Properties

Label 169.10.a.f.1.4
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 34.2355-34.2355 of defining polynomial
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q34.2355q2+264.006q3+660.066q4402.267q59038.36q69369.20q75069.12q8+50016.1q9+13771.8q1017817.3q11+174261.q12+320759.q14106201.q15164410.q16+46549.2q171.71232e6q18+290646.q19265523.q202.47352e6q21+609983.q221.63303e6q231.33828e6q241.79131e6q25+8.00811e6q276.18429e6q28+351739.q29+3.63583e6q30+6.33165e6q31+8.22405e6q324.70387e6q331.59363e6q34+3.76892e6q35+3.30139e7q36+1.22757e7q379.95040e6q38+2.03914e6q402.91222e6q41+8.46822e7q425.66418e6q431.17606e7q442.01198e7q45+5.59075e7q46+1.35751e7q474.34053e7q48+4.74283e7q49+6.13262e7q50+1.22893e7q51+5.34838e7q532.74161e8q54+7.16730e6q55+4.74936e7q56+7.67323e7q571.20420e7q589.40252e7q597.00996e7q60+1.56423e8q612.16767e8q624.68611e8q631.97376e8q64+1.61039e8q661.74234e8q67+3.07256e7q684.31129e8q691.29031e8q70+1.13072e7q712.53537e8q72+8.79707e7q734.20264e8q744.72915e8q75+1.91846e8q76+1.66934e8q77+3.00238e8q79+6.61369e7q80+1.12972e9q81+9.97013e7q82+7.05637e8q831.63269e9q841.87252e7q85+1.93916e8q86+9.28612e7q87+9.03179e7q88+5.36589e8q89+6.88811e8q901.07791e9q92+1.67159e9q934.64748e8q941.16917e8q95+2.17120e9q962.24820e8q971.62373e9q988.91151e8q99+O(q100)q-34.2355 q^{2} +264.006 q^{3} +660.066 q^{4} -402.267 q^{5} -9038.36 q^{6} -9369.20 q^{7} -5069.12 q^{8} +50016.1 q^{9} +13771.8 q^{10} -17817.3 q^{11} +174261. q^{12} +320759. q^{14} -106201. q^{15} -164410. q^{16} +46549.2 q^{17} -1.71232e6 q^{18} +290646. q^{19} -265523. q^{20} -2.47352e6 q^{21} +609983. q^{22} -1.63303e6 q^{23} -1.33828e6 q^{24} -1.79131e6 q^{25} +8.00811e6 q^{27} -6.18429e6 q^{28} +351739. q^{29} +3.63583e6 q^{30} +6.33165e6 q^{31} +8.22405e6 q^{32} -4.70387e6 q^{33} -1.59363e6 q^{34} +3.76892e6 q^{35} +3.30139e7 q^{36} +1.22757e7 q^{37} -9.95040e6 q^{38} +2.03914e6 q^{40} -2.91222e6 q^{41} +8.46822e7 q^{42} -5.66418e6 q^{43} -1.17606e7 q^{44} -2.01198e7 q^{45} +5.59075e7 q^{46} +1.35751e7 q^{47} -4.34053e7 q^{48} +4.74283e7 q^{49} +6.13262e7 q^{50} +1.22893e7 q^{51} +5.34838e7 q^{53} -2.74161e8 q^{54} +7.16730e6 q^{55} +4.74936e7 q^{56} +7.67323e7 q^{57} -1.20420e7 q^{58} -9.40252e7 q^{59} -7.00996e7 q^{60} +1.56423e8 q^{61} -2.16767e8 q^{62} -4.68611e8 q^{63} -1.97376e8 q^{64} +1.61039e8 q^{66} -1.74234e8 q^{67} +3.07256e7 q^{68} -4.31129e8 q^{69} -1.29031e8 q^{70} +1.13072e7 q^{71} -2.53537e8 q^{72} +8.79707e7 q^{73} -4.20264e8 q^{74} -4.72915e8 q^{75} +1.91846e8 q^{76} +1.66934e8 q^{77} +3.00238e8 q^{79} +6.61369e7 q^{80} +1.12972e9 q^{81} +9.97013e7 q^{82} +7.05637e8 q^{83} -1.63269e9 q^{84} -1.87252e7 q^{85} +1.93916e8 q^{86} +9.28612e7 q^{87} +9.03179e7 q^{88} +5.36589e8 q^{89} +6.88811e8 q^{90} -1.07791e9 q^{92} +1.67159e9 q^{93} -4.64748e8 q^{94} -1.16917e8 q^{95} +2.17120e9 q^{96} -2.24820e8 q^{97} -1.62373e9 q^{98} -8.91151e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −34.2355 −1.51301 −0.756504 0.653989i 0.773094π-0.773094\pi
−0.756504 + 0.653989i 0.773094π0.773094\pi
33 264.006 1.88178 0.940888 0.338718i 0.109993π-0.109993\pi
0.940888 + 0.338718i 0.109993π0.109993\pi
44 660.066 1.28919
55 −402.267 −0.287839 −0.143919 0.989589i 0.545971π-0.545971\pi
−0.143919 + 0.989589i 0.545971π0.545971\pi
66 −9038.36 −2.84714
77 −9369.20 −1.47490 −0.737448 0.675404i 0.763969π-0.763969\pi
−0.737448 + 0.675404i 0.763969π0.763969\pi
88 −5069.12 −0.437550
99 50016.1 2.54108
1010 13771.8 0.435502
1111 −17817.3 −0.366923 −0.183461 0.983027i 0.558730π-0.558730\pi
−0.183461 + 0.983027i 0.558730π0.558730\pi
1212 174261. 2.42597
1313 0 0
1414 320759. 2.23153
1515 −106201. −0.541648
1616 −164410. −0.627176
1717 46549.2 0.135174 0.0675868 0.997713i 0.478470π-0.478470\pi
0.0675868 + 0.997713i 0.478470π0.478470\pi
1818 −1.71232e6 −3.84467
1919 290646. 0.511650 0.255825 0.966723i 0.417653π-0.417653\pi
0.255825 + 0.966723i 0.417653π0.417653\pi
2020 −265523. −0.371079
2121 −2.47352e6 −2.77542
2222 609983. 0.555157
2323 −1.63303e6 −1.21680 −0.608399 0.793631i 0.708188π-0.708188\pi
−0.608399 + 0.793631i 0.708188π0.708188\pi
2424 −1.33828e6 −0.823370
2525 −1.79131e6 −0.917149
2626 0 0
2727 8.00811e6 2.89997
2828 −6.18429e6 −1.90142
2929 351739. 0.0923485 0.0461743 0.998933i 0.485297π-0.485297\pi
0.0461743 + 0.998933i 0.485297π0.485297\pi
3030 3.63583e6 0.819518
3131 6.33165e6 1.23137 0.615686 0.787992i 0.288879π-0.288879\pi
0.615686 + 0.787992i 0.288879π0.288879\pi
3232 8.22405e6 1.38647
3333 −4.70387e6 −0.690466
3434 −1.59363e6 −0.204519
3535 3.76892e6 0.424532
3636 3.30139e7 3.27594
3737 1.22757e7 1.07681 0.538404 0.842687i 0.319027π-0.319027\pi
0.538404 + 0.842687i 0.319027π0.319027\pi
3838 −9.95040e6 −0.774131
3939 0 0
4040 2.03914e6 0.125944
4141 −2.91222e6 −0.160952 −0.0804762 0.996757i 0.525644π-0.525644\pi
−0.0804762 + 0.996757i 0.525644π0.525644\pi
4242 8.46822e7 4.19924
4343 −5.66418e6 −0.252656 −0.126328 0.991989i 0.540319π-0.540319\pi
−0.126328 + 0.991989i 0.540319π0.540319\pi
4444 −1.17606e7 −0.473034
4545 −2.01198e7 −0.731421
4646 5.59075e7 1.84102
4747 1.35751e7 0.405790 0.202895 0.979201i 0.434965π-0.434965\pi
0.202895 + 0.979201i 0.434965π0.434965\pi
4848 −4.34053e7 −1.18020
4949 4.74283e7 1.17532
5050 6.13262e7 1.38765
5151 1.22893e7 0.254367
5252 0 0
5353 5.34838e7 0.931067 0.465534 0.885030i 0.345862π-0.345862\pi
0.465534 + 0.885030i 0.345862π0.345862\pi
5454 −2.74161e8 −4.38767
5555 7.16730e6 0.105615
5656 4.74936e7 0.645340
5757 7.67323e7 0.962811
5858 −1.20420e7 −0.139724
5959 −9.40252e7 −1.01021 −0.505104 0.863059i 0.668546π-0.668546\pi
−0.505104 + 0.863059i 0.668546π0.668546\pi
6060 −7.00996e7 −0.698288
6161 1.56423e8 1.44649 0.723247 0.690590i 0.242649π-0.242649\pi
0.723247 + 0.690590i 0.242649π0.242649\pi
6262 −2.16767e8 −1.86307
6363 −4.68611e8 −3.74783
6464 −1.97376e8 −1.47057
6565 0 0
6666 1.61039e8 1.04468
6767 −1.74234e8 −1.05632 −0.528161 0.849144i 0.677118π-0.677118\pi
−0.528161 + 0.849144i 0.677118π0.677118\pi
6868 3.07256e7 0.174265
6969 −4.31129e8 −2.28974
7070 −1.29031e8 −0.642320
7171 1.13072e7 0.0528072 0.0264036 0.999651i 0.491594π-0.491594\pi
0.0264036 + 0.999651i 0.491594π0.491594\pi
7272 −2.53537e8 −1.11185
7373 8.79707e7 0.362564 0.181282 0.983431i 0.441975π-0.441975\pi
0.181282 + 0.983431i 0.441975π0.441975\pi
7474 −4.20264e8 −1.62922
7575 −4.72915e8 −1.72587
7676 1.91846e8 0.659616
7777 1.66934e8 0.541173
7878 0 0
7979 3.00238e8 0.867249 0.433625 0.901094i 0.357234π-0.357234\pi
0.433625 + 0.901094i 0.357234π0.357234\pi
8080 6.61369e7 0.180526
8181 1.12972e9 2.91601
8282 9.97013e7 0.243522
8383 7.05637e8 1.63204 0.816018 0.578027i 0.196177π-0.196177\pi
0.816018 + 0.578027i 0.196177π0.196177\pi
8484 −1.63269e9 −3.57805
8585 −1.87252e7 −0.0389082
8686 1.93916e8 0.382270
8787 9.28612e7 0.173779
8888 9.03179e7 0.160547
8989 5.36589e8 0.906540 0.453270 0.891373i 0.350257π-0.350257\pi
0.453270 + 0.891373i 0.350257π0.350257\pi
9090 6.88811e8 1.10665
9191 0 0
9292 −1.07791e9 −1.56869
9393 1.67159e9 2.31717
9494 −4.64748e8 −0.613963
9595 −1.16917e8 −0.147273
9696 2.17120e9 2.60903
9797 −2.24820e8 −0.257848 −0.128924 0.991655i 0.541152π-0.541152\pi
−0.128924 + 0.991655i 0.541152π0.541152\pi
9898 −1.62373e9 −1.77826
9999 −8.91151e8 −0.932380
100100 −1.18238e9 −1.18238
101101 −1.04690e8 −0.100106 −0.0500529 0.998747i 0.515939π-0.515939\pi
−0.0500529 + 0.998747i 0.515939π0.515939\pi
102102 −4.20728e8 −0.384859
103103 1.11352e9 0.974837 0.487419 0.873168i 0.337939π-0.337939\pi
0.487419 + 0.873168i 0.337939π0.337939\pi
104104 0 0
105105 9.95017e8 0.798874
106106 −1.83104e9 −1.40871
107107 −9.69547e8 −0.715059 −0.357530 0.933902i 0.616381π-0.616381\pi
−0.357530 + 0.933902i 0.616381π0.616381\pi
108108 5.28588e9 3.73862
109109 −4.07096e8 −0.276234 −0.138117 0.990416i 0.544105π-0.544105\pi
−0.138117 + 0.990416i 0.544105π0.544105\pi
110110 −2.45376e8 −0.159796
111111 3.24085e9 2.02631
112112 1.54039e9 0.925019
113113 −9.61939e8 −0.555002 −0.277501 0.960725i 0.589506π-0.589506\pi
−0.277501 + 0.960725i 0.589506π0.589506\pi
114114 −2.62696e9 −1.45674
115115 6.56913e8 0.350242
116116 2.32171e8 0.119055
117117 0 0
118118 3.21900e9 1.52845
119119 −4.36129e8 −0.199367
120120 5.38344e8 0.236998
121121 −2.04049e9 −0.865368
122122 −5.35521e9 −2.18856
123123 −7.68844e8 −0.302876
124124 4.17931e9 1.58747
125125 1.50626e9 0.551830
126126 1.60431e10 5.67049
127127 3.40790e9 1.16244 0.581220 0.813747i 0.302576π-0.302576\pi
0.581220 + 0.813747i 0.302576π0.302576\pi
128128 2.54654e9 0.838506
129129 −1.49538e9 −0.475442
130130 0 0
131131 4.49297e9 1.33295 0.666474 0.745529i 0.267803π-0.267803\pi
0.666474 + 0.745529i 0.267803π0.267803\pi
132132 −3.10486e9 −0.890143
133133 −2.72312e9 −0.754631
134134 5.96498e9 1.59822
135135 −3.22140e9 −0.834723
136136 −2.35963e8 −0.0591452
137137 −2.94051e9 −0.713148 −0.356574 0.934267i 0.616055π-0.616055\pi
−0.356574 + 0.934267i 0.616055π0.616055\pi
138138 1.47599e10 3.46439
139139 −2.35074e9 −0.534118 −0.267059 0.963680i 0.586052π-0.586052\pi
−0.267059 + 0.963680i 0.586052π0.586052\pi
140140 2.48774e9 0.547303
141141 3.58389e9 0.763606
142142 −3.87108e8 −0.0798977
143143 0 0
144144 −8.22317e9 −1.59370
145145 −1.41493e8 −0.0265815
146146 −3.01172e9 −0.548563
147147 1.25213e10 2.21168
148148 8.10277e9 1.38821
149149 3.82776e9 0.636219 0.318109 0.948054i 0.396952π-0.396952\pi
0.318109 + 0.948054i 0.396952π0.396952\pi
150150 1.61905e10 2.61125
151151 1.91204e9 0.299296 0.149648 0.988739i 0.452186π-0.452186\pi
0.149648 + 0.988739i 0.452186π0.452186\pi
152152 −1.47332e9 −0.223872
153153 2.32821e9 0.343487
154154 −5.71505e9 −0.818798
155155 −2.54701e9 −0.354436
156156 0 0
157157 −8.77429e9 −1.15256 −0.576280 0.817252i 0.695496π-0.695496\pi
−0.576280 + 0.817252i 0.695496π0.695496\pi
158158 −1.02788e10 −1.31215
159159 1.41200e10 1.75206
160160 −3.30826e9 −0.399080
161161 1.53002e10 1.79465
162162 −3.86765e10 −4.41194
163163 −3.38365e9 −0.375440 −0.187720 0.982223i 0.560110π-0.560110\pi
−0.187720 + 0.982223i 0.560110π0.560110\pi
164164 −1.92226e9 −0.207499
165165 1.89221e9 0.198743
166166 −2.41578e10 −2.46928
167167 1.33203e10 1.32523 0.662613 0.748962i 0.269447π-0.269447\pi
0.662613 + 0.748962i 0.269447π0.269447\pi
168168 1.25386e10 1.21439
169169 0 0
170170 6.41066e8 0.0588684
171171 1.45370e10 1.30014
172172 −3.73874e9 −0.325722
173173 2.08941e10 1.77344 0.886718 0.462311i 0.152980π-0.152980\pi
0.886718 + 0.462311i 0.152980π0.152980\pi
174174 −3.17915e9 −0.262929
175175 1.67831e10 1.35270
176176 2.92935e9 0.230125
177177 −2.48232e10 −1.90098
178178 −1.83704e10 −1.37160
179179 2.26281e10 1.64744 0.823719 0.566998i 0.191895π-0.191895\pi
0.823719 + 0.566998i 0.191895π0.191895\pi
180180 −1.32804e10 −0.942943
181181 2.31052e10 1.60013 0.800065 0.599913i 0.204798π-0.204798\pi
0.800065 + 0.599913i 0.204798π0.204798\pi
182182 0 0
183183 4.12966e10 2.72198
184184 8.27801e9 0.532409
185185 −4.93810e9 −0.309947
186186 −5.72277e10 −3.50589
187187 −8.29381e8 −0.0495983
188188 8.96044e9 0.523141
189189 −7.50296e10 −4.27715
190190 4.00272e9 0.222825
191191 −5.13927e9 −0.279416 −0.139708 0.990193i 0.544616π-0.544616\pi
−0.139708 + 0.990193i 0.544616π0.544616\pi
192192 −5.21084e10 −2.76728
193193 −2.11555e9 −0.109753 −0.0548763 0.998493i 0.517476π-0.517476\pi
−0.0548763 + 0.998493i 0.517476π0.517476\pi
194194 7.69683e9 0.390125
195195 0 0
196196 3.13058e10 1.51521
197197 5.84400e9 0.276447 0.138224 0.990401i 0.455861π-0.455861\pi
0.138224 + 0.990401i 0.455861π0.455861\pi
198198 3.05090e10 1.41070
199199 −3.09186e9 −0.139759 −0.0698796 0.997555i 0.522262π-0.522262\pi
−0.0698796 + 0.997555i 0.522262π0.522262\pi
200200 9.08034e9 0.401298
201201 −4.59988e10 −1.98776
202202 3.58411e9 0.151461
203203 −3.29552e9 −0.136204
204204 8.11173e9 0.327927
205205 1.17149e9 0.0463283
206206 −3.81220e10 −1.47494
207207 −8.16777e10 −3.09198
208208 0 0
209209 −5.17852e9 −0.187736
210210 −3.40648e10 −1.20870
211211 4.05641e10 1.40887 0.704435 0.709769i 0.251201π-0.251201\pi
0.704435 + 0.709769i 0.251201π0.251201\pi
212212 3.53029e10 1.20032
213213 2.98517e9 0.0993714
214214 3.31929e10 1.08189
215215 2.27851e9 0.0727241
216216 −4.05941e10 −1.26888
217217 −5.93225e10 −1.81615
218218 1.39371e10 0.417944
219219 2.32248e10 0.682265
220220 4.73090e9 0.136157
221221 0 0
222222 −1.10952e11 −3.06582
223223 −3.48948e10 −0.944907 −0.472453 0.881356i 0.656631π-0.656631\pi
−0.472453 + 0.881356i 0.656631π0.656631\pi
224224 −7.70528e10 −2.04490
225225 −8.95941e10 −2.33055
226226 3.29324e10 0.839723
227227 3.62831e10 0.906961 0.453481 0.891266i 0.350182π-0.350182\pi
0.453481 + 0.891266i 0.350182π0.350182\pi
228228 5.06484e10 1.24125
229229 1.36563e10 0.328151 0.164075 0.986448i 0.447536π-0.447536\pi
0.164075 + 0.986448i 0.447536π0.447536\pi
230230 −2.24897e10 −0.529918
231231 4.40715e10 1.01837
232232 −1.78301e9 −0.0404071
233233 2.78187e10 0.618352 0.309176 0.951005i 0.399947π-0.399947\pi
0.309176 + 0.951005i 0.399947π0.399947\pi
234234 0 0
235235 −5.46080e9 −0.116802
236236 −6.20629e10 −1.30235
237237 7.92646e10 1.63197
238238 1.49311e10 0.301644
239239 3.65446e10 0.724491 0.362245 0.932083i 0.382010π-0.382010\pi
0.362245 + 0.932083i 0.382010π0.382010\pi
240240 1.74605e10 0.339709
241241 9.51271e10 1.81647 0.908233 0.418464i 0.137431π-0.137431\pi
0.908233 + 0.418464i 0.137431π0.137431\pi
242242 6.98572e10 1.30931
243243 1.40629e11 2.58731
244244 1.03250e11 1.86481
245245 −1.90788e10 −0.338302
246246 2.63217e10 0.458254
247247 0 0
248248 −3.20959e10 −0.538786
249249 1.86292e11 3.07113
250250 −5.15675e10 −0.834923
251251 3.59087e9 0.0571042 0.0285521 0.999592i 0.490910π-0.490910\pi
0.0285521 + 0.999592i 0.490910π0.490910\pi
252252 −3.09314e11 −4.83167
253253 2.90961e10 0.446471
254254 −1.16671e11 −1.75878
255255 −4.94356e9 −0.0732165
256256 1.38745e10 0.201900
257257 −1.65746e10 −0.236998 −0.118499 0.992954i 0.537808π-0.537808\pi
−0.118499 + 0.992954i 0.537808π0.537808\pi
258258 5.11949e10 0.719347
259259 −1.15013e11 −1.58818
260260 0 0
261261 1.75926e10 0.234665
262262 −1.53819e11 −2.01676
263263 2.05425e9 0.0264760 0.0132380 0.999912i 0.495786π-0.495786\pi
0.0132380 + 0.999912i 0.495786π0.495786\pi
264264 2.38445e10 0.302113
265265 −2.15148e10 −0.267997
266266 9.32273e10 1.14176
267267 1.41663e11 1.70590
268268 −1.15006e11 −1.36180
269269 −1.46969e10 −0.171135 −0.0855677 0.996332i 0.527270π-0.527270\pi
−0.0855677 + 0.996332i 0.527270π0.527270\pi
270270 1.10286e11 1.26294
271271 3.59723e10 0.405141 0.202570 0.979268i 0.435071π-0.435071\pi
0.202570 + 0.979268i 0.435071π0.435071\pi
272272 −7.65317e9 −0.0847777
273273 0 0
274274 1.00670e11 1.07900
275275 3.19162e10 0.336523
276276 −2.84574e11 −2.95192
277277 −6.98271e10 −0.712632 −0.356316 0.934366i 0.615967π-0.615967\pi
−0.356316 + 0.934366i 0.615967π0.615967\pi
278278 8.04786e10 0.808125
279279 3.16684e11 3.12901
280280 −1.91051e10 −0.185754
281281 1.20371e11 1.15171 0.575857 0.817550i 0.304669π-0.304669\pi
0.575857 + 0.817550i 0.304669π0.304669\pi
282282 −1.22696e11 −1.15534
283283 −9.32655e10 −0.864335 −0.432167 0.901793i 0.642251π-0.642251\pi
−0.432167 + 0.901793i 0.642251π0.642251\pi
284284 7.46352e9 0.0680787
285285 −3.08669e10 −0.277134
286286 0 0
287287 2.72852e10 0.237388
288288 4.11335e11 3.52314
289289 −1.16421e11 −0.981728
290290 4.84408e9 0.0402180
291291 −5.93539e10 −0.485211
292292 5.80665e10 0.467415
293293 −2.33838e11 −1.85358 −0.926789 0.375583i 0.877442π-0.877442\pi
−0.926789 + 0.375583i 0.877442π0.877442\pi
294294 −4.28674e11 −3.34630
295295 3.78232e10 0.290777
296296 −6.22269e10 −0.471157
297297 −1.42683e11 −1.06406
298298 −1.31045e11 −0.962604
299299 0 0
300300 −3.12155e11 −2.22498
301301 5.30689e10 0.372641
302302 −6.54595e10 −0.452837
303303 −2.76388e10 −0.188377
304304 −4.77853e10 −0.320895
305305 −6.29238e10 −0.416357
306306 −7.97073e10 −0.519699
307307 1.36494e11 0.876980 0.438490 0.898736i 0.355513π-0.355513\pi
0.438490 + 0.898736i 0.355513π0.355513\pi
308308 1.10187e11 0.697675
309309 2.93977e11 1.83442
310310 8.71981e10 0.536265
311311 2.73365e11 1.65699 0.828496 0.559994i 0.189197π-0.189197\pi
0.828496 + 0.559994i 0.189197π0.189197\pi
312312 0 0
313313 −1.15929e11 −0.682717 −0.341359 0.939933i 0.610887π-0.610887\pi
−0.341359 + 0.939933i 0.610887π0.610887\pi
314314 3.00392e11 1.74383
315315 1.88507e11 1.07877
316316 1.98177e11 1.11805
317317 3.44477e11 1.91599 0.957995 0.286786i 0.0925868π-0.0925868\pi
0.957995 + 0.286786i 0.0925868π0.0925868\pi
318318 −4.83406e11 −2.65088
319319 −6.26704e9 −0.0338848
320320 7.93979e10 0.423286
321321 −2.55966e11 −1.34558
322322 −5.23808e11 −2.71532
323323 1.35293e10 0.0691617
324324 7.45691e11 3.75930
325325 0 0
326326 1.15841e11 0.568044
327327 −1.07476e11 −0.519810
328328 1.47624e10 0.0704247
329329 −1.27187e11 −0.598498
330330 −6.47807e10 −0.300700
331331 −1.84177e11 −0.843353 −0.421676 0.906746i 0.638558π-0.638558\pi
−0.421676 + 0.906746i 0.638558π0.638558\pi
332332 4.65767e11 2.10401
333333 6.13982e11 2.73626
334334 −4.56027e11 −2.00508
335335 7.00886e10 0.304050
336336 4.06673e11 1.74068
337337 −3.39813e11 −1.43518 −0.717588 0.696468i 0.754754π-0.754754\pi
−0.717588 + 0.696468i 0.754754π0.754754\pi
338338 0 0
339339 −2.53958e11 −1.04439
340340 −1.23599e10 −0.0501602
341341 −1.12813e11 −0.451818
342342 −4.97680e11 −1.96713
343343 −6.62842e10 −0.258575
344344 2.87124e10 0.110549
345345 1.73429e11 0.659076
346346 −7.15318e11 −2.68322
347347 4.61731e11 1.70965 0.854823 0.518920i 0.173666π-0.173666\pi
0.854823 + 0.518920i 0.173666π0.173666\pi
348348 6.12946e10 0.224035
349349 −4.21467e11 −1.52072 −0.760361 0.649501i 0.774978π-0.774978\pi
−0.760361 + 0.649501i 0.774978π0.774978\pi
350350 −5.74577e11 −2.04664
351351 0 0
352352 −1.46530e11 −0.508728
353353 −3.66040e11 −1.25471 −0.627354 0.778734i 0.715862π-0.715862\pi
−0.627354 + 0.778734i 0.715862π0.715862\pi
354354 8.49834e11 2.87620
355355 −4.54852e9 −0.0152000
356356 3.54184e11 1.16870
357357 −1.15141e11 −0.375164
358358 −7.74683e11 −2.49259
359359 −2.41644e11 −0.767806 −0.383903 0.923373i 0.625420π-0.625420\pi
−0.383903 + 0.923373i 0.625420π0.625420\pi
360360 1.01990e11 0.320033
361361 −2.38213e11 −0.738214
362362 −7.91016e11 −2.42101
363363 −5.38702e11 −1.62843
364364 0 0
365365 −3.53877e10 −0.104360
366366 −1.41381e12 −4.11837
367367 −2.14146e11 −0.616187 −0.308094 0.951356i 0.599691π-0.599691\pi
−0.308094 + 0.951356i 0.599691π0.599691\pi
368368 2.68487e11 0.763146
369369 −1.45658e11 −0.408993
370370 1.69058e11 0.468952
371371 −5.01101e11 −1.37323
372372 1.10336e12 2.98727
373373 5.41568e11 1.44865 0.724325 0.689459i 0.242152π-0.242152\pi
0.724325 + 0.689459i 0.242152π0.242152\pi
374374 2.83942e10 0.0750426
375375 3.97662e11 1.03842
376376 −6.88135e10 −0.177553
377377 0 0
378378 2.56867e12 6.47136
379379 −1.99906e11 −0.497678 −0.248839 0.968545i 0.580049π-0.580049\pi
−0.248839 + 0.968545i 0.580049π0.580049\pi
380380 −7.71732e10 −0.189863
381381 8.99706e11 2.18745
382382 1.75945e11 0.422759
383383 5.10094e11 1.21131 0.605656 0.795727i 0.292911π-0.292911\pi
0.605656 + 0.795727i 0.292911π0.292911\pi
384384 6.72302e11 1.57788
385385 −6.71519e10 −0.155770
386386 7.24267e10 0.166057
387387 −2.83300e11 −0.642019
388388 −1.48396e11 −0.332415
389389 2.72583e10 0.0603566 0.0301783 0.999545i 0.490392π-0.490392\pi
0.0301783 + 0.999545i 0.490392π0.490392\pi
390390 0 0
391391 −7.60162e10 −0.164479
392392 −2.40420e11 −0.514260
393393 1.18617e12 2.50831
394394 −2.00072e11 −0.418267
395395 −1.20776e11 −0.249628
396396 −5.88219e11 −1.20202
397397 4.53705e11 0.916676 0.458338 0.888778i 0.348445π-0.348445\pi
0.458338 + 0.888778i 0.348445π0.348445\pi
398398 1.05851e11 0.211457
399399 −7.18920e11 −1.42005
400400 2.94509e11 0.575214
401401 −2.17568e11 −0.420190 −0.210095 0.977681i 0.567377π-0.567377\pi
−0.210095 + 0.977681i 0.567377π0.567377\pi
402402 1.57479e12 3.00750
403403 0 0
404404 −6.91024e10 −0.129056
405405 −4.54450e11 −0.839340
406406 1.12823e11 0.206078
407407 −2.18720e11 −0.395105
408408 −6.22957e10 −0.111298
409409 −8.33992e11 −1.47369 −0.736847 0.676060i 0.763686π-0.763686\pi
−0.736847 + 0.676060i 0.763686π0.763686\pi
410410 −4.01065e10 −0.0700951
411411 −7.76312e11 −1.34199
412412 7.35000e11 1.25675
413413 8.80941e11 1.48995
414414 2.79627e12 4.67819
415415 −2.83854e11 −0.469763
416416 0 0
417417 −6.20609e11 −1.00509
418418 1.77289e11 0.284046
419419 8.95743e11 1.41978 0.709889 0.704314i 0.248745π-0.248745\pi
0.709889 + 0.704314i 0.248745π0.248745\pi
420420 6.56777e11 1.02990
421421 −8.15504e11 −1.26519 −0.632597 0.774481i 0.718011π-0.718011\pi
−0.632597 + 0.774481i 0.718011π0.718011\pi
422422 −1.38873e12 −2.13163
423423 6.78971e11 1.03114
424424 −2.71116e11 −0.407388
425425 −8.33839e10 −0.123974
426426 −1.02199e11 −0.150350
427427 −1.46556e12 −2.13343
428428 −6.39965e11 −0.921848
429429 0 0
430430 −7.80059e10 −0.110032
431431 8.43709e11 1.17773 0.588864 0.808232i 0.299575π-0.299575\pi
0.588864 + 0.808232i 0.299575π0.299575\pi
432432 −1.31662e12 −1.81879
433433 2.19189e11 0.299656 0.149828 0.988712i 0.452128π-0.452128\pi
0.149828 + 0.988712i 0.452128π0.452128\pi
434434 2.03093e12 2.74784
435435 −3.73550e10 −0.0500204
436436 −2.68710e11 −0.356119
437437 −4.74633e11 −0.622575
438438 −7.95111e11 −1.03227
439439 −3.68387e11 −0.473385 −0.236692 0.971585i 0.576063π-0.576063\pi
−0.236692 + 0.971585i 0.576063π0.576063\pi
440440 −3.63319e10 −0.0462116
441441 2.37218e12 2.98658
442442 0 0
443443 −1.22853e12 −1.51554 −0.757771 0.652521i 0.773712π-0.773712\pi
−0.757771 + 0.652521i 0.773712π0.773712\pi
444444 2.13918e12 2.61230
445445 −2.15852e11 −0.260937
446446 1.19464e12 1.42965
447447 1.01055e12 1.19722
448448 1.84926e12 2.16893
449449 4.87703e11 0.566300 0.283150 0.959076i 0.408621π-0.408621\pi
0.283150 + 0.959076i 0.408621π0.408621\pi
450450 3.06730e12 3.52614
451451 5.18879e10 0.0590571
452452 −6.34944e11 −0.715504
453453 5.04789e11 0.563207
454454 −1.24217e12 −1.37224
455455 0 0
456456 −3.88965e11 −0.421278
457457 −8.36514e11 −0.897120 −0.448560 0.893753i 0.648063π-0.648063\pi
−0.448560 + 0.893753i 0.648063π0.648063\pi
458458 −4.67530e11 −0.496495
459459 3.72771e11 0.391999
460460 4.33606e11 0.451529
461461 −6.92865e10 −0.0714487 −0.0357243 0.999362i 0.511374π-0.511374\pi
−0.0357243 + 0.999362i 0.511374π0.511374\pi
462462 −1.50881e12 −1.54079
463463 2.51464e11 0.254309 0.127155 0.991883i 0.459416π-0.459416\pi
0.127155 + 0.991883i 0.459416π0.459416\pi
464464 −5.78296e10 −0.0579188
465465 −6.72426e11 −0.666970
466466 −9.52386e11 −0.935571
467467 −3.44156e11 −0.334834 −0.167417 0.985886i 0.553543π-0.553543\pi
−0.167417 + 0.985886i 0.553543π0.553543\pi
468468 0 0
469469 1.63243e12 1.55796
470470 1.86953e11 0.176722
471471 −2.31646e12 −2.16886
472472 4.76625e11 0.442016
473473 1.00920e11 0.0927051
474474 −2.71366e12 −2.46918
475475 −5.20636e11 −0.469260
476476 −2.87874e11 −0.257022
477477 2.67505e12 2.36592
478478 −1.25112e12 −1.09616
479479 −3.21391e11 −0.278948 −0.139474 0.990226i 0.544541π-0.544541\pi
−0.139474 + 0.990226i 0.544541π0.544541\pi
480480 −8.73401e11 −0.750980
481481 0 0
482482 −3.25672e12 −2.74833
483483 4.03933e12 3.37713
484484 −1.34686e12 −1.11563
485485 9.04378e10 0.0742185
486486 −4.81451e12 −3.91462
487487 1.89681e12 1.52807 0.764037 0.645172i 0.223214π-0.223214\pi
0.764037 + 0.645172i 0.223214π0.223214\pi
488488 −7.92927e11 −0.632913
489489 −8.93303e11 −0.706494
490490 6.53173e11 0.511853
491491 −1.50545e12 −1.16896 −0.584479 0.811409i 0.698701π-0.698701\pi
−0.584479 + 0.811409i 0.698701π0.698701\pi
492492 −5.07488e11 −0.390466
493493 1.63732e10 0.0124831
494494 0 0
495495 3.58481e11 0.268375
496496 −1.04099e12 −0.772287
497497 −1.05940e11 −0.0778852
498498 −6.37780e12 −4.64664
499499 −1.38015e12 −0.996495 −0.498247 0.867035i 0.666023π-0.666023\pi
−0.498247 + 0.867035i 0.666023π0.666023\pi
500500 9.94232e11 0.711414
501501 3.51664e12 2.49378
502502 −1.22935e11 −0.0863991
503503 −1.83180e12 −1.27592 −0.637958 0.770071i 0.720221π-0.720221\pi
−0.637958 + 0.770071i 0.720221π0.720221\pi
504504 2.37544e12 1.63986
505505 4.21133e10 0.0288143
506506 −9.96119e11 −0.675513
507507 0 0
508508 2.24944e12 1.49861
509509 −1.85488e12 −1.22486 −0.612430 0.790525i 0.709808π-0.709808\pi
−0.612430 + 0.790525i 0.709808π0.709808\pi
510510 1.69245e11 0.110777
511511 −8.24215e11 −0.534745
512512 −1.77883e12 −1.14398
513513 2.32753e12 1.48377
514514 5.67440e11 0.358580
515515 −4.47934e11 −0.280596
516516 −9.87048e11 −0.612935
517517 −2.41871e11 −0.148894
518518 3.93754e12 2.40293
519519 5.51616e12 3.33721
520520 0 0
521521 1.06110e12 0.630939 0.315469 0.948936i 0.397838π-0.397838\pi
0.315469 + 0.948936i 0.397838π0.397838\pi
522522 −6.02292e11 −0.355050
523523 −1.42342e12 −0.831907 −0.415953 0.909386i 0.636552π-0.636552\pi
−0.415953 + 0.909386i 0.636552π0.636552\pi
524524 2.96566e12 1.71842
525525 4.43084e12 2.54548
526526 −7.03283e10 −0.0400584
527527 2.94733e11 0.166449
528528 7.73365e11 0.433044
529529 8.65628e11 0.480597
530530 7.36568e11 0.405482
531531 −4.70277e12 −2.56702
532532 −1.79744e12 −0.972864
533533 0 0
534534 −4.84988e12 −2.58105
535535 3.90017e11 0.205822
536536 8.83212e11 0.462193
537537 5.97395e12 3.10011
538538 5.03155e11 0.258929
539539 −8.45044e11 −0.431251
540540 −2.12634e12 −1.07612
541541 −1.66674e12 −0.836526 −0.418263 0.908326i 0.637361π-0.637361\pi
−0.418263 + 0.908326i 0.637361π0.637361\pi
542542 −1.23153e12 −0.612981
543543 6.09990e12 3.01109
544544 3.82823e11 0.187414
545545 1.63761e11 0.0795108
546546 0 0
547547 9.55167e11 0.456180 0.228090 0.973640i 0.426752π-0.426752\pi
0.228090 + 0.973640i 0.426752π0.426752\pi
548548 −1.94093e12 −0.919385
549549 7.82367e12 3.67566
550550 −1.09267e12 −0.509161
551551 1.02232e11 0.0472502
552552 2.18544e12 1.00188
553553 −2.81299e12 −1.27910
554554 2.39056e12 1.07822
555555 −1.30369e12 −0.583251
556556 −1.55164e12 −0.688581
557557 1.16406e12 0.512420 0.256210 0.966621i 0.417526π-0.417526\pi
0.256210 + 0.966621i 0.417526π0.417526\pi
558558 −1.08418e13 −4.73422
559559 0 0
560560 −6.19650e11 −0.266256
561561 −2.18961e11 −0.0933328
562562 −4.12097e12 −1.74255
563563 −3.44795e12 −1.44635 −0.723175 0.690665i 0.757318π-0.757318\pi
−0.723175 + 0.690665i 0.757318π0.757318\pi
564564 2.36561e12 0.984434
565565 3.86956e11 0.159751
566566 3.19299e12 1.30775
567567 −1.05846e13 −4.30081
568568 −5.73176e10 −0.0231058
569569 3.22482e12 1.28973 0.644867 0.764295i 0.276913π-0.276913\pi
0.644867 + 0.764295i 0.276913π0.276913\pi
570570 1.05674e12 0.419306
571571 3.76387e12 1.48174 0.740870 0.671649i 0.234414π-0.234414\pi
0.740870 + 0.671649i 0.234414π0.234414\pi
572572 0 0
573573 −1.35680e12 −0.525798
574574 −9.34122e11 −0.359170
575575 2.92525e12 1.11598
576576 −9.87198e12 −3.73683
577577 −6.76317e11 −0.254015 −0.127007 0.991902i 0.540537π-0.540537\pi
−0.127007 + 0.991902i 0.540537π0.540537\pi
578578 3.98573e12 1.48536
579579 −5.58517e11 −0.206530
580580 −9.33948e10 −0.0342686
581581 −6.61125e12 −2.40708
582582 2.03201e12 0.734128
583583 −9.52937e11 −0.341630
584584 −4.45934e11 −0.158640
585585 0 0
586586 8.00555e12 2.80448
587587 −4.53820e12 −1.57765 −0.788827 0.614615i 0.789312π-0.789312\pi
−0.788827 + 0.614615i 0.789312π0.789312\pi
588588 8.26492e12 2.85129
589589 1.84027e12 0.630032
590590 −1.29490e12 −0.439947
591591 1.54285e12 0.520212
592592 −2.01825e12 −0.675348
593593 2.06956e12 0.687278 0.343639 0.939102i 0.388340π-0.388340\pi
0.343639 + 0.939102i 0.388340π0.388340\pi
594594 4.88481e12 1.60994
595595 1.75440e11 0.0573856
596596 2.52658e12 0.820208
597597 −8.16268e11 −0.262996
598598 0 0
599599 −6.11477e11 −0.194071 −0.0970353 0.995281i 0.530936π-0.530936\pi
−0.0970353 + 0.995281i 0.530936π0.530936\pi
600600 2.39726e12 0.755153
601601 −4.53199e12 −1.41695 −0.708474 0.705737i 0.750616π-0.750616\pi
−0.708474 + 0.705737i 0.750616π0.750616\pi
602602 −1.81684e12 −0.563809
603603 −8.71450e12 −2.68420
604604 1.26207e12 0.385849
605605 8.20822e11 0.249086
606606 9.46227e11 0.285015
607607 −1.22324e12 −0.365731 −0.182866 0.983138i 0.558537π-0.558537\pi
−0.182866 + 0.983138i 0.558537π0.558537\pi
608608 2.39029e12 0.709389
609609 −8.70036e11 −0.256306
610610 2.15423e12 0.629951
611611 0 0
612612 1.53677e12 0.442821
613613 1.31919e12 0.377343 0.188671 0.982040i 0.439582π-0.439582\pi
0.188671 + 0.982040i 0.439582π0.439582\pi
614614 −4.67292e12 −1.32688
615615 3.09281e11 0.0871796
616616 −8.46207e11 −0.236790
617617 −5.58462e12 −1.55135 −0.775676 0.631132i 0.782591π-0.782591\pi
−0.775676 + 0.631132i 0.782591π0.782591\pi
618618 −1.00644e13 −2.77550
619619 −1.77467e11 −0.0485858 −0.0242929 0.999705i 0.507733π-0.507733\pi
−0.0242929 + 0.999705i 0.507733π0.507733\pi
620620 −1.68120e12 −0.456937
621621 −1.30775e13 −3.52867
622622 −9.35876e12 −2.50704
623623 −5.02741e12 −1.33705
624624 0 0
625625 2.89273e12 0.758311
626626 3.96887e12 1.03296
627627 −1.36716e12 −0.353277
628628 −5.79161e12 −1.48587
629629 5.71424e11 0.145556
630630 −6.45361e12 −1.63219
631631 −3.65671e12 −0.918245 −0.459122 0.888373i 0.651836π-0.651836\pi
−0.459122 + 0.888373i 0.651836π0.651836\pi
632632 −1.52194e12 −0.379465
633633 1.07092e13 2.65118
634634 −1.17933e13 −2.89891
635635 −1.37089e12 −0.334595
636636 9.32017e12 2.25874
637637 0 0
638638 2.14555e11 0.0512679
639639 5.65543e11 0.134187
640640 −1.02439e12 −0.241355
641641 5.32688e12 1.24627 0.623134 0.782115i 0.285859π-0.285859\pi
0.623134 + 0.782115i 0.285859π0.285859\pi
642642 8.76312e12 2.03587
643643 7.82345e12 1.80488 0.902441 0.430814i 0.141773π-0.141773\pi
0.902441 + 0.430814i 0.141773π0.141773\pi
644644 1.00991e13 2.31365
645645 6.01541e11 0.136851
646646 −4.63183e11 −0.104642
647647 5.12091e12 1.14889 0.574444 0.818544i 0.305218π-0.305218\pi
0.574444 + 0.818544i 0.305218π0.305218\pi
648648 −5.72669e12 −1.27590
649649 1.67527e12 0.370668
650650 0 0
651651 −1.56615e13 −3.41758
652652 −2.23343e12 −0.484015
653653 2.15976e12 0.464833 0.232417 0.972616i 0.425337π-0.425337\pi
0.232417 + 0.972616i 0.425337π0.425337\pi
654654 3.67948e12 0.786477
655655 −1.80737e12 −0.383674
656656 4.78800e11 0.100946
657657 4.39995e12 0.921305
658658 4.35432e12 0.905532
659659 −5.20929e12 −1.07596 −0.537978 0.842959i 0.680812π-0.680812\pi
−0.537978 + 0.842959i 0.680812π0.680812\pi
660660 1.24898e12 0.256218
661661 2.88146e12 0.587092 0.293546 0.955945i 0.405165π-0.405165\pi
0.293546 + 0.955945i 0.405165π0.405165\pi
662662 6.30538e12 1.27600
663663 0 0
664664 −3.57695e12 −0.714097
665665 1.09542e12 0.217212
666666 −2.10200e13 −4.13997
667667 −5.74400e11 −0.112369
668668 8.79229e12 1.70847
669669 −9.21243e12 −1.77810
670670 −2.39951e12 −0.460030
671671 −2.78703e12 −0.530751
672672 −2.03424e13 −3.84805
673673 1.08571e12 0.204008 0.102004 0.994784i 0.467475π-0.467475\pi
0.102004 + 0.994784i 0.467475π0.467475\pi
674674 1.16336e13 2.17143
675675 −1.43450e13 −2.65970
676676 0 0
677677 −6.38065e12 −1.16739 −0.583695 0.811973i 0.698394π-0.698394\pi
−0.583695 + 0.811973i 0.698394π0.698394\pi
678678 8.69435e12 1.58017
679679 2.10639e12 0.380298
680680 9.49202e10 0.0170243
681681 9.57896e12 1.70670
682682 3.86220e12 0.683604
683683 7.35340e12 1.29299 0.646495 0.762918i 0.276234π-0.276234\pi
0.646495 + 0.762918i 0.276234π0.276234\pi
684684 9.59537e12 1.67614
685685 1.18287e12 0.205272
686686 2.26927e12 0.391226
687687 3.60535e12 0.617507
688688 9.31251e11 0.158460
689689 0 0
690690 −5.93742e12 −0.997187
691691 −6.16812e11 −0.102920 −0.0514602 0.998675i 0.516388π-0.516388\pi
−0.0514602 + 0.998675i 0.516388π0.516388\pi
692692 1.37915e13 2.28630
693693 8.34937e12 1.37516
694694 −1.58076e13 −2.58671
695695 9.45624e11 0.153740
696696 −4.70724e11 −0.0760370
697697 −1.35562e11 −0.0217565
698698 1.44291e13 2.30086
699699 7.34430e12 1.16360
700700 1.10780e13 1.74389
701701 9.64887e12 1.50920 0.754598 0.656188i 0.227832π-0.227832\pi
0.754598 + 0.656188i 0.227832π0.227832\pi
702702 0 0
703703 3.56788e12 0.550949
704704 3.51671e12 0.539584
705705 −1.44168e12 −0.219795
706706 1.25316e13 1.89838
707707 9.80862e11 0.147646
708708 −1.63850e13 −2.45073
709709 −1.96064e12 −0.291400 −0.145700 0.989329i 0.546543π-0.546543\pi
−0.145700 + 0.989329i 0.546543π0.546543\pi
710710 1.55721e11 0.0229977
711711 1.50167e13 2.20375
712712 −2.72003e12 −0.396656
713713 −1.03398e13 −1.49833
714714 3.94189e12 0.567626
715715 0 0
716716 1.49360e13 2.12386
717717 9.64799e12 1.36333
718718 8.27280e12 1.16170
719719 −1.37403e13 −1.91742 −0.958710 0.284385i 0.908211π-0.908211\pi
−0.958710 + 0.284385i 0.908211π0.908211\pi
720720 3.30791e12 0.458730
721721 −1.04328e13 −1.43778
722722 8.15531e12 1.11692
723723 2.51141e13 3.41818
724724 1.52509e13 2.06288
725725 −6.30073e11 −0.0846973
726726 1.84427e13 2.46382
727727 4.47091e12 0.593596 0.296798 0.954940i 0.404081π-0.404081\pi
0.296798 + 0.954940i 0.404081π0.404081\pi
728728 0 0
729729 1.48907e13 1.95272
730730 1.21151e12 0.157898
731731 −2.63663e11 −0.0341524
732732 2.72585e13 3.50915
733733 −4.24429e12 −0.543046 −0.271523 0.962432i 0.587527π-0.587527\pi
−0.271523 + 0.962432i 0.587527π0.587527\pi
734734 7.33139e12 0.932296
735735 −5.03692e12 −0.636608
736736 −1.34301e13 −1.68706
737737 3.10438e12 0.387588
738738 4.98667e12 0.618810
739739 −1.30576e13 −1.61052 −0.805258 0.592925i 0.797973π-0.797973\pi
−0.805258 + 0.592925i 0.797973π0.797973\pi
740740 −3.25948e12 −0.399581
741741 0 0
742742 1.71554e13 2.07770
743743 1.38712e12 0.166980 0.0834898 0.996509i 0.473393π-0.473393\pi
0.0834898 + 0.996509i 0.473393π0.473393\pi
744744 −8.47350e12 −1.01388
745745 −1.53978e12 −0.183128
746746 −1.85408e13 −2.19182
747747 3.52932e13 4.14713
748748 −5.47446e11 −0.0639417
749749 9.08388e12 1.05464
750750 −1.36141e13 −1.57114
751751 1.37227e13 1.57420 0.787101 0.616824i 0.211581π-0.211581\pi
0.787101 + 0.616824i 0.211581π0.211581\pi
752752 −2.23188e12 −0.254502
753753 9.48011e11 0.107457
754754 0 0
755755 −7.69150e11 −0.0861489
756756 −4.95245e13 −5.51407
757757 −1.91628e12 −0.212093 −0.106047 0.994361i 0.533819π-0.533819\pi
−0.106047 + 0.994361i 0.533819π0.533819\pi
758758 6.84386e12 0.752990
759759 7.68155e12 0.840158
760760 5.92667e11 0.0644392
761761 4.43436e11 0.0479291 0.0239646 0.999713i 0.492371π-0.492371\pi
0.0239646 + 0.999713i 0.492371π0.492371\pi
762762 −3.08018e13 −3.30963
763763 3.81416e12 0.407416
764764 −3.39226e12 −0.360221
765765 −9.36561e11 −0.0988689
766766 −1.74633e13 −1.83272
767767 0 0
768768 3.66294e12 0.379931
769769 −7.05194e12 −0.727177 −0.363588 0.931560i 0.618449π-0.618449\pi
−0.363588 + 0.931560i 0.618449π0.618449\pi
770770 2.29898e12 0.235682
771771 −4.37580e12 −0.445977
772772 −1.39640e12 −0.141492
773773 −6.17676e12 −0.622233 −0.311117 0.950372i 0.600703π-0.600703\pi
−0.311117 + 0.950372i 0.600703π0.600703\pi
774774 9.69891e12 0.971379
775775 −1.13419e13 −1.12935
776776 1.13964e12 0.112821
777777 −3.03642e13 −2.98860
778778 −9.33199e11 −0.0913200
779779 −8.46427e11 −0.0823514
780780 0 0
781781 −2.01464e11 −0.0193762
782782 2.60245e12 0.248858
783783 2.81677e12 0.267808
784784 −7.79771e12 −0.737131
785785 3.52961e12 0.331751
786786 −4.06091e13 −3.79509
787787 1.52369e13 1.41583 0.707915 0.706297i 0.249636π-0.249636\pi
0.707915 + 0.706297i 0.249636π0.249636\pi
788788 3.85743e12 0.356393
789789 5.42335e11 0.0498220
790790 4.13482e12 0.377689
791791 9.01260e12 0.818570
792792 4.51735e12 0.407962
793793 0 0
794794 −1.55328e13 −1.38694
795795 −5.68003e12 −0.504311
796796 −2.04083e12 −0.180177
797797 2.09725e12 0.184115 0.0920574 0.995754i 0.470656π-0.470656\pi
0.0920574 + 0.995754i 0.470656π0.470656\pi
798798 2.46126e13 2.14854
799799 6.31908e11 0.0548521
800800 −1.47318e13 −1.27160
801801 2.68381e13 2.30359
802802 7.44854e12 0.635750
803803 −1.56740e12 −0.133033
804804 −3.03622e13 −2.56261
805805 −6.15475e12 −0.516570
806806 0 0
807807 −3.88006e12 −0.322039
808808 5.30686e11 0.0438013
809809 2.02578e13 1.66274 0.831369 0.555721i 0.187558π-0.187558\pi
0.831369 + 0.555721i 0.187558π0.187558\pi
810810 1.55583e13 1.26993
811811 −1.14386e13 −0.928492 −0.464246 0.885706i 0.653675π-0.653675\pi
−0.464246 + 0.885706i 0.653675π0.653675\pi
812812 −2.17526e12 −0.175594
813813 9.49689e12 0.762384
814814 7.48796e12 0.597797
815815 1.36113e12 0.108066
816816 −2.02048e12 −0.159533
817817 −1.64627e12 −0.129271
818818 2.85521e13 2.22971
819819 0 0
820820 7.73262e11 0.0597261
821821 −1.06586e13 −0.818760 −0.409380 0.912364i 0.634255π-0.634255\pi
−0.409380 + 0.912364i 0.634255π0.634255\pi
822822 2.65774e13 2.03043
823823 −1.71114e13 −1.30013 −0.650063 0.759881i 0.725257π-0.725257\pi
−0.650063 + 0.759881i 0.725257π0.725257\pi
824824 −5.64458e12 −0.426540
825825 8.42607e12 0.633260
826826 −3.01594e13 −2.25431
827827 1.83371e13 1.36319 0.681595 0.731729i 0.261286π-0.261286\pi
0.681595 + 0.731729i 0.261286π0.261286\pi
828828 −5.39127e13 −3.98616
829829 −4.12665e12 −0.303460 −0.151730 0.988422i 0.548484π-0.548484\pi
−0.151730 + 0.988422i 0.548484π0.548484\pi
830830 9.71788e12 0.710755
831831 −1.84348e13 −1.34101
832832 0 0
833833 2.20775e12 0.158872
834834 2.12468e13 1.52071
835835 −5.35832e12 −0.381452
836836 −3.41817e12 −0.242028
837837 5.07046e13 3.57094
838838 −3.06662e13 −2.14813
839839 −1.08660e13 −0.757081 −0.378540 0.925585i 0.623574π-0.623574\pi
−0.378540 + 0.925585i 0.623574π0.623574\pi
840840 −5.04386e12 −0.349547
841841 −1.43834e13 −0.991472
842842 2.79192e13 1.91425
843843 3.17787e13 2.16727
844844 2.67750e13 1.81630
845845 0 0
846846 −2.32449e13 −1.56013
847847 1.91178e13 1.27633
848848 −8.79330e12 −0.583943
849849 −2.46226e13 −1.62648
850850 2.85469e12 0.187574
851851 −2.00465e13 −1.31026
852852 1.97041e12 0.128109
853853 1.12824e13 0.729679 0.364839 0.931071i 0.381124π-0.381124\pi
0.364839 + 0.931071i 0.381124π0.381124\pi
854854 5.01741e13 3.22789
855855 −5.84775e12 −0.374232
856856 4.91475e12 0.312874
857857 −2.23215e13 −1.41355 −0.706774 0.707440i 0.749850π-0.749850\pi
−0.706774 + 0.707440i 0.749850π0.749850\pi
858858 0 0
859859 −2.62619e12 −0.164572 −0.0822862 0.996609i 0.526222π-0.526222\pi
−0.0822862 + 0.996609i 0.526222π0.526222\pi
860860 1.50397e12 0.0937554
861861 7.20346e12 0.446711
862862 −2.88848e13 −1.78191
863863 −2.05499e13 −1.26113 −0.630566 0.776136i 0.717177π-0.717177\pi
−0.630566 + 0.776136i 0.717177π0.717177\pi
864864 6.58591e13 4.02072
865865 −8.40499e12 −0.510464
866866 −7.50402e12 −0.453381
867867 −3.07358e13 −1.84739
868868 −3.91568e13 −2.34136
869869 −5.34943e12 −0.318213
870870 1.27887e12 0.0756812
871871 0 0
872872 2.06361e12 0.120866
873873 −1.12446e13 −0.655211
874874 1.62493e13 0.941961
875875 −1.41125e13 −0.813891
876876 1.53299e13 0.879570
877877 −2.62941e13 −1.50093 −0.750464 0.660911i 0.770170π-0.770170\pi
−0.750464 + 0.660911i 0.770170π0.770170\pi
878878 1.26119e13 0.716235
879879 −6.17346e13 −3.48802
880880 −1.17838e12 −0.0662389
881881 2.30187e13 1.28733 0.643665 0.765308i 0.277413π-0.277413\pi
0.643665 + 0.765308i 0.277413π0.277413\pi
882882 −8.12126e13 −4.51871
883883 1.03930e12 0.0575329 0.0287665 0.999586i 0.490842π-0.490842\pi
0.0287665 + 0.999586i 0.490842π0.490842\pi
884884 0 0
885885 9.98556e12 0.547177
886886 4.20592e13 2.29303
887887 5.00948e11 0.0271729 0.0135865 0.999908i 0.495675π-0.495675\pi
0.0135865 + 0.999908i 0.495675π0.495675\pi
888888 −1.64283e13 −0.886612
889889 −3.19293e13 −1.71448
890890 7.38979e12 0.394800
891891 −2.01286e13 −1.06995
892892 −2.30329e13 −1.21817
893893 3.94554e12 0.207623
894894 −3.45967e13 −1.81140
895895 −9.10253e12 −0.474197
896896 −2.38591e13 −1.23671
897897 0 0
898898 −1.66967e13 −0.856816
899899 2.22709e12 0.113715
900900 −5.91381e13 −3.00453
901901 2.48963e12 0.125856
902902 −1.77641e12 −0.0893538
903903 1.40105e13 0.701227
904904 4.87618e12 0.242841
905905 −9.29444e12 −0.460580
906906 −1.72817e13 −0.852137
907907 −1.56921e13 −0.769927 −0.384963 0.922932i 0.625786π-0.625786\pi
−0.384963 + 0.922932i 0.625786π0.625786\pi
908908 2.39493e13 1.16925
909909 −5.23619e12 −0.254377
910910 0 0
911911 2.93154e13 1.41014 0.705072 0.709135i 0.250915π-0.250915\pi
0.705072 + 0.709135i 0.250915π0.250915\pi
912912 −1.26156e13 −0.603852
913913 −1.25725e13 −0.598831
914914 2.86384e13 1.35735
915915 −1.66123e13 −0.783490
916916 9.01407e12 0.423050
917917 −4.20956e13 −1.96596
918918 −1.27620e13 −0.593098
919919 −2.25362e13 −1.04222 −0.521112 0.853488i 0.674483π-0.674483\pi
−0.521112 + 0.853488i 0.674483π0.674483\pi
920920 −3.32997e12 −0.153248
921921 3.60351e13 1.65028
922922 2.37205e12 0.108102
923923 0 0
924924 2.90901e13 1.31287
925925 −2.19895e13 −0.987593
926926 −8.60900e12 −0.384772
927927 5.56941e13 2.47714
928928 2.89272e12 0.128039
929929 1.08694e13 0.478780 0.239390 0.970923i 0.423053π-0.423053\pi
0.239390 + 0.970923i 0.423053π0.423053\pi
930930 2.30208e13 1.00913
931931 1.37849e13 0.601352
932932 1.83622e13 0.797174
933933 7.21699e13 3.11809
934934 1.17823e13 0.506606
935935 3.33632e11 0.0142763
936936 0 0
937937 −1.87914e13 −0.796398 −0.398199 0.917299i 0.630365π-0.630365\pi
−0.398199 + 0.917299i 0.630365π0.630365\pi
938938 −5.58871e13 −2.35721
939939 −3.06058e13 −1.28472
940940 −3.60449e12 −0.150580
941941 −9.61664e12 −0.399825 −0.199913 0.979814i 0.564066π-0.564066\pi
−0.199913 + 0.979814i 0.564066π0.564066\pi
942942 7.93052e13 3.28150
943943 4.75574e12 0.195847
944944 1.54587e13 0.633578
945945 3.01819e13 1.23113
946946 −3.45505e12 −0.140264
947947 −3.70974e13 −1.49889 −0.749444 0.662068i 0.769679π-0.769679\pi
−0.749444 + 0.662068i 0.769679π0.769679\pi
948948 5.23199e13 2.10392
949949 0 0
950950 1.78242e13 0.709993
951951 9.09438e13 3.60546
952952 2.21079e12 0.0872330
953953 4.35750e13 1.71127 0.855636 0.517577i 0.173166π-0.173166\pi
0.855636 + 0.517577i 0.173166π0.173166\pi
954954 −9.15816e13 −3.57965
955955 2.06736e12 0.0804268
956956 2.41219e13 0.934008
957957 −1.65454e12 −0.0637635
958958 1.10030e13 0.422051
959959 2.75502e13 1.05182
960960 2.09615e13 0.796529
961961 1.36502e13 0.516276
962962 0 0
963963 −4.84930e13 −1.81702
964964 6.27902e13 2.34177
965965 8.51015e11 0.0315911
966966 −1.38288e14 −5.10962
967967 3.87930e13 1.42670 0.713352 0.700806i 0.247176π-0.247176\pi
0.713352 + 0.700806i 0.247176π0.247176\pi
968968 1.03435e13 0.378641
969969 3.57183e12 0.130147
970970 −3.09618e12 −0.112293
971971 2.76084e13 0.996678 0.498339 0.866982i 0.333943π-0.333943\pi
0.498339 + 0.866982i 0.333943π0.333943\pi
972972 9.28248e13 3.33554
973973 2.20245e13 0.787769
974974 −6.49383e13 −2.31199
975975 0 0
976976 −2.57176e13 −0.907206
977977 −1.64814e13 −0.578721 −0.289360 0.957220i 0.593443π-0.593443\pi
−0.289360 + 0.957220i 0.593443π0.593443\pi
978978 3.05826e13 1.06893
979979 −9.56056e12 −0.332630
980980 −1.25933e13 −0.436136
981981 −2.03613e13 −0.701933
982982 5.15397e13 1.76864
983983 −4.86777e13 −1.66280 −0.831399 0.555676i 0.812459π-0.812459\pi
−0.831399 + 0.555676i 0.812459π0.812459\pi
984984 3.89736e12 0.132523
985985 −2.35085e12 −0.0795722
986986 −5.60543e11 −0.0188870
987987 −3.35782e13 −1.12624
988988 0 0
989989 9.24977e12 0.307431
990990 −1.22727e13 −0.406053
991991 1.07473e13 0.353970 0.176985 0.984214i 0.443366π-0.443366\pi
0.176985 + 0.984214i 0.443366π0.443366\pi
992992 5.20718e13 1.70726
993993 −4.86238e13 −1.58700
994994 3.62689e12 0.117841
995995 1.24375e12 0.0402281
996996 1.22965e14 3.95927
997997 1.10239e13 0.353353 0.176676 0.984269i 0.443465π-0.443465\pi
0.176676 + 0.984269i 0.443465π0.443465\pi
998998 4.72502e13 1.50770
999999 9.83051e13 3.12271
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.4 20
13.2 odd 12 13.10.e.a.4.2 20
13.7 odd 12 13.10.e.a.10.2 yes 20
13.12 even 2 inner 169.10.a.f.1.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.2 20 13.2 odd 12
13.10.e.a.10.2 yes 20 13.7 odd 12
169.10.a.f.1.4 20 1.1 even 1 trivial
169.10.a.f.1.17 20 13.12 even 2 inner