0 0
339339 8.99458e7 0.000369898 0
340340 4.49083e11 1.82251
341341 3.89951e11 1.56176
342342 9.95235e11 3.93376
343343 −1.01169e11 −0.394660
344344 −7.62749e11 −2.93676
345345 −4.94928e11 −1.88086
346346 9.15362e10 0.343361
347347 −3.15844e11 −1.16947 −0.584735 0.811224i 0.698802π-0.698802\pi
−0.584735 + 0.811224i 0.698802π0.698802\pi
348348 3.70848e11 1.35547
349349 −7.87721e10 −0.284222 −0.142111 0.989851i 0.545389π-0.545389\pi
−0.142111 + 0.989851i 0.545389π0.545389\pi
350350 −5.98635e10 −0.213234
351351 0 0
352352 2.87192e11 0.997079
353353 −4.51207e11 −1.54664 −0.773320 0.634015i 0.781406π-0.781406\pi
−0.773320 + 0.634015i 0.781406π0.781406\pi
354354 −1.04566e12 −3.53898
355355 1.10311e11 0.368632
356356 −6.06405e11 −2.00096
357357 7.25997e10 0.236553
358358 2.47424e11 0.796101
359359 1.35064e11 0.429154 0.214577 0.976707i 0.431163π-0.431163\pi
0.214577 + 0.976707i 0.431163π0.431163\pi
360360 2.02453e12 6.35277
361361 −2.54032e10 −0.0787239
362362 3.80204e11 1.16366
363363 −1.04431e11 −0.315681
364364 0 0
365365 −5.76901e11 −1.70131
366366 2.09959e12 6.11603
367367 −4.09975e11 −1.17967 −0.589834 0.807525i 0.700807π-0.700807\pi
−0.589834 + 0.807525i 0.700807π0.700807\pi
368368 −5.04753e11 −1.43471
369369 −6.34134e11 −1.78058
370370 3.13068e11 0.868423
371371 1.11808e11 0.306401
372372 2.14969e12 5.82013
373373 −9.83115e10 −0.262975 −0.131488 0.991318i 0.541975π-0.541975\pi
−0.131488 + 0.991318i 0.541975π0.541975\pi
374374 −4.77804e11 −1.26278
375375 −3.59276e11 −0.938182
376376 −4.15152e11 −1.07118
377377 0 0
378378 3.33231e11 0.839524
379379 1.75017e11 0.435717 0.217858 0.975980i 0.430093π-0.430093\pi
0.217858 + 0.975980i 0.430093π0.430093\pi
380380 1.09655e12 2.69776
381381 −8.17097e11 −1.98660
382382 1.10788e12 2.66200
383383 2.36022e11 0.560477 0.280238 0.959930i 0.409586π-0.409586\pi
0.280238 + 0.959930i 0.409586π0.409586\pi
384384 −8.32222e11 −1.95321
385385 1.18612e11 0.275141
386386 −1.11948e12 −2.56670
387387 1.33737e12 3.03077
388388 −1.01396e12 −2.27133
389389 −3.45347e11 −0.764686 −0.382343 0.924021i 0.624883π-0.624883\pi
−0.382343 + 0.924021i 0.624883π0.624883\pi
390390 0 0
391391 2.46869e11 0.534160
392392 9.91181e11 2.12015
393393 −2.78165e11 −0.588215
394394 −1.12647e12 −2.35497
395395 −5.22974e11 −1.08092
396396 −2.69641e12 −5.51008
397397 1.39044e11 0.280929 0.140464 0.990086i 0.455140π-0.455140\pi
0.140464 + 0.990086i 0.455140π0.455140\pi
398398 −9.92204e11 −1.98211
399399 1.77271e11 0.350155
400400 5.25305e11 1.02599
401401 −3.50321e11 −0.676577 −0.338288 0.941042i 0.609848π-0.609848\pi
−0.338288 + 0.941042i 0.609848π0.609848\pi
402402 1.48690e12 2.83964
403403 0 0
404404 3.93971e11 0.735780
405405 −1.31067e12 −2.42072
406406 6.65151e10 0.121494
407407 −2.29955e11 −0.415401
408408 −1.45264e12 −2.59529
409409 2.65188e11 0.468597 0.234299 0.972165i 0.424721π-0.424721\pi
0.234299 + 0.972165i 0.424721π0.424721\pi
410410 −1.01206e12 −1.76879
411411 −3.73915e11 −0.646375
412412 −1.89274e12 −3.23634
413413 −1.29478e11 −0.218989
414414 2.01801e12 3.37615
415415 1.13881e12 1.88467
416416 0 0
417417 −9.65087e11 −1.56298
418418 −1.16668e12 −1.86922
419419 −1.32004e10 −0.0209230 −0.0104615 0.999945i 0.503330π-0.503330\pi
−0.0104615 + 0.999945i 0.503330π0.503330\pi
420420 6.53876e11 1.02535
421421 9.69359e11 1.50389 0.751944 0.659227i 0.229117π-0.229117\pi
0.751944 + 0.659227i 0.229117π0.229117\pi
422422 5.12472e11 0.786618
423423 7.27911e11 1.10547
424424 −2.23715e12 −3.36162
425425 −2.56921e11 −0.381988
426426 −6.47007e11 −0.951845
427427 2.59979e11 0.378454
428428 1.12754e12 1.62419
429429 0 0
430430 2.13440e12 3.01071
431431 3.68494e11 0.514379 0.257189 0.966361i 0.417204π-0.417204\pi
0.257189 + 0.966361i 0.417204π0.417204\pi
432432 −2.92412e12 −4.03941
433433 −1.27102e11 −0.173763 −0.0868816 0.996219i 0.527690π-0.527690\pi
−0.0868816 + 0.996219i 0.527690π0.527690\pi
434434 3.85567e11 0.521671
435435 −5.72312e11 −0.766357
436436 1.26099e12 1.67117
437437 6.02796e11 0.790685
438438 3.38369e12 4.39296
439439 1.19411e12 1.53445 0.767225 0.641378i 0.221637π-0.221637\pi
0.767225 + 0.641378i 0.221637π0.221637\pi
440440 −2.37330e12 −3.01866
441441 −1.73790e12 −2.18802
442442 0 0
443443 1.38757e12 1.71174 0.855869 0.517193i 0.173023π-0.173023\pi
0.855869 + 0.517193i 0.173023π0.173023\pi
444444 −1.26768e12 −1.54805
445445 9.35836e11 1.13130
446446 −9.77680e11 −1.17001
447447 −3.98903e11 −0.472589
448448 −1.51247e10 −0.0177392
449449 1.48266e12 1.72161 0.860804 0.508936i 0.169961π-0.169961\pi
0.860804 + 0.508936i 0.169961π0.169961\pi
450450 −2.10018e12 −2.41435
451451 7.43375e11 0.846084
452452 −4.04079e8 −0.000455348 0
453453 −1.31243e12 −1.46432
454454 −6.10734e11 −0.674684
455455 0 0
456456 −3.54699e12 −3.84166
457457 4.40447e11 0.472357 0.236179 0.971710i 0.424105π-0.424105\pi
0.236179 + 0.971710i 0.424105π0.424105\pi
458458 8.37740e10 0.0889641
459459 1.43016e12 1.50393
460460 2.22345e12 2.31535
461461 8.41995e11 0.868271 0.434135 0.900848i 0.357054π-0.357054\pi
0.434135 + 0.900848i 0.357054π0.357054\pi
462462 −6.95695e11 −0.710444
463463 −1.44593e11 −0.146229 −0.0731143 0.997324i 0.523294π-0.523294\pi
−0.0731143 + 0.997324i 0.523294π0.523294\pi
464464 −5.83673e11 −0.584573
465465 −3.31751e12 −3.29059
466466 1.00423e12 0.986495
467467 −4.63622e11 −0.451064 −0.225532 0.974236i 0.572412π-0.572412\pi
−0.225532 + 0.974236i 0.572412π0.572412\pi
468468 0 0
469469 1.84113e11 0.175714
470470 1.16172e12 1.09815
471471 −1.73731e12 −1.62661
472472 2.59071e12 2.40260
473473 −1.56776e12 −1.44014
474474 3.06739e12 2.79104
475475 −6.27340e11 −0.565433
476476 −3.26152e11 −0.291198
477477 3.92253e12 3.46924
478478 −1.14501e12 −1.00319
479479 −1.85861e11 −0.161316 −0.0806581 0.996742i 0.525702π-0.525702\pi
−0.0806581 + 0.996742i 0.525702π0.525702\pi
480480 −2.44329e12 −2.10082
481481 0 0
482482 −3.28377e12 −2.77116
483483 3.59448e11 0.300520
484484 4.69152e11 0.388606
485485 1.56480e12 1.28417
486486 2.56115e12 2.08243
487487 −7.95509e11 −0.640862 −0.320431 0.947272i 0.603828π-0.603828\pi
−0.320431 + 0.947272i 0.603828π0.603828\pi
488488 −5.20189e12 −4.15214
489489 1.58200e12 1.25117
490490 −2.77363e12 −2.17353
491491 −2.27710e12 −1.76814 −0.884069 0.467357i 0.845206π-0.845206\pi
−0.884069 + 0.467357i 0.845206π0.845206\pi
492492 4.09802e12 3.15305
493493 2.85468e11 0.217644
494494 0 0
495495 4.16124e12 3.11530
496496 −3.38337e12 −2.51005
497497 −8.01150e10 −0.0588993
498498 −6.67946e12 −4.86641
499499 −1.86405e12 −1.34587 −0.672937 0.739700i 0.734967π-0.734967\pi
−0.672937 + 0.739700i 0.734967π0.734967\pi
500500 1.61404e12 1.15491
501501 −2.99979e12 −2.12726
502502 −4.23805e12 −2.97851
503503 3.40170e11 0.236941 0.118470 0.992958i 0.462201π-0.462201\pi
0.118470 + 0.992958i 0.462201π0.462201\pi
504504 −1.47034e12 −1.01504
505505 −6.07997e11 −0.415997
506506 −2.36565e12 −1.60425
507507 0 0
508508 3.67078e12 2.44552
509509 2.95969e11 0.195441 0.0977205 0.995214i 0.468845π-0.468845\pi
0.0977205 + 0.995214i 0.468845π0.468845\pi
510510 4.06492e12 2.66064
511511 4.18982e11 0.271832
512512 3.49262e12 2.24614
513513 3.49210e12 2.22617
514514 4.23496e12 2.67618
515515 2.92098e12 1.82977
516516 −8.64263e12 −5.36688
517517 −8.53307e11 −0.525289
518518 −2.27370e11 −0.138755
519519 5.72005e11 0.346056
520520 0 0
521521 −2.47380e12 −1.47094 −0.735470 0.677557i 0.763039π-0.763039\pi
−0.735470 + 0.677557i 0.763039π0.763039\pi
522522 2.33353e12 1.37562
523523 −2.37854e12 −1.39012 −0.695061 0.718951i 0.744623π-0.744623\pi
−0.695061 + 0.718951i 0.744623π0.744623\pi
524524 1.24965e12 0.724097
525525 −3.74084e11 −0.214908
526526 −4.18956e12 −2.38634
527527 1.65477e12 0.934522
528528 6.10475e12 3.41834
529529 −5.78880e11 −0.321394
530530 6.26023e12 3.44627
531531 −4.54246e12 −2.47951
532532 −7.96385e11 −0.431043
533533 0 0
534534 −5.48895e12 −2.92115
535535 −1.74008e12 −0.918286
536536 −3.68390e12 −1.92782
537537 1.54614e12 0.802351
538538 −4.66638e12 −2.40137
539539 2.03728e12 1.03969
540540 1.28808e13 6.51886
541541 −1.08363e12 −0.543869 −0.271934 0.962316i 0.587663π-0.587663\pi
−0.271934 + 0.962316i 0.587663π0.587663\pi
542542 5.00952e12 2.49344
543543 2.37587e12 1.17280
544544 1.21871e12 0.596629
545545 −1.94602e12 −0.944852
546546 0 0
547547 3.68219e12 1.75858 0.879291 0.476284i 0.158017π-0.158017\pi
0.879291 + 0.476284i 0.158017π0.158017\pi
548548 1.67980e12 0.795693
549549 9.12080e12 4.28506
550550 2.46197e12 1.14723
551551 6.97045e11 0.322165
552552 −7.19215e12 −3.29710
553553 3.79817e11 0.172707
554554 7.23263e11 0.326214
555555 1.95634e12 0.875240
556556 4.33563e12 1.92405
557557 3.50754e12 1.54402 0.772012 0.635608i 0.219251π-0.219251\pi
0.772012 + 0.635608i 0.219251π0.219251\pi
558558 1.35268e13 5.90663
559559 0 0
560560 −1.02913e12 −0.442204
561561 −2.98577e12 −1.27269
562562 2.19991e12 0.930234
563563 −1.84360e12 −0.773354 −0.386677 0.922215i 0.626377π-0.626377\pi
−0.386677 + 0.922215i 0.626377π0.626377\pi
564564 −4.70405e12 −1.95756
565565 6.23596e8 0.000257446 0
566566 9.16968e11 0.375561
567567 9.51889e11 0.386779
568568 1.60301e12 0.646203
569569 4.36016e12 1.74380 0.871900 0.489684i 0.162888π-0.162888\pi
0.871900 + 0.489684i 0.162888π0.162888\pi
570570 9.92558e12 3.93839
571571 2.04857e12 0.806469 0.403234 0.915097i 0.367886π-0.367886\pi
0.403234 + 0.915097i 0.367886π0.367886\pi
572572 0 0
573573 6.92309e12 2.68290
574574 7.35019e11 0.282615
575575 −1.27204e12 −0.485283
576576 −5.30616e11 −0.200853
577577 −1.07704e12 −0.404522 −0.202261 0.979332i 0.564829π-0.564829\pi
−0.202261 + 0.979332i 0.564829π0.564829\pi
578578 2.79470e12 1.04150
579579 −6.99558e12 −2.58684
580580 2.57110e12 0.943392
581581 −8.27077e11 −0.301129
582582 −9.17802e12 −3.31586
583583 −4.59826e12 −1.64849
584584 −8.38335e12 −2.98236
585585 0 0
586586 −1.11384e12 −0.390195
587587 4.32734e11 0.150435 0.0752176 0.997167i 0.476035π-0.476035\pi
0.0752176 + 0.997167i 0.476035π0.476035\pi
588588 1.12310e13 3.87453
589589 4.04055e12 1.38332
590590 −7.24961e12 −2.46309
591591 −7.03923e12 −2.37346
592592 1.99518e12 0.667628
593593 1.08152e10 0.00359159 0.00179579 0.999998i 0.499428π-0.499428\pi
0.00179579 + 0.999998i 0.499428π0.499428\pi
594594 −1.37046e13 −4.51677
595595 5.03335e11 0.164638
596596 1.79206e12 0.581761
597597 −6.20023e12 −1.99767
598598 0 0
599599 −5.31446e12 −1.68670 −0.843351 0.537363i 0.819420π-0.819420\pi
−0.843351 + 0.537363i 0.819420π0.819420\pi
600600 7.48499e12 2.35782
601601 −6.13776e12 −1.91900 −0.959500 0.281708i 0.909099π-0.909099\pi
−0.959500 + 0.281708i 0.909099π0.909099\pi
602602 −1.55014e12 −0.481046
603603 6.45920e12 1.98953
604604 5.89607e12 1.80259
605605 −7.24021e11 −0.219711
606606 3.56607e12 1.07415
607607 −1.27115e12 −0.380055 −0.190028 0.981779i 0.560858π-0.560858\pi
−0.190028 + 0.981779i 0.560858π0.560858\pi
608608 2.97579e12 0.883154
609609 4.15649e11 0.122447
610610 1.45565e13 4.25669
611611 0 0
612612 −1.14423e13 −3.29710
613613 −5.01818e12 −1.43540 −0.717701 0.696351i 0.754806π-0.754806\pi
−0.717701 + 0.696351i 0.754806π0.754806\pi
614614 9.56337e12 2.71552
615615 −6.32428e12 −1.78268
616616 1.72364e12 0.482317
617617 6.53801e12 1.81620 0.908098 0.418758i 0.137535π-0.137535\pi
0.908098 + 0.418758i 0.137535π0.137535\pi
618618 −1.71324e13 −4.72465
619619 3.42618e12 0.937999 0.468999 0.883198i 0.344615π-0.344615\pi
0.468999 + 0.883198i 0.344615π0.344615\pi
620620 1.49038e13 4.05075
621621 7.08083e12 1.91061
622622 1.59712e12 0.427839
623623 −6.79663e11 −0.180758
624624 0 0
625625 −4.73809e12 −1.24206
626626 1.86471e12 0.485318
627627 −7.29053e12 −1.88389
628628 7.80483e12 2.00237
629629 −9.75821e11 −0.248566
630630 4.11447e12 1.04059
631631 5.02001e11 0.126059 0.0630293 0.998012i 0.479924π-0.479924\pi
0.0630293 + 0.998012i 0.479924π0.479924\pi
632632 −7.59970e12 −1.89483
633633 3.20241e12 0.792793
634634 −5.67635e10 −0.0139530
635635 −5.66495e12 −1.38266
636636 −2.53489e13 −6.14331
637637 0 0
638638 −2.73553e12 −0.653655
639639 −2.81066e12 −0.666890
640640 −5.76981e12 −1.35941
641641 2.54269e10 0.00594883 0.00297441 0.999996i 0.499053π-0.499053\pi
0.00297441 + 0.999996i 0.499053π0.499053\pi
642642 1.02061e13 2.37111
643643 8.59506e12 1.98290 0.991448 0.130506i 0.0416602π-0.0416602\pi
0.991448 + 0.130506i 0.0416602π0.0416602\pi
644644 −1.61481e12 −0.369943
645645 1.33378e13 3.03434
646646 −4.95086e12 −1.11850
647647 −1.50426e12 −0.337484 −0.168742 0.985660i 0.553971π-0.553971\pi
−0.168742 + 0.985660i 0.553971π0.553971\pi
648648 −1.90462e13 −4.24347
649649 5.32498e12 1.17819
650650 0 0
651651 2.40939e12 0.525766
652652 −7.10707e12 −1.54020
653653 9.45747e11 0.203548 0.101774 0.994808i 0.467548π-0.467548\pi
0.101774 + 0.994808i 0.467548π0.467548\pi
654654 1.14140e13 2.43971
655655 −1.92852e12 −0.409392
656656 −6.44982e12 −1.35982
657657 1.46990e13 3.07783
658658 −8.43715e11 −0.175461
659659 −2.35144e12 −0.485679 −0.242840 0.970066i 0.578079π-0.578079\pi
−0.242840 + 0.970066i 0.578079π0.578079\pi
660660 −2.68916e13 −5.51656
661661 4.90465e12 0.999313 0.499657 0.866224i 0.333459π-0.333459\pi
0.499657 + 0.866224i 0.333459π0.333459\pi
662662 1.03331e13 2.09108
663663 0 0
664664 1.65489e13 3.30379
665665 1.22902e12 0.243704
666666 −7.97676e12 −1.57106
667667 1.41338e12 0.276498
668668 1.34765e13 2.61868
669669 −6.10946e12 −1.17919
670670 1.03087e13 1.97636
671671 −1.06920e13 −2.03614
672672 1.77447e12 0.335666
673673 −9.17082e12 −1.72322 −0.861609 0.507572i 0.830543π-0.830543\pi
−0.861609 + 0.507572i 0.830543π0.830543\pi
674674 −1.64478e10 −0.00307001
675675 −7.36914e12 −1.36631
676676 0 0
677677 −1.90752e12 −0.348996 −0.174498 0.984657i 0.555830π-0.555830\pi
−0.174498 + 0.984657i 0.555830π0.555830\pi
678678 −3.65757e9 −0.000664751 0
679679 −1.13646e12 −0.205182
680680 −1.00712e13 −1.80630
681681 −3.81644e12 −0.679980
682682 −1.58570e13 −2.80667
683683 −4.52924e12 −0.796402 −0.398201 0.917298i 0.630365π-0.630365\pi
−0.398201 + 0.917298i 0.630365π0.630365\pi
684684 −2.79394e13 −4.88050
685685 −2.59236e12 −0.449871
686686 4.11394e12 0.709250
687687 5.23499e11 0.0896625
688688 1.36025e13 2.31458
689689 0 0
690690 2.01258e13 3.38012
691691 −2.30053e12 −0.383864 −0.191932 0.981408i 0.561475π-0.561475\pi
−0.191932 + 0.981408i 0.561475π0.561475\pi
692692 −2.56971e12 −0.425998
693693 −3.02216e12 −0.497757
694694 1.28435e13 2.10168
695695 −6.69097e12 −1.08782
696696 −8.31667e12 −1.34341
697697 3.15454e12 0.506277
698698 3.20320e12 0.510781
699699 6.27535e12 0.994239
700700 1.68056e12 0.264553
701701 3.06626e11 0.0479599 0.0239799 0.999712i 0.492366π-0.492366\pi
0.0239799 + 0.999712i 0.492366π0.492366\pi
702702 0 0
703703 −2.38272e12 −0.367938
704704 6.22024e11 0.0954399
705705 7.25953e12 1.10677
706706 1.83479e13 2.77950
707707 4.41565e11 0.0664673
708708 2.93551e13 4.39071
709709 6.04990e12 0.899167 0.449584 0.893238i 0.351572π-0.351572\pi
0.449584 + 0.893238i 0.351572π0.351572\pi
710710 −4.48571e12 −0.662474
711711 1.33250e13 1.95548
712712 1.35993e13 1.98315
713713 8.19292e12 1.18723
714714 −2.95220e12 −0.425113
715715 0 0
716716 −6.94598e12 −0.987700
717717 −7.15510e12 −1.01107
718718 −5.49225e12 −0.771241
719719 −9.16534e12 −1.27899 −0.639497 0.768793i 0.720857π-0.720857\pi
−0.639497 + 0.768793i 0.720857π0.720857\pi
720720 −3.61046e13 −5.00687
721721 −2.12140e12 −0.292357
722722 1.03300e12 0.141476
723723 −2.05201e13 −2.79291
724724 −1.06735e13 −1.44372
725725 −1.47093e12 −0.197729
726726 4.24659e12 0.567317
727727 8.62172e12 1.14469 0.572347 0.820012i 0.306033π-0.306033\pi
0.572347 + 0.820012i 0.306033π0.306033\pi
728728 0 0
729729 1.36101e12 0.178479
730730 2.34592e13 3.05746
731731 −6.65285e12 −0.861746
732732 −5.89421e13 −7.58798
733733 −9.24331e12 −1.18266 −0.591330 0.806430i 0.701397π-0.701397\pi
−0.591330 + 0.806430i 0.701397π0.701397\pi
734734 1.66713e13 2.12000
735735 −1.73322e13 −2.19059
736736 6.03393e12 0.757967
737737 −7.57192e12 −0.945371
738738 2.57865e13 3.19992
739739 −1.15675e13 −1.42673 −0.713363 0.700794i 0.752829π-0.752829\pi
−0.713363 + 0.700794i 0.752829π0.752829\pi
740740 −8.78882e12 −1.07743
741741 0 0
742742 −4.54657e12 −0.550638
743743 −2.33434e9 −0.000281006 0 −0.000140503 1.00000i 0.500045π-0.500045\pi
−0.000140503 1.00000i 0.500045π0.500045\pi
744744 −4.82091e13 −5.76834
745745 −2.76560e12 −0.328917
746746 3.99775e12 0.472597
747747 −2.90161e13 −3.40955
748748 1.34135e13 1.56669
749749 1.26376e12 0.146722
750750 1.46096e13 1.68602
751751 −5.08938e12 −0.583828 −0.291914 0.956445i 0.594292π-0.594292\pi
−0.291914 + 0.956445i 0.594292π0.594292\pi
752752 7.40364e12 0.844238
753753 −2.64833e13 −3.00189
754754 0 0
755755 −9.09913e12 −1.01915
756756 −9.35487e12 −1.04157
757757 1.36230e13 1.50779 0.753895 0.656995i 0.228173π-0.228173\pi
0.753895 + 0.656995i 0.228173π0.228173\pi
758758 −7.11692e12 −0.783034
759759 −1.47828e13 −1.61685
760760 −2.45914e13 −2.67376
761761 1.35809e13 1.46791 0.733953 0.679200i 0.237673π-0.237673\pi
0.733953 + 0.679200i 0.237673π0.237673\pi
762762 3.32265e13 3.57016
763763 1.41332e12 0.150967
764764 −3.11018e13 −3.30267
765765 1.76584e13 1.86412
766766 −9.59762e12 −1.00724
767767 0 0
768768 3.23036e13 3.35063
769769 4.88931e12 0.504172 0.252086 0.967705i 0.418883π-0.418883\pi
0.252086 + 0.967705i 0.418883π0.418883\pi
770770 −4.82326e12 −0.494462
771771 2.64640e13 2.69718
772772 3.14274e13 3.18443
773773 −8.52939e12 −0.859231 −0.429616 0.903012i 0.641351π-0.641351\pi
−0.429616 + 0.903012i 0.641351π0.641351\pi
774774 −5.43831e13 −5.44666
775775 −8.52651e12 −0.849011
776776 2.27393e13 2.25112
777777 −1.42082e12 −0.139844
778778 1.40432e13 1.37423
779779 7.70263e12 0.749412
780780 0 0
781781 3.29484e12 0.316888
782782 −1.00387e13 −0.959948
783783 8.18795e12 0.778480
784784 −1.76763e13 −1.67097
785785 −1.20448e13 −1.13211
786786 1.13113e13 1.05709
787787 3.66557e12 0.340608 0.170304 0.985392i 0.445525π-0.445525\pi
0.170304 + 0.985392i 0.445525π0.445525\pi
788788 3.16235e13 2.92175
789789 −2.61803e13 −2.40507
790790 2.12663e13 1.94254
791791 −4.52895e8 −4.11342e−5 0
792792 6.04699e13 5.46105
793793 0 0
794794 −5.65412e12 −0.504862
795795 3.91198e13 3.47332
796796 2.78543e13 2.45914
797797 1.56877e13 1.37720 0.688599 0.725142i 0.258226π-0.258226\pi
0.688599 + 0.725142i 0.258226π0.258226\pi
798798 −7.20858e12 −0.629269
799799 −3.62104e12 −0.314321
800800 −6.27962e12 −0.542036
801801 −2.38445e13 −2.04664
802802 1.42455e13 1.21589
803803 −1.72312e13 −1.46250
804804 −4.17419e13 −3.52306
805805 2.49206e12 0.209159
806806 0 0
807807 −2.91599e13 −2.42022
808808 −8.83522e12 −0.729233
809809 −4.86826e12 −0.399581 −0.199791 0.979839i 0.564026π-0.564026\pi
−0.199791 + 0.979839i 0.564026π0.564026\pi
810810 5.32971e13 4.35032
811811 −2.59157e12 −0.210363 −0.105182 0.994453i 0.533542π-0.533542\pi
−0.105182 + 0.994453i 0.533542π0.533542\pi
812812 −1.86729e12 −0.150734
813813 3.13042e13 2.51302
814814 9.35091e12 0.746524
815815 1.09680e13 0.870800
816816 2.59057e13 2.04546
817817 −1.62447e13 −1.27559
818818 −1.07837e13 −0.842124
819819 0 0
820820 2.84116e13 2.19449
821821 8.93176e12 0.686109 0.343054 0.939316i 0.388538π-0.388538\pi
0.343054 + 0.939316i 0.388538π0.388538\pi
822822 1.52049e13 1.16161
823823 −1.15285e13 −0.875942 −0.437971 0.898989i 0.644303π-0.644303\pi
−0.437971 + 0.898989i 0.644303π0.644303\pi
824824 4.24468e13 3.20755
825825 1.53847e13 1.15624
826826 5.26512e12 0.393549
827827 1.39337e13 1.03584 0.517919 0.855430i 0.326707π-0.326707\pi
0.517919 + 0.855430i 0.326707π0.326707\pi
828828 −5.66520e13 −4.18869
829829 2.18269e13 1.60508 0.802539 0.596600i 0.203482π-0.203482\pi
0.802539 + 0.596600i 0.203482π0.203482\pi
830830 −4.63088e13 −3.38697
831831 4.51963e12 0.328774
832832 0 0
833833 8.64529e12 0.622124
834834 3.92444e13 2.80887
835835 −2.07976e13 −1.48055
836836 3.27525e13 2.31908
837837 4.74630e13 3.34265
838838 5.36783e11 0.0376011
839839 −1.38767e13 −0.966845 −0.483422 0.875387i 0.660606π-0.660606\pi
−0.483422 + 0.875387i 0.660606π0.660606\pi
840840 −1.46639e13 −1.01623
841841 −1.28728e13 −0.887341
842842 −3.94181e13 −2.70266
843843 1.37471e13 0.937536
844844 −1.43867e13 −0.975934
845845 0 0
846846 −2.95999e13 −1.98666
847847 5.25829e11 0.0351050
848848 3.98964e13 2.64943
849849 5.73008e12 0.378509
850850 1.04475e13 0.686477
851851 −4.83138e12 −0.315783
852852 1.81636e13 1.18093
853853 1.45244e13 0.939349 0.469674 0.882840i 0.344371π-0.344371\pi
0.469674 + 0.882840i 0.344371π0.344371\pi
854854 −1.05718e13 −0.680127
855855 4.31176e13 2.75935
856856 −2.52864e13 −1.60974
857857 9.74869e12 0.617352 0.308676 0.951167i 0.400114π-0.400114\pi
0.308676 + 0.951167i 0.400114π0.400114\pi
858858 0 0
859859 1.48176e13 0.928560 0.464280 0.885689i 0.346313π-0.346313\pi
0.464280 + 0.885689i 0.346313π0.346313\pi
860860 −5.99195e13 −3.73530
861861 4.59309e12 0.284833
862862 −1.49845e13 −0.924399
863863 −2.12803e13 −1.30596 −0.652978 0.757377i 0.726481π-0.726481\pi
−0.652978 + 0.757377i 0.726481π0.726481\pi
864864 3.49556e13 2.13405
865865 3.96572e12 0.240851
866866 5.16851e12 0.312273
867867 1.74639e13 1.04968
868868 −1.08241e13 −0.647222
869869 −1.56205e13 −0.929193
870870 2.32726e13 1.37723
871871 0 0
872872 −2.82790e13 −1.65630
873873 −3.98701e13 −2.32318
874874 −2.45122e13 −1.42095
875875 1.80902e12 0.104330
876876 −9.49910e13 −5.45022
877877 4.28604e12 0.244657 0.122329 0.992490i 0.460964π-0.460964\pi
0.122329 + 0.992490i 0.460964π0.460964\pi
878878 −4.85573e13 −2.75759
879879 −6.96029e12 −0.393258
880880 4.23243e13 2.37913
881881 −1.05775e13 −0.591548 −0.295774 0.955258i 0.595578π-0.595578\pi
−0.295774 + 0.955258i 0.595578π0.595578\pi
882882 7.06701e13 3.93212
883883 −2.42773e13 −1.34393 −0.671965 0.740582i 0.734550π-0.734550\pi
−0.671965 + 0.740582i 0.734550π0.734550\pi
884884 0 0
885885 −4.53024e13 −2.48243
886886 −5.64242e13 −3.07619
887887 −1.80906e13 −0.981288 −0.490644 0.871360i 0.663239π-0.663239\pi
−0.490644 + 0.871360i 0.663239π0.663239\pi
888888 2.84290e13 1.53428
889889 4.11424e12 0.220918
890890 −3.80550e13 −2.03309
891891 −3.91478e13 −2.08093
892892 2.74466e13 1.45160
893893 −8.84172e12 −0.465270
894894 1.62211e13 0.849298
895895 1.07194e13 0.558428
896896 4.19040e12 0.217205
897897 0 0
898898 −6.02913e13 −3.09393
899899 9.47391e12 0.483739
900900 5.89587e13 2.99541
901901 −1.95129e13 −0.986415
902902 −3.02287e13 −1.52051
903903 −9.68672e12 −0.484822
904904 9.06191e9 0.000451296 0
905905 1.64719e13 0.816256
906906 5.33690e13 2.63155
907907 −2.42475e13 −1.18969 −0.594845 0.803840i 0.702787π-0.702787\pi
−0.594845 + 0.803840i 0.702787π0.702787\pi
908908 1.71452e13 0.837061
909909 1.54913e13 0.752578
910910 0 0
911911 2.38182e13 1.14572 0.572858 0.819655i 0.305835π-0.305835\pi
0.572858 + 0.819655i 0.305835π0.305835\pi
912912 6.32556e13 3.02776
913913 3.40147e13 1.62012
914914 −1.79104e13 −0.848881
915915 9.09626e13 4.29011
916916 −2.35180e12 −0.110375
917917 1.40061e12 0.0654119
918918 −5.81560e13 −2.70273
919919 −1.33470e13 −0.617252 −0.308626 0.951183i 0.599869π-0.599869\pi
−0.308626 + 0.951183i 0.599869π0.599869\pi
920920 −4.98633e13 −2.29475
921921 5.97610e13 2.73684
922922 −3.42390e13 −1.56038
923923 0 0
924924 1.95304e13 0.881427
925925 5.02810e12 0.225822
926926 5.87975e12 0.262790
927927 −7.44246e13 −3.31023
928928 6.97737e12 0.308834
929929 −1.86929e13 −0.823392 −0.411696 0.911321i 0.635064π-0.635064\pi
−0.411696 + 0.911321i 0.635064π0.635064\pi
930930 1.34904e14 5.91359
931931 2.11097e13 0.920893
932932 −2.81918e13 −1.22392
933933 9.98031e12 0.431198
934934 1.88528e13 0.810614
935935 −2.07004e13 −0.885780
936936 0 0
937937 −1.15777e13 −0.490674 −0.245337 0.969438i 0.578899π-0.578899\pi
−0.245337 + 0.969438i 0.578899π0.578899\pi
938938 −7.48681e12 −0.315779
939939 1.16525e13 0.489128
940940 −3.26132e13 −1.36244
941941 −4.63482e11 −0.0192699 −0.00963495 0.999954i 0.503067π-0.503067\pi
−0.00963495 + 0.999954i 0.503067π0.503067\pi
942942 7.06463e13 2.92321
943943 1.56184e13 0.643183
944944 −4.62017e13 −1.89358
945945 1.44369e13 0.588886
946946 6.37516e13 2.58810
947947 2.71824e12 0.109828 0.0549140 0.998491i 0.482512π-0.482512\pi
0.0549140 + 0.998491i 0.482512π0.482512\pi
948948 −8.61114e13 −3.46277
949949 0 0
950950 2.55102e13 1.01615
951951 −3.54712e11 −0.0140625
952952 7.31431e12 0.288607
953953 3.65718e13 1.43624 0.718122 0.695917i 0.245002π-0.245002\pi
0.718122 + 0.695917i 0.245002π0.245002\pi
954954 −1.59506e14 −6.23462
955955 4.79979e13 1.86727
956956 3.21441e13 1.24463
957957 −1.70942e13 −0.658786
958958 7.55787e12 0.289904
959959 1.88273e12 0.0718795
960960 −5.29188e12 −0.201090
961961 2.84777e13 1.07708
962962 0 0
963963 4.43361e13 1.66127
964964 9.21859e13 3.43809
965965 −4.85005e13 −1.80042
966966 −1.46166e13 −0.540070
967967 −1.32609e13 −0.487701 −0.243851 0.969813i 0.578411π-0.578411\pi
−0.243851 + 0.969813i 0.578411π0.578411\pi
968968 −1.05212e13 −0.385149
969969 −3.09376e13 −1.12728
970970 −6.36314e13 −2.30780
971971 −4.03802e13 −1.45775 −0.728874 0.684648i 0.759956π-0.759956\pi
−0.728874 + 0.684648i 0.759956π0.759956\pi
972972 −7.18996e13 −2.58362
973973 4.85940e12 0.173810
974974 3.23487e13 1.15171
975975 0 0
976976 9.27683e13 3.27247
977977 −2.14482e13 −0.753121 −0.376560 0.926392i 0.622893π-0.622893\pi
−0.376560 + 0.926392i 0.622893π0.622893\pi
978978 −6.43305e13 −2.24850
979979 2.79521e13 0.972506
980980 7.78645e13 2.69664
981981 4.95833e13 1.70933
982982 9.25964e13 3.17755
983983 −4.78240e13 −1.63364 −0.816818 0.576895i 0.804264π-0.804264\pi
−0.816818 + 0.576895i 0.804264π0.804264\pi
984984 −9.19025e13 −3.12500
985985 −4.88031e13 −1.65190
986986 −1.16083e13 −0.391132
987987 −5.27233e12 −0.176838
988988 0 0
989989 −3.29389e13 −1.09478
990990 −1.69213e14 −5.59856
991991 −3.83569e13 −1.26332 −0.631659 0.775246i 0.717626π-0.717626\pi
−0.631659 + 0.775246i 0.717626π0.717626\pi
992992 4.04456e13 1.32608
993993 6.45711e13 2.10750
994994 3.25781e12 0.105849
995995 −4.29863e13 −1.39036
996996 1.87514e14 6.03762
997997 6.36236e12 0.203934 0.101967 0.994788i 0.467486π-0.467486\pi
0.101967 + 0.994788i 0.467486π0.467486\pi
998998 7.57998e13 2.41869
999999 −2.79890e13 −0.889084
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.g.1.4 27
13.12 even 2 169.10.a.h.1.24 yes 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.10.a.g.1.4 27 1.1 even 1 trivial
169.10.a.h.1.24 yes 27 13.12 even 2