Properties

Label 169.10.a.f.1.8
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.8
Root 13.9570-13.9570 of defining polynomial
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q13.9570q2+25.6151q3317.202q4792.583q5357.510q6+900.794q7+11573.2q819026.9q9+11062.1q1093909.0q118125.15q1212572.4q1420302.1q15+880.307q16270555.q17+265558.q18+76689.5q19+251409.q20+23073.9q21+1.31069e6q221.13631e6q23+296448.q241.32494e6q25991556.q27285733.q28+1.50238e6q29+283356.q306.12021e6q315.93775e6q322.40549e6q33+3.77614e6q34713954.q35+6.03536e6q369.31155e6q371.07036e6q389.17271e6q402.47362e7q41322043.q428.43526e6q43+2.97881e7q44+1.50804e7q45+1.58595e7q463.11511e6q47+22549.1q483.95422e7q49+1.84922e7q506.93028e6q51+8.73907e7q53+1.38392e7q54+7.44307e7q55+1.04250e7q56+1.96441e6q572.09688e7q583.70438e7q59+6.43986e6q601.01770e8q61+8.54199e7q621.71393e7q63+8.24226e7q64+3.35734e7q661.94333e8q67+8.58205e7q682.91068e7q69+9.96467e6q702.97949e8q712.20201e8q721.91567e8q73+1.29961e8q743.39384e7q752.43261e7q768.45927e7q77+9.03350e7q79697717.q80+3.49107e8q81+3.45244e8q82+5.79960e8q837.31908e6q84+2.14437e8q85+1.17731e8q86+3.84837e7q871.08683e9q881.20357e8q892.10477e8q90+3.60441e8q921.56770e8q93+4.34777e7q946.07828e7q951.52096e8q961.31027e9q97+5.51891e8q98+1.78679e9q99+O(q100)q-13.9570 q^{2} +25.6151 q^{3} -317.202 q^{4} -792.583 q^{5} -357.510 q^{6} +900.794 q^{7} +11573.2 q^{8} -19026.9 q^{9} +11062.1 q^{10} -93909.0 q^{11} -8125.15 q^{12} -12572.4 q^{14} -20302.1 q^{15} +880.307 q^{16} -270555. q^{17} +265558. q^{18} +76689.5 q^{19} +251409. q^{20} +23073.9 q^{21} +1.31069e6 q^{22} -1.13631e6 q^{23} +296448. q^{24} -1.32494e6 q^{25} -991556. q^{27} -285733. q^{28} +1.50238e6 q^{29} +283356. q^{30} -6.12021e6 q^{31} -5.93775e6 q^{32} -2.40549e6 q^{33} +3.77614e6 q^{34} -713954. q^{35} +6.03536e6 q^{36} -9.31155e6 q^{37} -1.07036e6 q^{38} -9.17271e6 q^{40} -2.47362e7 q^{41} -322043. q^{42} -8.43526e6 q^{43} +2.97881e7 q^{44} +1.50804e7 q^{45} +1.58595e7 q^{46} -3.11511e6 q^{47} +22549.1 q^{48} -3.95422e7 q^{49} +1.84922e7 q^{50} -6.93028e6 q^{51} +8.73907e7 q^{53} +1.38392e7 q^{54} +7.44307e7 q^{55} +1.04250e7 q^{56} +1.96441e6 q^{57} -2.09688e7 q^{58} -3.70438e7 q^{59} +6.43986e6 q^{60} -1.01770e8 q^{61} +8.54199e7 q^{62} -1.71393e7 q^{63} +8.24226e7 q^{64} +3.35734e7 q^{66} -1.94333e8 q^{67} +8.58205e7 q^{68} -2.91068e7 q^{69} +9.96467e6 q^{70} -2.97949e8 q^{71} -2.20201e8 q^{72} -1.91567e8 q^{73} +1.29961e8 q^{74} -3.39384e7 q^{75} -2.43261e7 q^{76} -8.45927e7 q^{77} +9.03350e7 q^{79} -697717. q^{80} +3.49107e8 q^{81} +3.45244e8 q^{82} +5.79960e8 q^{83} -7.31908e6 q^{84} +2.14437e8 q^{85} +1.17731e8 q^{86} +3.84837e7 q^{87} -1.08683e9 q^{88} -1.20357e8 q^{89} -2.10477e8 q^{90} +3.60441e8 q^{92} -1.56770e8 q^{93} +4.34777e7 q^{94} -6.07828e7 q^{95} -1.52096e8 q^{96} -1.31027e9 q^{97} +5.51891e8 q^{98} +1.78679e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −13.9570 −0.616819 −0.308409 0.951254i 0.599797π-0.599797\pi
−0.308409 + 0.951254i 0.599797π0.599797\pi
33 25.6151 0.182579 0.0912893 0.995824i 0.470901π-0.470901\pi
0.0912893 + 0.995824i 0.470901π0.470901\pi
44 −317.202 −0.619535
55 −792.583 −0.567126 −0.283563 0.958954i 0.591517π-0.591517\pi
−0.283563 + 0.958954i 0.591517π0.591517\pi
66 −357.510 −0.112618
77 900.794 0.141803 0.0709013 0.997483i 0.477412π-0.477412\pi
0.0709013 + 0.997483i 0.477412π0.477412\pi
88 11573.2 0.998959
99 −19026.9 −0.966665
1010 11062.1 0.349814
1111 −93909.0 −1.93393 −0.966964 0.254914i 0.917953π-0.917953\pi
−0.966964 + 0.254914i 0.917953π0.917953\pi
1212 −8125.15 −0.113114
1313 0 0
1414 −12572.4 −0.0874665
1515 −20302.1 −0.103545
1616 880.307 0.00335811
1717 −270555. −0.785661 −0.392831 0.919611i 0.628504π-0.628504\pi
−0.392831 + 0.919611i 0.628504π0.628504\pi
1818 265558. 0.596257
1919 76689.5 0.135003 0.0675017 0.997719i 0.478497π-0.478497\pi
0.0675017 + 0.997719i 0.478497π0.478497\pi
2020 251409. 0.351355
2121 23073.9 0.0258901
2222 1.31069e6 1.19288
2323 −1.13631e6 −0.846687 −0.423344 0.905969i 0.639144π-0.639144\pi
−0.423344 + 0.905969i 0.639144π0.639144\pi
2424 296448. 0.182389
2525 −1.32494e6 −0.678368
2626 0 0
2727 −991556. −0.359071
2828 −285733. −0.0878517
2929 1.50238e6 0.394448 0.197224 0.980358i 0.436807π-0.436807\pi
0.197224 + 0.980358i 0.436807π0.436807\pi
3030 283356. 0.0638686
3131 −6.12021e6 −1.19025 −0.595126 0.803632i 0.702898π-0.702898\pi
−0.595126 + 0.803632i 0.702898π0.702898\pi
3232 −5.93775e6 −1.00103
3333 −2.40549e6 −0.353094
3434 3.77614e6 0.484610
3535 −713954. −0.0804200
3636 6.03536e6 0.598883
3737 −9.31155e6 −0.816797 −0.408399 0.912804i 0.633913π-0.633913\pi
−0.408399 + 0.912804i 0.633913π0.633913\pi
3838 −1.07036e6 −0.0832726
3939 0 0
4040 −9.17271e6 −0.566536
4141 −2.47362e7 −1.36712 −0.683559 0.729896i 0.739569π-0.739569\pi
−0.683559 + 0.729896i 0.739569π0.739569\pi
4242 −322043. −0.0159695
4343 −8.43526e6 −0.376262 −0.188131 0.982144i 0.560243π-0.560243\pi
−0.188131 + 0.982144i 0.560243π0.560243\pi
4444 2.97881e7 1.19814
4545 1.50804e7 0.548221
4646 1.58595e7 0.522253
4747 −3.11511e6 −0.0931180 −0.0465590 0.998916i 0.514826π-0.514826\pi
−0.0465590 + 0.998916i 0.514826π0.514826\pi
4848 22549.1 0.000613118 0
4949 −3.95422e7 −0.979892
5050 1.84922e7 0.418430
5151 −6.93028e6 −0.143445
5252 0 0
5353 8.73907e7 1.52133 0.760666 0.649144i 0.224873π-0.224873\pi
0.760666 + 0.649144i 0.224873π0.224873\pi
5454 1.38392e7 0.221482
5555 7.44307e7 1.09678
5656 1.04250e7 0.141655
5757 1.96441e6 0.0246487
5858 −2.09688e7 −0.243303
5959 −3.70438e7 −0.397999 −0.198999 0.980000i 0.563769π-0.563769\pi
−0.198999 + 0.980000i 0.563769π0.563769\pi
6060 6.43986e6 0.0641498
6161 −1.01770e8 −0.941103 −0.470551 0.882373i 0.655945π-0.655945\pi
−0.470551 + 0.882373i 0.655945π0.655945\pi
6262 8.54199e7 0.734170
6363 −1.71393e7 −0.137076
6464 8.24226e7 0.614096
6565 0 0
6666 3.35734e7 0.217795
6767 −1.94333e8 −1.17817 −0.589087 0.808070i 0.700513π-0.700513\pi
−0.589087 + 0.808070i 0.700513π0.700513\pi
6868 8.58205e7 0.486744
6969 −2.91068e7 −0.154587
7070 9.96467e6 0.0496046
7171 −2.97949e8 −1.39149 −0.695745 0.718289i 0.744926π-0.744926\pi
−0.695745 + 0.718289i 0.744926π0.744926\pi
7272 −2.20201e8 −0.965659
7373 −1.91567e8 −0.789529 −0.394765 0.918782i 0.629174π-0.629174\pi
−0.394765 + 0.918782i 0.629174π0.629174\pi
7474 1.29961e8 0.503816
7575 −3.39384e7 −0.123855
7676 −2.43261e7 −0.0836393
7777 −8.45927e7 −0.274236
7878 0 0
7979 9.03350e7 0.260936 0.130468 0.991453i 0.458352π-0.458352\pi
0.130468 + 0.991453i 0.458352π0.458352\pi
8080 −697717. −0.00190447
8181 3.49107e8 0.901106
8282 3.45244e8 0.843263
8383 5.79960e8 1.34136 0.670682 0.741745i 0.266002π-0.266002\pi
0.670682 + 0.741745i 0.266002π0.266002\pi
8484 −7.31908e6 −0.0160398
8585 2.14437e8 0.445569
8686 1.17731e8 0.232085
8787 3.84837e7 0.0720178
8888 −1.08683e9 −1.93191
8989 −1.20357e8 −0.203336 −0.101668 0.994818i 0.532418π-0.532418\pi
−0.101668 + 0.994818i 0.532418π0.532418\pi
9090 −2.10477e8 −0.338153
9191 0 0
9292 3.60441e8 0.524552
9393 −1.56770e8 −0.217315
9494 4.34777e7 0.0574369
9595 −6.07828e7 −0.0765640
9696 −1.52096e8 −0.182767
9797 −1.31027e9 −1.50276 −0.751380 0.659870i 0.770611π-0.770611\pi
−0.751380 + 0.659870i 0.770611π0.770611\pi
9898 5.51891e8 0.604416
9999 1.78679e9 1.86946
100100 4.20272e8 0.420272
101101 7.10019e8 0.678928 0.339464 0.940619i 0.389754π-0.389754\pi
0.339464 + 0.940619i 0.389754π0.389754\pi
102102 9.67261e7 0.0884795
103103 1.73311e9 1.51726 0.758628 0.651524i 0.225870π-0.225870\pi
0.758628 + 0.651524i 0.225870π0.225870\pi
104104 0 0
105105 −1.82880e7 −0.0146830
106106 −1.21971e9 −0.938385
107107 4.45091e7 0.0328263 0.0164131 0.999865i 0.494775π-0.494775\pi
0.0164131 + 0.999865i 0.494775π0.494775\pi
108108 3.14523e8 0.222457
109109 3.30751e8 0.224431 0.112215 0.993684i 0.464205π-0.464205\pi
0.112215 + 0.993684i 0.464205π0.464205\pi
110110 −1.03883e9 −0.676515
111111 −2.38516e8 −0.149130
112112 792975. 0.000476188 0
113113 8.19291e8 0.472700 0.236350 0.971668i 0.424049π-0.424049\pi
0.236350 + 0.971668i 0.424049π0.424049\pi
114114 −2.74173e7 −0.0152038
115115 9.00623e8 0.480179
116116 −4.76559e8 −0.244374
117117 0 0
118118 5.17021e8 0.245493
119119 −2.43714e8 −0.111409
120120 −2.34960e8 −0.103437
121121 6.46095e9 2.74008
122122 1.42041e9 0.580490
123123 −6.33620e8 −0.249606
124124 1.94134e9 0.737403
125125 2.59814e9 0.951847
126126 2.39213e8 0.0845508
127127 −3.79954e9 −1.29603 −0.648014 0.761628i 0.724400π-0.724400\pi
−0.648014 + 0.761628i 0.724400π0.724400\pi
128128 1.88976e9 0.622245
129129 −2.16070e8 −0.0686974
130130 0 0
131131 3.47951e9 1.03228 0.516140 0.856504i 0.327368π-0.327368\pi
0.516140 + 0.856504i 0.327368π0.327368\pi
132132 7.63025e8 0.218754
133133 6.90815e7 0.0191438
134134 2.71231e9 0.726720
135135 7.85891e8 0.203639
136136 −3.13118e9 −0.784844
137137 1.42545e9 0.345709 0.172854 0.984947i 0.444701π-0.444701\pi
0.172854 + 0.984947i 0.444701π0.444701\pi
138138 4.06243e8 0.0953522
139139 5.35614e9 1.21698 0.608492 0.793560i 0.291775π-0.291775\pi
0.608492 + 0.793560i 0.291775π0.291775\pi
140140 2.26468e8 0.0498230
141141 −7.97939e7 −0.0170014
142142 4.15848e9 0.858297
143143 0 0
144144 −1.67495e7 −0.00324616
145145 −1.19076e9 −0.223702
146146 2.67371e9 0.486996
147147 −1.01288e9 −0.178907
148148 2.95364e9 0.506034
149149 −8.36102e9 −1.38970 −0.694850 0.719155i 0.744529π-0.744529\pi
−0.694850 + 0.719155i 0.744529π0.744529\pi
150150 4.73678e8 0.0763963
151151 1.96431e9 0.307478 0.153739 0.988111i 0.450868π-0.450868\pi
0.153739 + 0.988111i 0.450868π0.450868\pi
152152 8.87542e8 0.134863
153153 5.14781e9 0.759471
154154 1.18066e9 0.169154
155155 4.85078e9 0.675023
156156 0 0
157157 6.03427e9 0.792640 0.396320 0.918112i 0.370287π-0.370287\pi
0.396320 + 0.918112i 0.370287π0.370287\pi
158158 −1.26081e9 −0.160950
159159 2.23852e9 0.277763
160160 4.70617e9 0.567711
161161 −1.02358e9 −0.120062
162162 −4.87249e9 −0.555819
163163 6.50794e8 0.0722104 0.0361052 0.999348i 0.488505π-0.488505\pi
0.0361052 + 0.999348i 0.488505π0.488505\pi
164164 7.84637e9 0.846977
165165 1.90655e9 0.200249
166166 −8.09450e9 −0.827378
167167 2.16697e9 0.215590 0.107795 0.994173i 0.465621π-0.465621\pi
0.107795 + 0.994173i 0.465621π0.465621\pi
168168 2.67038e8 0.0258632
169169 0 0
170170 −2.99290e9 −0.274835
171171 −1.45916e9 −0.130503
172172 2.67568e9 0.233107
173173 1.33630e10 1.13422 0.567110 0.823642i 0.308062π-0.308062\pi
0.567110 + 0.823642i 0.308062π0.308062\pi
174174 −5.37117e8 −0.0444219
175175 −1.19349e9 −0.0961943
176176 −8.26688e7 −0.00649433
177177 −9.48881e8 −0.0726661
178178 1.67982e9 0.125422
179179 −1.51263e10 −1.10127 −0.550635 0.834746i 0.685614π-0.685614\pi
−0.550635 + 0.834746i 0.685614π0.685614\pi
180180 −4.78352e9 −0.339642
181181 −2.06849e10 −1.43252 −0.716260 0.697834i 0.754148π-0.754148\pi
−0.716260 + 0.697834i 0.754148π0.754148\pi
182182 0 0
183183 −2.60686e9 −0.171825
184184 −1.31508e10 −0.845806
185185 7.38018e9 0.463227
186186 2.18804e9 0.134044
187187 2.54075e10 1.51941
188188 9.88120e8 0.0576898
189189 −8.93188e8 −0.0509172
190190 8.48347e8 0.0472261
191191 −1.68096e10 −0.913919 −0.456960 0.889487i 0.651062π-0.651062\pi
−0.456960 + 0.889487i 0.651062π0.651062\pi
192192 2.11126e9 0.112121
193193 5.39946e9 0.280119 0.140060 0.990143i 0.455271π-0.455271\pi
0.140060 + 0.990143i 0.455271π0.455271\pi
194194 1.82875e10 0.926930
195195 0 0
196196 1.25428e10 0.607077
197197 −1.33679e10 −0.632362 −0.316181 0.948699i 0.602401π-0.602401\pi
−0.316181 + 0.948699i 0.602401π0.602401\pi
198198 −2.49383e10 −1.15312
199199 −3.72907e10 −1.68563 −0.842813 0.538206i 0.819102π-0.819102\pi
−0.842813 + 0.538206i 0.819102π0.819102\pi
200200 −1.53337e10 −0.677662
201201 −4.97785e9 −0.215109
202202 −9.90974e9 −0.418775
203203 1.35334e9 0.0559338
204204 2.19830e9 0.0888691
205205 1.96055e10 0.775328
206206 −2.41891e10 −0.935872
207207 2.16205e10 0.818463
208208 0 0
209209 −7.20184e9 −0.261087
210210 2.55246e8 0.00905673
211211 4.41630e10 1.53387 0.766933 0.641728i 0.221782π-0.221782\pi
0.766933 + 0.641728i 0.221782π0.221782\pi
212212 −2.77205e10 −0.942518
213213 −7.63200e9 −0.254056
214214 −6.21214e8 −0.0202479
215215 6.68564e9 0.213388
216216 −1.14755e10 −0.358697
217217 −5.51305e9 −0.168781
218218 −4.61630e9 −0.138433
219219 −4.90701e9 −0.144151
220220 −2.36096e10 −0.679494
221221 0 0
222222 3.32897e9 0.0919860
223223 4.64388e10 1.25750 0.628751 0.777607i 0.283566π-0.283566\pi
0.628751 + 0.777607i 0.283566π0.283566\pi
224224 −5.34869e9 −0.141949
225225 2.52094e10 0.655754
226226 −1.14349e10 −0.291570
227227 4.79078e10 1.19754 0.598770 0.800921i 0.295656π-0.295656\pi
0.598770 + 0.800921i 0.295656π0.295656\pi
228228 −6.23114e8 −0.0152708
229229 −2.52672e10 −0.607152 −0.303576 0.952807i 0.598181π-0.598181\pi
−0.303576 + 0.952807i 0.598181π0.598181\pi
230230 −1.25700e10 −0.296183
231231 −2.16685e9 −0.0500696
232232 1.73874e10 0.394038
233233 −5.41842e10 −1.20440 −0.602201 0.798345i 0.705709π-0.705709\pi
−0.602201 + 0.798345i 0.705709π0.705709\pi
234234 0 0
235235 2.46899e9 0.0528097
236236 1.17504e10 0.246574
237237 2.31394e9 0.0476414
238238 3.40152e9 0.0687190
239239 −1.55035e10 −0.307355 −0.153677 0.988121i 0.549112π-0.549112\pi
−0.153677 + 0.988121i 0.549112π0.549112\pi
240240 −1.78721e7 −0.000347716 0
241241 −7.54174e10 −1.44011 −0.720054 0.693918i 0.755883π-0.755883\pi
−0.720054 + 0.693918i 0.755883π0.755883\pi
242242 −9.01756e10 −1.69013
243243 2.84592e10 0.523594
244244 3.22817e10 0.583046
245245 3.13405e10 0.555723
246246 8.84344e9 0.153962
247247 0 0
248248 −7.08303e10 −1.18901
249249 1.48557e10 0.244904
250250 −3.62622e10 −0.587117
251251 −5.95728e10 −0.947363 −0.473682 0.880696i 0.657075π-0.657075\pi
−0.473682 + 0.880696i 0.657075π0.657075\pi
252252 5.43661e9 0.0849231
253253 1.06710e11 1.63743
254254 5.30303e10 0.799415
255255 5.49283e9 0.0813514
256256 −6.85757e10 −0.997908
257257 8.69774e10 1.24368 0.621838 0.783146i 0.286386π-0.286386\pi
0.621838 + 0.783146i 0.286386π0.286386\pi
258258 3.01569e9 0.0423738
259259 −8.38779e9 −0.115824
260260 0 0
261261 −2.85857e10 −0.381299
262262 −4.85636e10 −0.636729
263263 −1.27752e11 −1.64652 −0.823262 0.567662i 0.807848π-0.807848\pi
−0.823262 + 0.567662i 0.807848π0.807848\pi
264264 −2.78391e10 −0.352726
265265 −6.92644e10 −0.862787
266266 −9.64171e8 −0.0118083
267267 −3.08295e9 −0.0371249
268268 6.16427e10 0.729920
269269 −7.77282e9 −0.0905093 −0.0452547 0.998975i 0.514410π-0.514410\pi
−0.0452547 + 0.998975i 0.514410π0.514410\pi
270270 −1.09687e10 −0.125608
271271 −1.55085e11 −1.74665 −0.873327 0.487135i 0.838042π-0.838042\pi
−0.873327 + 0.487135i 0.838042π0.838042\pi
272272 −2.38171e8 −0.00263833
273273 0 0
274274 −1.98951e10 −0.213240
275275 1.24423e11 1.31191
276276 9.23272e9 0.0957720
277277 −9.67202e10 −0.987093 −0.493547 0.869719i 0.664300π-0.664300\pi
−0.493547 + 0.869719i 0.664300π0.664300\pi
278278 −7.47556e10 −0.750659
279279 1.16448e11 1.15058
280280 −8.26272e9 −0.0803363
281281 8.18438e9 0.0783082 0.0391541 0.999233i 0.487534π-0.487534\pi
0.0391541 + 0.999233i 0.487534π0.487534\pi
282282 1.11368e9 0.0104868
283283 3.10558e10 0.287809 0.143904 0.989592i 0.454034π-0.454034\pi
0.143904 + 0.989592i 0.454034π0.454034\pi
284284 9.45101e10 0.862076
285285 −1.55696e9 −0.0139790
286286 0 0
287287 −2.22822e10 −0.193861
288288 1.12977e11 0.967661
289289 −4.53879e10 −0.382736
290290 1.66195e10 0.137984
291291 −3.35628e10 −0.274372
292292 6.07654e10 0.489141
293293 1.83800e11 1.45694 0.728468 0.685080i 0.240233π-0.240233\pi
0.728468 + 0.685080i 0.240233π0.240233\pi
294294 1.41367e10 0.110353
295295 2.93603e10 0.225716
296296 −1.07764e11 −0.815947
297297 9.31160e10 0.694417
298298 1.16695e11 0.857193
299299 0 0
300300 1.07653e10 0.0767327
301301 −7.59843e9 −0.0533549
302302 −2.74160e10 −0.189658
303303 1.81872e10 0.123958
304304 6.75103e7 0.000453356 0
305305 8.06615e10 0.533724
306306 −7.18481e10 −0.468456
307307 −1.10486e11 −0.709877 −0.354938 0.934890i 0.615498π-0.615498\pi
−0.354938 + 0.934890i 0.615498π0.615498\pi
308308 2.68329e10 0.169899
309309 4.43938e10 0.277019
310310 −6.77024e10 −0.416367
311311 −2.30844e11 −1.39926 −0.699629 0.714506i 0.746651π-0.746651\pi
−0.699629 + 0.714506i 0.746651π0.746651\pi
312312 0 0
313313 −2.06281e11 −1.21481 −0.607406 0.794392i 0.707790π-0.707790\pi
−0.607406 + 0.794392i 0.707790π0.707790\pi
314314 −8.42203e10 −0.488915
315315 1.35843e10 0.0777392
316316 −2.86544e10 −0.161659
317317 1.14975e11 0.639492 0.319746 0.947503i 0.396402π-0.396402\pi
0.319746 + 0.947503i 0.396402π0.396402\pi
318318 −3.12430e10 −0.171329
319319 −1.41087e11 −0.762834
320320 −6.53268e10 −0.348270
321321 1.14010e9 0.00599338
322322 1.42862e10 0.0740568
323323 −2.07487e10 −0.106067
324324 −1.10737e11 −0.558267
325325 0 0
326326 −9.08314e9 −0.0445407
327327 8.47222e9 0.0409762
328328 −2.86277e11 −1.36569
329329 −2.80608e9 −0.0132044
330330 −2.66097e10 −0.123517
331331 −2.87360e11 −1.31583 −0.657915 0.753092i 0.728561π-0.728561\pi
−0.657915 + 0.753092i 0.728561π0.728561\pi
332332 −1.83964e11 −0.831021
333333 1.77170e11 0.789570
334334 −3.02445e10 −0.132980
335335 1.54025e11 0.668174
336336 2.03121e7 8.69418e−5 0
337337 2.34936e11 0.992237 0.496118 0.868255i 0.334758π-0.334758\pi
0.496118 + 0.868255i 0.334758π0.334758\pi
338338 0 0
339339 2.09862e10 0.0863048
340340 −6.80199e10 −0.276046
341341 5.74743e11 2.30186
342342 2.03655e10 0.0804968
343343 −7.19696e10 −0.280754
344344 −9.76227e10 −0.375870
345345 2.30695e10 0.0876704
346346 −1.86508e11 −0.699608
347347 −2.59073e11 −0.959267 −0.479633 0.877469i 0.659230π-0.659230\pi
−0.479633 + 0.877469i 0.659230π0.659230\pi
348348 −1.22071e10 −0.0446175
349349 −2.38690e11 −0.861233 −0.430616 0.902535i 0.641704π-0.641704\pi
−0.430616 + 0.902535i 0.641704π0.641704\pi
350350 1.66576e10 0.0593344
351351 0 0
352352 5.57609e11 1.93592
353353 5.68374e10 0.194827 0.0974133 0.995244i 0.468943π-0.468943\pi
0.0974133 + 0.995244i 0.468943π0.468943\pi
354354 1.32435e10 0.0448218
355355 2.36150e11 0.789151
356356 3.81774e10 0.125974
357357 −6.24276e9 −0.0203409
358358 2.11118e11 0.679284
359359 5.45231e10 0.173243 0.0866214 0.996241i 0.472393π-0.472393\pi
0.0866214 + 0.996241i 0.472393π0.472393\pi
360360 1.74528e11 0.547651
361361 −3.16806e11 −0.981774
362362 2.88700e11 0.883605
363363 1.65498e11 0.500279
364364 0 0
365365 1.51833e11 0.447763
366366 3.63839e10 0.105985
367367 3.50164e11 1.00757 0.503785 0.863829i 0.331941π-0.331941\pi
0.503785 + 0.863829i 0.331941π0.331941\pi
368368 −1.00031e9 −0.00284327
369369 4.70653e11 1.32154
370370 −1.03005e11 −0.285727
371371 7.87210e10 0.215729
372372 4.97276e10 0.134634
373373 4.00096e11 1.07022 0.535112 0.844781i 0.320269π-0.320269\pi
0.535112 + 0.844781i 0.320269π0.320269\pi
374374 −3.54613e11 −0.937201
375375 6.65515e10 0.173787
376376 −3.60518e10 −0.0930211
377377 0 0
378378 1.24662e10 0.0314067
379379 −5.52350e11 −1.37511 −0.687556 0.726132i 0.741316π-0.741316\pi
−0.687556 + 0.726132i 0.741316π0.741316\pi
380380 1.92804e10 0.0474341
381381 −9.73256e10 −0.236627
382382 2.34612e11 0.563722
383383 −1.14780e11 −0.272565 −0.136282 0.990670i 0.543515π-0.543515\pi
−0.136282 + 0.990670i 0.543515π0.543515\pi
384384 4.84063e10 0.113609
385385 6.70467e10 0.155526
386386 −7.53604e10 −0.172783
387387 1.60497e11 0.363719
388388 4.15621e11 0.931012
389389 2.37272e11 0.525380 0.262690 0.964880i 0.415390π-0.415390\pi
0.262690 + 0.964880i 0.415390π0.415390\pi
390390 0 0
391391 3.07435e11 0.665209
392392 −4.57629e11 −0.978872
393393 8.91279e10 0.188472
394394 1.86576e11 0.390053
395395 −7.15980e10 −0.147984
396396 −5.66774e11 −1.15820
397397 6.75774e10 0.136535 0.0682676 0.997667i 0.478253π-0.478253\pi
0.0682676 + 0.997667i 0.478253π0.478253\pi
398398 5.20466e11 1.03973
399399 1.76953e9 0.00349526
400400 −1.16635e9 −0.00227803
401401 −5.33264e11 −1.02989 −0.514947 0.857222i 0.672188π-0.672188\pi
−0.514947 + 0.857222i 0.672188π0.672188\pi
402402 6.94759e10 0.132684
403403 0 0
404404 −2.25219e11 −0.420619
405405 −2.76696e11 −0.511041
406406 −1.88886e10 −0.0345010
407407 8.74439e11 1.57963
408408 −8.02054e10 −0.143296
409409 −2.09851e11 −0.370814 −0.185407 0.982662i 0.559360π-0.559360\pi
−0.185407 + 0.982662i 0.559360π0.559360\pi
410410 −2.73634e11 −0.478237
411411 3.65131e10 0.0631191
412412 −5.49746e11 −0.939993
413413 −3.33689e10 −0.0564373
414414 −3.01758e11 −0.504843
415415 −4.59666e11 −0.760723
416416 0 0
417417 1.37198e11 0.222195
418418 1.00516e11 0.161043
419419 −8.01511e10 −0.127042 −0.0635209 0.997981i 0.520233π-0.520233\pi
−0.0635209 + 0.997981i 0.520233π0.520233\pi
420420 5.80098e9 0.00909661
421421 3.45188e11 0.535533 0.267766 0.963484i 0.413714π-0.413714\pi
0.267766 + 0.963484i 0.413714π0.413714\pi
422422 −6.16383e11 −0.946117
423423 5.92709e10 0.0900139
424424 1.01139e12 1.51975
425425 3.58468e11 0.532967
426426 1.06520e11 0.156707
427427 −9.16741e10 −0.133451
428428 −1.41184e10 −0.0203370
429429 0 0
430430 −9.33116e10 −0.131622
431431 −3.08222e11 −0.430245 −0.215122 0.976587i 0.569015π-0.569015\pi
−0.215122 + 0.976587i 0.569015π0.569015\pi
432432 −8.72874e8 −0.00120580
433433 6.15726e11 0.841767 0.420883 0.907115i 0.361720π-0.361720\pi
0.420883 + 0.907115i 0.361720π0.361720\pi
434434 7.69457e10 0.104107
435435 −3.05015e10 −0.0408432
436436 −1.04915e11 −0.139043
437437 −8.71434e10 −0.114306
438438 6.84872e10 0.0889151
439439 −8.58421e11 −1.10309 −0.551544 0.834146i 0.685961π-0.685961\pi
−0.551544 + 0.834146i 0.685961π0.685961\pi
440440 8.61400e11 1.09564
441441 7.52364e11 0.947227
442442 0 0
443443 −5.70446e10 −0.0703717 −0.0351859 0.999381i 0.511202π-0.511202\pi
−0.0351859 + 0.999381i 0.511202π0.511202\pi
444444 7.56577e10 0.0923911
445445 9.53927e10 0.115317
446446 −6.48146e11 −0.775651
447447 −2.14168e11 −0.253729
448448 7.42458e10 0.0870804
449449 1.29769e12 1.50683 0.753414 0.657546i 0.228406π-0.228406\pi
0.753414 + 0.657546i 0.228406π0.228406\pi
450450 −3.51848e11 −0.404481
451451 2.32295e12 2.64391
452452 −2.59881e11 −0.292854
453453 5.03160e10 0.0561390
454454 −6.68650e11 −0.738665
455455 0 0
456456 2.27344e10 0.0246231
457457 1.77521e12 1.90382 0.951912 0.306373i 0.0991153π-0.0991153\pi
0.951912 + 0.306373i 0.0991153π0.0991153\pi
458458 3.52655e11 0.374503
459459 2.68270e11 0.282108
460460 −2.85679e11 −0.297487
461461 −3.65491e11 −0.376897 −0.188448 0.982083i 0.560346π-0.560346\pi
−0.188448 + 0.982083i 0.560346π0.560346\pi
462462 3.02427e10 0.0308839
463463 −6.08125e11 −0.615005 −0.307502 0.951547i 0.599493π-0.599493\pi
−0.307502 + 0.951547i 0.599493π0.599493\pi
464464 1.32256e9 0.00132460
465465 1.24253e11 0.123245
466466 7.56250e11 0.742897
467467 1.29905e12 1.26386 0.631932 0.775024i 0.282262π-0.282262\pi
0.631932 + 0.775024i 0.282262π0.282262\pi
468468 0 0
469469 −1.75054e11 −0.167068
470470 −3.44597e10 −0.0325740
471471 1.54568e11 0.144719
472472 −4.28715e11 −0.397585
473473 7.92147e11 0.727663
474474 −3.22957e10 −0.0293861
475475 −1.01609e11 −0.0915820
476476 7.73066e10 0.0690216
477477 −1.66277e12 −1.47062
478478 2.16383e11 0.189582
479479 −1.08153e12 −0.938706 −0.469353 0.883011i 0.655513π-0.655513\pi
−0.469353 + 0.883011i 0.655513π0.655513\pi
480480 1.20549e11 0.103652
481481 0 0
482482 1.05260e12 0.888285
483483 −2.62192e10 −0.0219208
484484 −2.04943e12 −1.69757
485485 1.03850e12 0.852254
486486 −3.97205e11 −0.322962
487487 2.07131e12 1.66865 0.834325 0.551273i 0.185858π-0.185858\pi
0.834325 + 0.551273i 0.185858π0.185858\pi
488488 −1.17781e12 −0.940123
489489 1.66701e10 0.0131841
490490 −4.37419e11 −0.342780
491491 1.55641e12 1.20853 0.604263 0.796785i 0.293468π-0.293468\pi
0.604263 + 0.796785i 0.293468π0.293468\pi
492492 2.00985e11 0.154640
493493 −4.06477e11 −0.309903
494494 0 0
495495 −1.41618e12 −1.06022
496496 −5.38767e9 −0.00399699
497497 −2.68391e11 −0.197317
498498 −2.07341e11 −0.151062
499499 −1.31914e12 −0.952442 −0.476221 0.879326i 0.657994π-0.657994\pi
−0.476221 + 0.879326i 0.657994π0.657994\pi
500500 −8.24134e11 −0.589702
501501 5.55071e10 0.0393622
502502 8.31459e11 0.584351
503503 −1.27999e12 −0.891560 −0.445780 0.895143i 0.647074π-0.647074\pi
−0.445780 + 0.895143i 0.647074π0.647074\pi
504504 −1.98356e11 −0.136933
505505 −5.62749e11 −0.385038
506506 −1.48935e12 −1.01000
507507 0 0
508508 1.20522e12 0.802935
509509 1.32059e11 0.0872042 0.0436021 0.999049i 0.486117π-0.486117\pi
0.0436021 + 0.999049i 0.486117π0.486117\pi
510510 −7.66635e10 −0.0501791
511511 −1.72563e11 −0.111957
512512 −1.04433e10 −0.00671618
513513 −7.60420e10 −0.0484758
514514 −1.21395e12 −0.767123
515515 −1.37364e12 −0.860476
516516 6.85377e10 0.0425604
517517 2.92537e11 0.180083
518518 1.17068e11 0.0714424
519519 3.42295e11 0.207084
520520 0 0
521521 −2.69675e12 −1.60351 −0.801753 0.597655i 0.796099π-0.796099\pi
−0.801753 + 0.597655i 0.796099π0.796099\pi
522522 3.98970e11 0.235192
523523 9.70396e11 0.567141 0.283571 0.958951i 0.408481π-0.408481\pi
0.283571 + 0.958951i 0.408481π0.408481\pi
524524 −1.10371e12 −0.639533
525525 −3.05715e10 −0.0175630
526526 1.78304e12 1.01561
527527 1.65585e12 0.935135
528528 −2.11757e9 −0.00118573
529529 −5.09943e11 −0.283121
530530 9.66724e11 0.532183
531531 7.04828e11 0.384732
532532 −2.19128e10 −0.0118603
533533 0 0
534534 4.30287e10 0.0228993
535535 −3.52772e10 −0.0186167
536536 −2.24905e12 −1.17695
537537 −3.87461e11 −0.201068
538538 1.08485e11 0.0558278
539539 3.71337e12 1.89504
540540 −2.49286e11 −0.126161
541541 −3.28705e12 −1.64975 −0.824876 0.565313i 0.808755π-0.808755\pi
−0.824876 + 0.565313i 0.808755π0.808755\pi
542542 2.16452e12 1.07737
543543 −5.29846e11 −0.261548
544544 1.60649e12 0.786471
545545 −2.62148e11 −0.127281
546546 0 0
547547 4.30933e11 0.205810 0.102905 0.994691i 0.467186π-0.467186\pi
0.102905 + 0.994691i 0.467186π0.467186\pi
548548 −4.52157e11 −0.214179
549549 1.93637e12 0.909731
550550 −1.73658e12 −0.809213
551551 1.15217e11 0.0532519
552552 −3.36858e11 −0.154426
553553 8.13732e10 0.0370014
554554 1.34992e12 0.608858
555555 1.89044e11 0.0845754
556556 −1.69898e12 −0.753964
557557 −1.67022e12 −0.735236 −0.367618 0.929977i 0.619827π-0.619827\pi
−0.367618 + 0.929977i 0.619827π0.619827\pi
558558 −1.62527e12 −0.709696
559559 0 0
560560 −6.28499e8 −0.000270059 0
561561 6.50816e11 0.277412
562562 −1.14229e11 −0.0483020
563563 −3.90774e12 −1.63922 −0.819611 0.572920i 0.805810π-0.805810\pi
−0.819611 + 0.572920i 0.805810π0.805810\pi
564564 2.53108e10 0.0105329
565565 −6.49356e11 −0.268080
566566 −4.33447e11 −0.177526
567567 3.14474e11 0.127779
568568 −3.44822e12 −1.39004
569569 2.65735e12 1.06278 0.531390 0.847128i 0.321670π-0.321670\pi
0.531390 + 0.847128i 0.321670π0.321670\pi
570570 2.17305e10 0.00862248
571571 1.61259e12 0.634837 0.317418 0.948286i 0.397184π-0.397184\pi
0.317418 + 0.948286i 0.397184π0.397184\pi
572572 0 0
573573 −4.30580e11 −0.166862
574574 3.10993e11 0.119577
575575 1.50554e12 0.574365
576576 −1.56824e12 −0.593625
577577 −4.67341e12 −1.75526 −0.877632 0.479334i 0.840878π-0.840878\pi
−0.877632 + 0.479334i 0.840878π0.840878\pi
578578 6.33480e11 0.236079
579579 1.38308e11 0.0511437
580580 3.77713e11 0.138591
581581 5.22424e11 0.190209
582582 4.68436e11 0.169238
583583 −8.20677e12 −2.94214
584584 −2.21704e12 −0.788707
585585 0 0
586586 −2.56529e12 −0.898665
587587 4.75074e11 0.165154 0.0825771 0.996585i 0.473685π-0.473685\pi
0.0825771 + 0.996585i 0.473685π0.473685\pi
588588 3.21286e11 0.110839
589589 −4.69356e11 −0.160688
590590 −4.09782e11 −0.139226
591591 −3.42420e11 −0.115456
592592 −8.19703e9 −0.00274289
593593 −9.71669e11 −0.322680 −0.161340 0.986899i 0.551582π-0.551582\pi
−0.161340 + 0.986899i 0.551582π0.551582\pi
594594 −1.29962e12 −0.428330
595595 1.93164e11 0.0631829
596596 2.65213e12 0.860967
597597 −9.55203e11 −0.307759
598598 0 0
599599 8.98292e11 0.285100 0.142550 0.989788i 0.454470π-0.454470\pi
0.142550 + 0.989788i 0.454470π0.454470\pi
600600 −3.92775e11 −0.123727
601601 −3.67532e12 −1.14911 −0.574553 0.818467i 0.694824π-0.694824\pi
−0.574553 + 0.818467i 0.694824π0.694824\pi
602602 1.06051e11 0.0329103
603603 3.69754e12 1.13890
604604 −6.23084e11 −0.190494
605605 −5.12084e12 −1.55397
606606 −2.53839e11 −0.0764594
607607 3.58702e11 0.107247 0.0536234 0.998561i 0.482923π-0.482923\pi
0.0536234 + 0.998561i 0.482923π0.482923\pi
608608 −4.55364e11 −0.135143
609609 3.46659e10 0.0102123
610610 −1.12579e12 −0.329211
611611 0 0
612612 −1.63290e12 −0.470519
613613 −5.33392e12 −1.52572 −0.762859 0.646565i 0.776205π-0.776205\pi
−0.762859 + 0.646565i 0.776205π0.776205\pi
614614 1.54205e12 0.437865
615615 5.02196e11 0.141558
616616 −9.79006e11 −0.273951
617617 3.91640e12 1.08794 0.543969 0.839105i 0.316921π-0.316921\pi
0.543969 + 0.839105i 0.316921π0.316921\pi
618618 −6.19605e11 −0.170870
619619 −7.14576e12 −1.95632 −0.978161 0.207848i 0.933354π-0.933354\pi
−0.978161 + 0.207848i 0.933354π0.933354\pi
620620 −1.53868e12 −0.418200
621621 1.12672e12 0.304021
622622 3.22190e12 0.863088
623623 −1.08417e11 −0.0288336
624624 0 0
625625 5.28527e11 0.138550
626626 2.87906e12 0.749318
627627 −1.84476e11 −0.0476689
628628 −1.91408e12 −0.491068
629629 2.51929e12 0.641726
630630 −1.89596e11 −0.0479510
631631 1.75398e12 0.440447 0.220223 0.975449i 0.429321π-0.429321\pi
0.220223 + 0.975449i 0.429321π0.429321\pi
632632 1.04546e12 0.260665
633633 1.13124e12 0.280051
634634 −1.60470e12 −0.394451
635635 3.01145e12 0.735012
636636 −7.10062e11 −0.172084
637637 0 0
638638 1.96916e12 0.470530
639639 5.66905e12 1.34510
640640 −1.49779e12 −0.352891
641641 6.62289e12 1.54948 0.774740 0.632279i 0.217881π-0.217881\pi
0.774740 + 0.632279i 0.217881π0.217881\pi
642642 −1.59124e10 −0.00369683
643643 6.11769e10 0.0141136 0.00705681 0.999975i 0.497754π-0.497754\pi
0.00705681 + 0.999975i 0.497754π0.497754\pi
644644 3.24683e11 0.0743829
645645 1.71253e11 0.0389601
646646 2.89590e11 0.0654241
647647 7.69987e11 0.172749 0.0863743 0.996263i 0.472472π-0.472472\pi
0.0863743 + 0.996263i 0.472472π0.472472\pi
648648 4.04028e12 0.900169
649649 3.47875e12 0.769701
650650 0 0
651651 −1.41217e11 −0.0308158
652652 −2.06433e11 −0.0447368
653653 5.93443e12 1.27723 0.638616 0.769526i 0.279507π-0.279507\pi
0.638616 + 0.769526i 0.279507π0.279507\pi
654654 −1.18247e11 −0.0252749
655655 −2.75780e12 −0.585433
656656 −2.17755e10 −0.00459092
657657 3.64492e12 0.763210
658658 3.91644e10 0.00814470
659659 −4.90282e10 −0.0101266 −0.00506328 0.999987i 0.501612π-0.501612\pi
−0.00506328 + 0.999987i 0.501612π0.501612\pi
660660 −6.04760e11 −0.124061
661661 −4.06587e12 −0.828414 −0.414207 0.910183i 0.635941π-0.635941\pi
−0.414207 + 0.910183i 0.635941π0.635941\pi
662662 4.01068e12 0.811628
663663 0 0
664664 6.71198e12 1.33997
665665 −5.47528e10 −0.0108570
666666 −2.47276e12 −0.487021
667667 −1.70718e12 −0.333974
668668 −6.87367e11 −0.133566
669669 1.18953e12 0.229593
670670 −2.14973e12 −0.412142
671671 9.55715e12 1.82002
672672 −1.37007e11 −0.0259168
673673 −3.13223e10 −0.00588553 −0.00294276 0.999996i 0.500937π-0.500937\pi
−0.00294276 + 0.999996i 0.500937π0.500937\pi
674674 −3.27901e12 −0.612030
675675 1.31375e12 0.243582
676676 0 0
677677 −3.47299e12 −0.635411 −0.317706 0.948189i 0.602912π-0.602912\pi
−0.317706 + 0.948189i 0.602912π0.602912\pi
678678 −2.92905e11 −0.0532344
679679 −1.18029e12 −0.213095
680680 2.48172e12 0.445106
681681 1.22716e12 0.218645
682682 −8.02170e12 −1.41983
683683 3.59628e12 0.632354 0.316177 0.948700i 0.397601π-0.397601\pi
0.316177 + 0.948700i 0.397601π0.397601\pi
684684 4.62849e11 0.0808512
685685 −1.12979e12 −0.196061
686686 1.00448e12 0.173174
687687 −6.47221e11 −0.110853
688688 −7.42562e9 −0.00126353
689689 0 0
690690 −3.21982e11 −0.0540767
691691 3.06940e12 0.512157 0.256078 0.966656i 0.417569π-0.417569\pi
0.256078 + 0.966656i 0.417569π0.417569\pi
692692 −4.23877e12 −0.702688
693693 1.60953e12 0.265094
694694 3.61588e12 0.591694
695695 −4.24518e12 −0.690184
696696 4.45378e11 0.0719429
697697 6.69250e12 1.07409
698698 3.33140e12 0.531224
699699 −1.38793e12 −0.219898
700700 3.78579e11 0.0595957
701701 2.53719e12 0.396846 0.198423 0.980116i 0.436418π-0.436418\pi
0.198423 + 0.980116i 0.436418π0.436418\pi
702702 0 0
703703 −7.14099e11 −0.110270
704704 −7.74022e12 −1.18762
705705 6.32433e10 0.00964192
706706 −7.93281e11 −0.120173
707707 6.39580e11 0.0962737
708708 3.00987e11 0.0450192
709709 1.03456e12 0.153761 0.0768804 0.997040i 0.475504π-0.475504\pi
0.0768804 + 0.997040i 0.475504π0.475504\pi
710710 −3.29595e12 −0.486763
711711 −1.71879e12 −0.252238
712712 −1.39291e12 −0.203125
713713 6.95448e12 1.00777
714714 8.71302e10 0.0125466
715715 0 0
716716 4.79809e12 0.682275
717717 −3.97124e11 −0.0561164
718718 −7.60979e11 −0.106859
719719 1.13888e13 1.58927 0.794633 0.607090i 0.207663π-0.207663\pi
0.794633 + 0.607090i 0.207663π0.207663\pi
720720 1.32754e10 0.00184098
721721 1.56118e12 0.215151
722722 4.42167e12 0.605577
723723 −1.93182e12 −0.262933
724724 6.56130e12 0.887496
725725 −1.99056e12 −0.267581
726726 −2.30985e12 −0.308582
727727 −4.40512e12 −0.584861 −0.292430 0.956287i 0.594464π-0.594464\pi
−0.292430 + 0.956287i 0.594464π0.594464\pi
728728 0 0
729729 −6.14249e12 −0.805509
730730 −2.11913e12 −0.276188
731731 2.28220e12 0.295614
732732 8.26899e11 0.106452
733733 6.80311e12 0.870442 0.435221 0.900324i 0.356670π-0.356670\pi
0.435221 + 0.900324i 0.356670π0.356670\pi
734734 −4.88725e12 −0.621487
735735 8.02788e11 0.101463
736736 6.74715e12 0.847560
737737 1.82496e13 2.27850
738738 −6.56890e12 −0.815153
739739 5.03824e12 0.621411 0.310705 0.950506i 0.399435π-0.399435\pi
0.310705 + 0.950506i 0.399435π0.399435\pi
740740 −2.34101e12 −0.286986
741741 0 0
742742 −1.09871e12 −0.133066
743743 −3.43023e12 −0.412927 −0.206464 0.978454i 0.566196π-0.566196\pi
−0.206464 + 0.978454i 0.566196π0.566196\pi
744744 −1.81432e12 −0.217088
745745 6.62680e12 0.788135
746746 −5.58415e12 −0.660134
747747 −1.10348e13 −1.29665
748748 −8.05932e12 −0.941328
749749 4.00935e10 0.00465485
750750 −9.28860e11 −0.107195
751751 −8.21725e12 −0.942642 −0.471321 0.881962i 0.656223π-0.656223\pi
−0.471321 + 0.881962i 0.656223π0.656223\pi
752752 −2.74226e9 −0.000312700 0
753753 −1.52596e12 −0.172968
754754 0 0
755755 −1.55688e12 −0.174379
756756 2.83321e11 0.0315450
757757 1.22618e13 1.35714 0.678569 0.734537i 0.262601π-0.262601\pi
0.678569 + 0.734537i 0.262601π0.262601\pi
758758 7.70916e12 0.848194
759759 2.73339e12 0.298960
760760 −7.03451e11 −0.0764843
761761 1.25645e13 1.35804 0.679022 0.734118i 0.262404π-0.262404\pi
0.679022 + 0.734118i 0.262404π0.262404\pi
762762 1.35837e12 0.145956
763763 2.97939e11 0.0318249
764764 5.33204e12 0.566205
765765 −4.08007e12 −0.430716
766766 1.60198e12 0.168123
767767 0 0
768768 −1.75657e12 −0.182197
769769 2.74768e11 0.0283334 0.0141667 0.999900i 0.495490π-0.495490\pi
0.0141667 + 0.999900i 0.495490π0.495490\pi
770770 −9.35772e11 −0.0959316
771771 2.22793e12 0.227069
772772 −1.71272e12 −0.173543
773773 −6.65784e12 −0.670696 −0.335348 0.942094i 0.608854π-0.608854\pi
−0.335348 + 0.942094i 0.608854π0.608854\pi
774774 −2.24005e12 −0.224349
775775 8.10890e12 0.807428
776776 −1.51640e13 −1.50120
777777 −2.14854e11 −0.0211470
778778 −3.31161e12 −0.324064
779779 −1.89701e12 −0.184566
780780 0 0
781781 2.79801e13 2.69104
782782 −4.29088e12 −0.410314
783783 −1.48970e12 −0.141635
784784 −3.48093e10 −0.00329058
785785 −4.78266e12 −0.449527
786786 −1.24396e12 −0.116253
787787 −9.72333e12 −0.903501 −0.451751 0.892144i 0.649200π-0.649200\pi
−0.451751 + 0.892144i 0.649200π0.649200\pi
788788 4.24033e12 0.391770
789789 −3.27239e12 −0.300620
790790 9.99295e11 0.0912792
791791 7.38012e11 0.0670300
792792 2.06789e13 1.86751
793793 0 0
794794 −9.43179e11 −0.0842174
795795 −1.77421e12 −0.157526
796796 1.18287e13 1.04430
797797 −2.01479e13 −1.76876 −0.884379 0.466770i 0.845418π-0.845418\pi
−0.884379 + 0.466770i 0.845418π0.845418\pi
798798 −2.46973e10 −0.00215594
799799 8.42809e11 0.0731592
800800 7.86715e12 0.679067
801801 2.29001e12 0.196558
802802 7.44277e12 0.635258
803803 1.79899e13 1.52689
804804 1.57898e12 0.133268
805805 8.11276e11 0.0680906
806806 0 0
807807 −1.99101e11 −0.0165251
808808 8.21717e12 0.678221
809809 −1.58485e12 −0.130083 −0.0650413 0.997883i 0.520718π-0.520718\pi
−0.0650413 + 0.997883i 0.520718π0.520718\pi
810810 3.86186e12 0.315220
811811 1.09246e13 0.886771 0.443386 0.896331i 0.353777π-0.353777\pi
0.443386 + 0.896331i 0.353777π0.353777\pi
812812 −4.29281e11 −0.0346529
813813 −3.97250e12 −0.318902
814814 −1.22046e13 −0.974343
815815 −5.15809e11 −0.0409524
816816 −6.10078e9 −0.000481703 0
817817 −6.46896e11 −0.0507967
818818 2.92889e12 0.228725
819819 0 0
820820 −6.21890e12 −0.480343
821821 −1.92888e13 −1.48170 −0.740851 0.671669i 0.765578π-0.765578\pi
−0.740851 + 0.671669i 0.765578π0.765578\pi
822822 −5.09614e11 −0.0389330
823823 −2.97941e12 −0.226376 −0.113188 0.993574i 0.536106π-0.536106\pi
−0.113188 + 0.993574i 0.536106π0.536106\pi
824824 2.00576e13 1.51568
825825 3.18712e12 0.239527
826826 4.65730e11 0.0348116
827827 −9.84829e12 −0.732126 −0.366063 0.930590i 0.619295π-0.619295\pi
−0.366063 + 0.930590i 0.619295π0.619295\pi
828828 −6.85806e12 −0.507066
829829 −2.42595e13 −1.78396 −0.891981 0.452072i 0.850685π-0.850685\pi
−0.891981 + 0.452072i 0.850685π0.850685\pi
830830 6.41557e12 0.469228
831831 −2.47749e12 −0.180222
832832 0 0
833833 1.06983e13 0.769863
834834 −1.91487e12 −0.137054
835835 −1.71751e12 −0.122267
836836 2.28444e12 0.161752
837837 6.06853e12 0.427385
838838 1.11867e12 0.0783617
839839 −5.96000e12 −0.415257 −0.207629 0.978208i 0.566575π-0.566575\pi
−0.207629 + 0.978208i 0.566575π0.566575\pi
840840 −2.11650e11 −0.0146677
841841 −1.22500e13 −0.844411
842842 −4.81779e12 −0.330327
843843 2.09643e11 0.0142974
844844 −1.40086e13 −0.950283
845845 0 0
846846 −8.27244e11 −0.0555222
847847 5.81999e12 0.388550
848848 7.69307e10 0.00510879
849849 7.95497e11 0.0525477
850850 −5.00314e12 −0.328744
851851 1.05808e13 0.691572
852852 2.42088e12 0.157397
853853 −5.87984e12 −0.380272 −0.190136 0.981758i 0.560893π-0.560893\pi
−0.190136 + 0.981758i 0.560893π0.560893\pi
854854 1.27950e12 0.0823150
855855 1.15651e12 0.0740118
856856 5.15112e11 0.0327921
857857 −1.71300e13 −1.08478 −0.542392 0.840125i 0.682481π-0.682481\pi
−0.542392 + 0.840125i 0.682481π0.682481\pi
858858 0 0
859859 −1.36880e13 −0.857772 −0.428886 0.903359i 0.641094π-0.641094\pi
−0.428886 + 0.903359i 0.641094π0.641094\pi
860860 −2.12070e12 −0.132201
861861 −5.70761e11 −0.0353948
862862 4.30185e12 0.265383
863863 −2.02454e13 −1.24245 −0.621223 0.783634i 0.713364π-0.713364\pi
−0.621223 + 0.783634i 0.713364π0.713364\pi
864864 5.88762e12 0.359441
865865 −1.05913e13 −0.643246
866866 −8.59369e12 −0.519217
867867 −1.16261e12 −0.0698795
868868 1.74875e12 0.104566
869869 −8.48327e12 −0.504632
870870 4.25710e11 0.0251928
871871 0 0
872872 3.82784e12 0.224197
873873 2.49304e13 1.45266
874874 1.21626e12 0.0705059
875875 2.34039e12 0.134974
876876 1.55651e12 0.0893067
877877 −1.02953e12 −0.0587678 −0.0293839 0.999568i 0.509355π-0.509355\pi
−0.0293839 + 0.999568i 0.509355π0.509355\pi
878878 1.19810e13 0.680405
879879 4.70804e12 0.266005
880880 6.55219e10 0.00368311
881881 1.54322e13 0.863053 0.431527 0.902100i 0.357975π-0.357975\pi
0.431527 + 0.902100i 0.357975π0.357975\pi
882882 −1.05008e13 −0.584267
883883 1.62351e13 0.898735 0.449368 0.893347i 0.351649π-0.351649\pi
0.449368 + 0.893347i 0.351649π0.351649\pi
884884 0 0
885885 7.52067e11 0.0412109
886886 7.96173e11 0.0434066
887887 2.39023e13 1.29653 0.648265 0.761414i 0.275495π-0.275495\pi
0.648265 + 0.761414i 0.275495π0.275495\pi
888888 −2.76039e12 −0.148975
889889 −3.42261e12 −0.183780
890890 −1.33140e12 −0.0711300
891891 −3.27843e13 −1.74267
892892 −1.47305e13 −0.779066
893893 −2.38897e11 −0.0125712
894894 2.98915e12 0.156505
895895 1.19888e13 0.624559
896896 1.70228e12 0.0882359
897897 0 0
898898 −1.81119e13 −0.929440
899899 −9.19491e12 −0.469493
900900 −7.99647e12 −0.406263
901901 −2.36440e13 −1.19525
902902 −3.24215e13 −1.63081
903903 −1.94634e11 −0.00974147
904904 9.48180e12 0.472208
905905 1.63945e13 0.812420
906906 −7.02262e11 −0.0346276
907907 1.58890e13 0.779584 0.389792 0.920903i 0.372547π-0.372547\pi
0.389792 + 0.920903i 0.372547π0.372547\pi
908908 −1.51964e13 −0.741918
909909 −1.35094e13 −0.656296
910910 0 0
911911 −1.66855e13 −0.802613 −0.401307 0.915944i 0.631444π-0.631444\pi
−0.401307 + 0.915944i 0.631444π0.631444\pi
912912 1.72928e9 8.27731e−5 0
913913 −5.44634e13 −2.59410
914914 −2.47766e13 −1.17431
915915 2.06615e12 0.0974467
916916 8.01480e12 0.376152
917917 3.13432e12 0.146380
918918 −3.74425e12 −0.174010
919919 −5.26862e12 −0.243656 −0.121828 0.992551i 0.538876π-0.538876\pi
−0.121828 + 0.992551i 0.538876π0.538876\pi
920920 1.04231e13 0.479679
921921 −2.83010e12 −0.129608
922922 5.10116e12 0.232477
923923 0 0
924924 6.87328e11 0.0310199
925925 1.23372e13 0.554089
926926 8.48761e12 0.379346
927927 −3.29757e13 −1.46668
928928 −8.92079e12 −0.394855
929929 2.00971e13 0.885244 0.442622 0.896708i 0.354048π-0.354048\pi
0.442622 + 0.896708i 0.354048π0.354048\pi
930930 −1.73420e12 −0.0760197
931931 −3.03247e12 −0.132289
932932 1.71873e13 0.746169
933933 −5.91310e12 −0.255475
934934 −1.81309e13 −0.779574
935935 −2.01376e13 −0.861699
936936 0 0
937937 −2.24046e13 −0.949532 −0.474766 0.880112i 0.657467π-0.657467\pi
−0.474766 + 0.880112i 0.657467π0.657467\pi
938938 2.44323e12 0.103051
939939 −5.28389e12 −0.221799
940940 −7.83167e11 −0.0327174
941941 −3.85186e12 −0.160146 −0.0800731 0.996789i 0.525515π-0.525515\pi
−0.0800731 + 0.996789i 0.525515π0.525515\pi
942942 −2.15731e12 −0.0892655
943943 2.81081e13 1.15752
944944 −3.26100e10 −0.00133652
945945 7.07926e11 0.0288765
946946 −1.10560e13 −0.448836
947947 2.77272e13 1.12029 0.560146 0.828394i 0.310745π-0.310745\pi
0.560146 + 0.828394i 0.310745π0.310745\pi
948948 −7.33985e11 −0.0295155
949949 0 0
950950 1.41815e12 0.0564895
951951 2.94508e12 0.116758
952952 −2.82055e12 −0.111293
953953 1.07795e13 0.423330 0.211665 0.977342i 0.432111π-0.432111\pi
0.211665 + 0.977342i 0.432111π0.432111\pi
954954 2.32073e13 0.907104
955955 1.33230e13 0.518308
956956 4.91775e12 0.190417
957957 −3.61396e12 −0.139277
958958 1.50950e13 0.579011
959959 1.28404e12 0.0490224
960960 −1.67335e12 −0.0635867
961961 1.10174e13 0.416700
962962 0 0
963963 −8.46869e11 −0.0317320
964964 2.39225e13 0.892197
965965 −4.27952e12 −0.158863
966966 3.65942e11 0.0135212
967967 −1.11541e13 −0.410219 −0.205110 0.978739i 0.565755π-0.565755\pi
−0.205110 + 0.978739i 0.565755π0.565755\pi
968968 7.47738e13 2.73722
969969 −5.31480e11 −0.0193656
970970 −1.44944e13 −0.525686
971971 −1.63758e13 −0.591175 −0.295587 0.955316i 0.595515π-0.595515\pi
−0.295587 + 0.955316i 0.595515π0.595515\pi
972972 −9.02731e12 −0.324385
973973 4.82477e12 0.172572
974974 −2.89093e13 −1.02925
975975 0 0
976976 −8.95892e10 −0.00316032
977977 7.18430e12 0.252266 0.126133 0.992013i 0.459743π-0.459743\pi
0.126133 + 0.992013i 0.459743π0.459743\pi
978978 −2.32665e11 −0.00813218
979979 1.13026e13 0.393238
980980 −9.94125e12 −0.344290
981981 −6.29316e12 −0.216949
982982 −2.17228e13 −0.745442
983983 8.50949e12 0.290679 0.145339 0.989382i 0.453573π-0.453573\pi
0.145339 + 0.989382i 0.453573π0.453573\pi
984984 −7.33300e12 −0.249347
985985 1.05952e13 0.358629
986986 5.67321e12 0.191154
987987 −7.18778e10 −0.00241084
988988 0 0
989989 9.58510e12 0.318576
990990 1.97657e13 0.653964
991991 −4.38653e13 −1.44474 −0.722371 0.691506i 0.756947π-0.756947\pi
−0.722371 + 0.691506i 0.756947π0.756947\pi
992992 3.63403e13 1.19148
993993 −7.36074e12 −0.240242
994994 3.74594e12 0.121709
995995 2.95560e13 0.955964
996996 −4.71226e12 −0.151727
997997 −5.03805e13 −1.61486 −0.807428 0.589966i 0.799141π-0.799141\pi
−0.807428 + 0.589966i 0.799141π0.799141\pi
998998 1.84113e13 0.587484
999999 9.23293e12 0.293288
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.8 20
13.2 odd 12 13.10.e.a.4.4 20
13.7 odd 12 13.10.e.a.10.4 yes 20
13.12 even 2 inner 169.10.a.f.1.13 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.4 20 13.2 odd 12
13.10.e.a.10.4 yes 20 13.7 odd 12
169.10.a.f.1.8 20 1.1 even 1 trivial
169.10.a.f.1.13 20 13.12 even 2 inner