Properties

Label 169.10.a.f.1.20
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.20
Root 41.359941.3599 of defining polynomial
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+41.3599q2+214.052q3+1198.64q4+1662.90q5+8853.18q6+124.522q7+28399.6q8+26135.3q9+68777.5q1072425.9q11+256572.q12+5150.23q14+355947.q15+560898.q16281440.q17+1.08096e6q18+157910.q19+1.99323e6q20+26654.3q212.99553e6q22+2.60475e6q23+6.07899e6q24+812113.q25+1.38113e6q27+149258.q28998522.q29+1.47220e7q30+2.62786e6q31+8.65813e6q321.55029e7q331.16403e7q34+207068.q35+3.13270e7q36+552605.q37+6.53116e6q38+4.72256e7q405.25427e6q41+1.10242e6q42+1.33968e7q438.68129e7q44+4.34605e7q45+1.07732e8q462.46747e7q47+1.20061e8q484.03381e7q49+3.35889e7q506.02427e7q513.60475e7q53+5.71236e7q541.20437e8q55+3.53638e6q56+3.38010e7q574.12988e7q585.37869e7q59+4.26654e8q60+1.04085e8q61+1.08688e8q62+3.25443e6q63+7.09198e7q646.41200e8q665.45531e7q673.37346e8q68+5.57553e8q69+8.56432e6q701.40628e8q71+7.42232e8q72+4.29589e7q73+2.28557e7q74+1.73835e8q75+1.89278e8q769.01864e6q772.82937e8q79+9.32717e8q802.18787e8q812.17316e8q824.41851e8q83+3.19490e7q844.68006e8q85+5.54092e8q862.13736e8q872.05686e9q88+7.17027e8q89+1.79752e9q90+3.12217e9q92+5.62499e8q931.02054e9q94+2.62589e8q95+1.85329e9q96+1.99252e8q971.66838e9q981.89288e9q99+O(q100)q+41.3599 q^{2} +214.052 q^{3} +1198.64 q^{4} +1662.90 q^{5} +8853.18 q^{6} +124.522 q^{7} +28399.6 q^{8} +26135.3 q^{9} +68777.5 q^{10} -72425.9 q^{11} +256572. q^{12} +5150.23 q^{14} +355947. q^{15} +560898. q^{16} -281440. q^{17} +1.08096e6 q^{18} +157910. q^{19} +1.99323e6 q^{20} +26654.3 q^{21} -2.99553e6 q^{22} +2.60475e6 q^{23} +6.07899e6 q^{24} +812113. q^{25} +1.38113e6 q^{27} +149258. q^{28} -998522. q^{29} +1.47220e7 q^{30} +2.62786e6 q^{31} +8.65813e6 q^{32} -1.55029e7 q^{33} -1.16403e7 q^{34} +207068. q^{35} +3.13270e7 q^{36} +552605. q^{37} +6.53116e6 q^{38} +4.72256e7 q^{40} -5.25427e6 q^{41} +1.10242e6 q^{42} +1.33968e7 q^{43} -8.68129e7 q^{44} +4.34605e7 q^{45} +1.07732e8 q^{46} -2.46747e7 q^{47} +1.20061e8 q^{48} -4.03381e7 q^{49} +3.35889e7 q^{50} -6.02427e7 q^{51} -3.60475e7 q^{53} +5.71236e7 q^{54} -1.20437e8 q^{55} +3.53638e6 q^{56} +3.38010e7 q^{57} -4.12988e7 q^{58} -5.37869e7 q^{59} +4.26654e8 q^{60} +1.04085e8 q^{61} +1.08688e8 q^{62} +3.25443e6 q^{63} +7.09198e7 q^{64} -6.41200e8 q^{66} -5.45531e7 q^{67} -3.37346e8 q^{68} +5.57553e8 q^{69} +8.56432e6 q^{70} -1.40628e8 q^{71} +7.42232e8 q^{72} +4.29589e7 q^{73} +2.28557e7 q^{74} +1.73835e8 q^{75} +1.89278e8 q^{76} -9.01864e6 q^{77} -2.82937e8 q^{79} +9.32717e8 q^{80} -2.18787e8 q^{81} -2.17316e8 q^{82} -4.41851e8 q^{83} +3.19490e7 q^{84} -4.68006e8 q^{85} +5.54092e8 q^{86} -2.13736e8 q^{87} -2.05686e9 q^{88} +7.17027e8 q^{89} +1.79752e9 q^{90} +3.12217e9 q^{92} +5.62499e8 q^{93} -1.02054e9 q^{94} +2.62589e8 q^{95} +1.85329e9 q^{96} +1.99252e8 q^{97} -1.66838e9 q^{98} -1.89288e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 41.3599 1.82787 0.913934 0.405863i 0.133029π-0.133029\pi
0.913934 + 0.405863i 0.133029π0.133029\pi
33 214.052 1.52572 0.762858 0.646565i 0.223795π-0.223795\pi
0.762858 + 0.646565i 0.223795π0.223795\pi
44 1198.64 2.34110
55 1662.90 1.18987 0.594937 0.803772i 0.297177π-0.297177\pi
0.594937 + 0.803772i 0.297177π0.297177\pi
66 8853.18 2.78881
77 124.522 0.0196022 0.00980112 0.999952i 0.496880π-0.496880\pi
0.00980112 + 0.999952i 0.496880π0.496880\pi
88 28399.6 2.45136
99 26135.3 1.32781
1010 68777.5 2.17493
1111 −72425.9 −1.49151 −0.745757 0.666219i 0.767912π-0.767912\pi
−0.745757 + 0.666219i 0.767912π0.767912\pi
1212 256572. 3.57186
1313 0 0
1414 5150.23 0.0358303
1515 355947. 1.81541
1616 560898. 2.13966
1717 −281440. −0.817269 −0.408634 0.912698i 0.633995π-0.633995\pi
−0.408634 + 0.912698i 0.633995π0.633995\pi
1818 1.08096e6 2.42707
1919 157910. 0.277984 0.138992 0.990294i 0.455614π-0.455614\pi
0.138992 + 0.990294i 0.455614π0.455614\pi
2020 1.99323e6 2.78562
2121 26654.3 0.0299075
2222 −2.99553e6 −2.72629
2323 2.60475e6 1.94085 0.970423 0.241411i 0.0776103π-0.0776103\pi
0.970423 + 0.241411i 0.0776103π0.0776103\pi
2424 6.07899e6 3.74008
2525 812113. 0.415802
2626 0 0
2727 1.38113e6 0.500149
2828 149258. 0.0458908
2929 −998522. −0.262160 −0.131080 0.991372i 0.541845π-0.541845\pi
−0.131080 + 0.991372i 0.541845π0.541845\pi
3030 1.47220e7 3.31833
3131 2.62786e6 0.511063 0.255531 0.966801i 0.417750π-0.417750\pi
0.255531 + 0.966801i 0.417750π0.417750\pi
3232 8.65813e6 1.45965
3333 −1.55029e7 −2.27563
3434 −1.16403e7 −1.49386
3535 207068. 0.0233242
3636 3.13270e7 3.10854
3737 552605. 0.0484738 0.0242369 0.999706i 0.492284π-0.492284\pi
0.0242369 + 0.999706i 0.492284π0.492284\pi
3838 6.53116e6 0.508118
3939 0 0
4040 4.72256e7 2.91681
4141 −5.25427e6 −0.290392 −0.145196 0.989403i 0.546381π-0.546381\pi
−0.145196 + 0.989403i 0.546381π0.546381\pi
4242 1.10242e6 0.0546669
4343 1.33968e7 0.597577 0.298789 0.954319i 0.403417π-0.403417\pi
0.298789 + 0.954319i 0.403417π0.403417\pi
4444 −8.68129e7 −3.49178
4545 4.34605e7 1.57993
4646 1.07732e8 3.54761
4747 −2.46747e7 −0.737583 −0.368791 0.929512i 0.620228π-0.620228\pi
−0.368791 + 0.929512i 0.620228π0.620228\pi
4848 1.20061e8 3.26451
4949 −4.03381e7 −0.999616
5050 3.35889e7 0.760031
5151 −6.02427e7 −1.24692
5252 0 0
5353 −3.60475e7 −0.627529 −0.313764 0.949501i 0.601590π-0.601590\pi
−0.313764 + 0.949501i 0.601590π0.601590\pi
5454 5.71236e7 0.914206
5555 −1.20437e8 −1.77471
5656 3.53638e6 0.0480521
5757 3.38010e7 0.424124
5858 −4.12988e7 −0.479194
5959 −5.37869e7 −0.577887 −0.288943 0.957346i 0.593304π-0.593304\pi
−0.288943 + 0.957346i 0.593304π0.593304\pi
6060 4.26654e8 4.25006
6161 1.04085e8 0.962506 0.481253 0.876582i 0.340182π-0.340182\pi
0.481253 + 0.876582i 0.340182π0.340182\pi
6262 1.08688e8 0.934155
6363 3.25443e6 0.0260281
6464 7.09198e7 0.528394
6565 0 0
6666 −6.41200e8 −4.15955
6767 −5.45531e7 −0.330737 −0.165368 0.986232i 0.552881π-0.552881\pi
−0.165368 + 0.986232i 0.552881π0.552881\pi
6868 −3.37346e8 −1.91331
6969 5.57553e8 2.96118
7070 8.56432e6 0.0426336
7171 −1.40628e8 −0.656762 −0.328381 0.944545i 0.606503π-0.606503\pi
−0.328381 + 0.944545i 0.606503π0.606503\pi
7272 7.42232e8 3.25494
7373 4.29589e7 0.177052 0.0885258 0.996074i 0.471784π-0.471784\pi
0.0885258 + 0.996074i 0.471784π0.471784\pi
7474 2.28557e7 0.0886038
7575 1.73835e8 0.634396
7676 1.89278e8 0.650788
7777 −9.01864e6 −0.0292370
7878 0 0
7979 −2.82937e8 −0.817273 −0.408637 0.912697i 0.633996π-0.633996\pi
−0.408637 + 0.912697i 0.633996π0.633996\pi
8080 9.32717e8 2.54592
8181 −2.18787e8 −0.564727
8282 −2.17316e8 −0.530798
8383 −4.41851e8 −1.02194 −0.510969 0.859599i 0.670713π-0.670713\pi
−0.510969 + 0.859599i 0.670713π0.670713\pi
8484 3.19490e7 0.0700164
8585 −4.68006e8 −0.972447
8686 5.54092e8 1.09229
8787 −2.13736e8 −0.399982
8888 −2.05686e9 −3.65623
8989 7.17027e8 1.21138 0.605690 0.795701i 0.292897π-0.292897\pi
0.605690 + 0.795701i 0.292897π0.292897\pi
9090 1.79752e9 2.88790
9191 0 0
9292 3.12217e9 4.54372
9393 5.62499e8 0.779737
9494 −1.02054e9 −1.34820
9595 2.62589e8 0.330766
9696 1.85329e9 2.22701
9797 1.99252e8 0.228523 0.114261 0.993451i 0.463550π-0.463550\pi
0.114261 + 0.993451i 0.463550π0.463550\pi
9898 −1.66838e9 −1.82717
9999 −1.89288e9 −1.98045
100100 9.73434e8 0.973434
101101 1.14193e9 1.09192 0.545961 0.837810i 0.316165π-0.316165\pi
0.545961 + 0.837810i 0.316165π0.316165\pi
102102 −2.49164e9 −2.27921
103103 −1.06178e9 −0.929538 −0.464769 0.885432i 0.653863π-0.653863\pi
−0.464769 + 0.885432i 0.653863π0.653863\pi
104104 0 0
105105 4.43234e7 0.0355861
106106 −1.49092e9 −1.14704
107107 2.01890e9 1.48897 0.744487 0.667637i 0.232694π-0.232694\pi
0.744487 + 0.667637i 0.232694π0.232694\pi
108108 1.65549e9 1.17090
109109 −8.62088e8 −0.584969 −0.292484 0.956270i 0.594482π-0.594482\pi
−0.292484 + 0.956270i 0.594482π0.594482\pi
110110 −4.98127e9 −3.24394
111111 1.18286e8 0.0739573
112112 6.98442e7 0.0419420
113113 −1.82041e9 −1.05031 −0.525154 0.851007i 0.675992π-0.675992\pi
−0.525154 + 0.851007i 0.675992π0.675992\pi
114114 1.39801e9 0.775244
115115 4.33144e9 2.30936
116116 −1.19687e9 −0.613744
117117 0 0
118118 −2.22462e9 −1.05630
119119 −3.50455e7 −0.0160203
120120 1.01087e10 4.45022
121121 2.88757e9 1.22461
122122 4.30494e9 1.75933
123123 −1.12469e9 −0.443056
124124 3.14987e9 1.19645
125125 −1.89739e9 −0.695123
126126 1.34603e8 0.0475759
127127 −3.39438e9 −1.15783 −0.578914 0.815389i 0.696523π-0.696523\pi
−0.578914 + 0.815389i 0.696523π0.696523\pi
128128 −1.49972e9 −0.493817
129129 2.86762e9 0.911734
130130 0 0
131131 1.31505e9 0.390139 0.195070 0.980789i 0.437507π-0.437507\pi
0.195070 + 0.980789i 0.437507π0.437507\pi
132132 −1.85825e10 −5.32747
133133 1.96633e7 0.00544910
134134 −2.25631e9 −0.604543
135135 2.29669e9 0.595114
136136 −7.99276e9 −2.00342
137137 −2.22029e9 −0.538478 −0.269239 0.963073i 0.586772π-0.586772\pi
−0.269239 + 0.963073i 0.586772π0.586772\pi
138138 2.30603e10 5.41265
139139 6.80605e9 1.54642 0.773212 0.634147i 0.218649π-0.218649\pi
0.773212 + 0.634147i 0.218649π0.218649\pi
140140 2.48201e8 0.0546043
141141 −5.28166e9 −1.12534
142142 −5.81635e9 −1.20047
143143 0 0
144144 1.46592e10 2.84106
145145 −1.66044e9 −0.311938
146146 1.77678e9 0.323627
147147 −8.63446e9 −1.52513
148148 6.62377e8 0.113482
149149 7.13055e9 1.18518 0.592591 0.805504i 0.298105π-0.298105\pi
0.592591 + 0.805504i 0.298105π0.298105\pi
150150 7.18978e9 1.15959
151151 −9.69848e9 −1.51812 −0.759062 0.651018i 0.774342π-0.774342\pi
−0.759062 + 0.651018i 0.774342π0.774342\pi
152152 4.48458e9 0.681437
153153 −7.35551e9 −1.08518
154154 −3.73010e8 −0.0534414
155155 4.36987e9 0.608101
156156 0 0
157157 6.71182e9 0.881642 0.440821 0.897595i 0.354687π-0.354687\pi
0.440821 + 0.897595i 0.354687π0.354687\pi
158158 −1.17022e10 −1.49387
159159 −7.71604e9 −0.957431
160160 1.43976e10 1.73680
161161 3.24349e8 0.0380449
162162 −9.04901e9 −1.03225
163163 8.32930e9 0.924196 0.462098 0.886829i 0.347097π-0.347097\pi
0.462098 + 0.886829i 0.347097π0.347097\pi
164164 −6.29799e9 −0.679837
165165 −2.57798e10 −2.70771
166166 −1.82749e10 −1.86797
167167 −1.73805e10 −1.72917 −0.864587 0.502483i 0.832420π-0.832420\pi
−0.864587 + 0.502483i 0.832420π0.832420\pi
168168 7.56969e8 0.0733139
169169 0 0
170170 −1.93567e10 −1.77751
171171 4.12704e9 0.369110
172172 1.60580e10 1.39899
173173 1.50016e10 1.27330 0.636648 0.771154i 0.280320π-0.280320\pi
0.636648 + 0.771154i 0.280320π0.280320\pi
174174 −8.84010e9 −0.731115
175175 1.01126e8 0.00815065
176176 −4.06236e10 −3.19132
177177 −1.15132e10 −0.881692
178178 2.96562e10 2.21424
179179 2.63296e10 1.91693 0.958465 0.285210i 0.0920634π-0.0920634\pi
0.958465 + 0.285210i 0.0920634π0.0920634\pi
180180 5.20936e10 3.69878
181181 1.33696e10 0.925903 0.462951 0.886384i 0.346790π-0.346790\pi
0.462951 + 0.886384i 0.346790π0.346790\pi
182182 0 0
183183 2.22796e10 1.46851
184184 7.39738e10 4.75771
185185 9.18928e8 0.0576778
186186 2.32649e10 1.42526
187187 2.03835e10 1.21897
188188 −2.95761e10 −1.72676
189189 1.71982e8 0.00980404
190190 1.08607e10 0.604596
191191 2.17230e10 1.18105 0.590527 0.807018i 0.298920π-0.298920\pi
0.590527 + 0.807018i 0.298920π0.298920\pi
192192 1.51805e10 0.806179
193193 1.89241e10 0.981762 0.490881 0.871227i 0.336675π-0.336675\pi
0.490881 + 0.871227i 0.336675π0.336675\pi
194194 8.24104e9 0.417709
195195 0 0
196196 −4.83510e10 −2.34020
197197 3.68204e10 1.74177 0.870885 0.491488i 0.163547π-0.163547\pi
0.870885 + 0.491488i 0.163547π0.163547\pi
198198 −7.82892e10 −3.62000
199199 −1.06136e10 −0.479762 −0.239881 0.970802i 0.577108π-0.577108\pi
−0.239881 + 0.970802i 0.577108π0.577108\pi
200200 2.30636e10 1.01928
201201 −1.16772e10 −0.504611
202202 4.72300e10 1.99589
203203 −1.24338e8 −0.00513893
204204 −7.22096e10 −2.91917
205205 −8.73732e9 −0.345530
206206 −4.39152e10 −1.69907
207207 6.80760e10 2.57708
208208 0 0
209209 −1.14368e10 −0.414616
210210 1.83321e9 0.0650468
211211 1.38838e10 0.482211 0.241106 0.970499i 0.422490π-0.422490\pi
0.241106 + 0.970499i 0.422490π0.422490\pi
212212 −4.32081e10 −1.46911
213213 −3.01017e10 −1.00203
214214 8.35014e10 2.72165
215215 2.22776e10 0.711042
216216 3.92236e10 1.22604
217217 3.27227e8 0.0100180
218218 −3.56559e10 −1.06925
219219 9.19544e9 0.270131
220220 −1.44361e11 −4.15479
221221 0 0
222222 4.89232e9 0.135184
223223 −4.30970e10 −1.16701 −0.583506 0.812109i 0.698319π-0.698319\pi
−0.583506 + 0.812109i 0.698319π0.698319\pi
224224 1.07813e9 0.0286124
225225 2.12248e10 0.552107
226226 −7.52921e10 −1.91982
227227 1.76035e10 0.440032 0.220016 0.975496i 0.429389π-0.429389\pi
0.220016 + 0.975496i 0.429389π0.429389\pi
228228 4.05154e10 0.992918
229229 −5.00585e10 −1.20287 −0.601434 0.798923i 0.705404π-0.705404\pi
−0.601434 + 0.798923i 0.705404π0.705404\pi
230230 1.79148e11 4.22121
231231 −1.93046e9 −0.0446074
232232 −2.83576e10 −0.642648
233233 4.03325e10 0.896506 0.448253 0.893907i 0.352046π-0.352046\pi
0.448253 + 0.893907i 0.352046π0.352046\pi
234234 0 0
235235 −4.10315e10 −0.877631
236236 −6.44714e10 −1.35289
237237 −6.05632e10 −1.24693
238238 −1.44948e9 −0.0292830
239239 −7.01980e10 −1.39166 −0.695831 0.718205i 0.744964π-0.744964\pi
−0.695831 + 0.718205i 0.744964π0.744964\pi
240240 1.99650e11 3.88436
241241 −4.54620e10 −0.868105 −0.434052 0.900888i 0.642917π-0.642917\pi
−0.434052 + 0.900888i 0.642917π0.642917\pi
242242 1.19430e11 2.23843
243243 −7.40167e10 −1.36176
244244 1.24761e11 2.25332
245245 −6.70782e10 −1.18942
246246 −4.65170e10 −0.809848
247247 0 0
248248 7.46300e10 1.25280
249249 −9.45791e10 −1.55919
250250 −7.84759e10 −1.27059
251251 8.88333e10 1.41268 0.706341 0.707872i 0.250345π-0.250345\pi
0.706341 + 0.707872i 0.250345π0.250345\pi
252252 3.90090e9 0.0609344
253253 −1.88652e11 −2.89480
254254 −1.40391e11 −2.11636
255255 −1.00178e11 −1.48368
256256 −9.83393e10 −1.43103
257257 −3.57366e10 −0.510993 −0.255496 0.966810i 0.582239π-0.582239\pi
−0.255496 + 0.966810i 0.582239π0.582239\pi
258258 1.18605e11 1.66653
259259 6.88116e7 0.000950196 0
260260 0 0
261261 −2.60967e10 −0.348100
262262 5.43902e10 0.713123
263263 7.02163e8 0.00904976 0.00452488 0.999990i 0.498560π-0.498560\pi
0.00452488 + 0.999990i 0.498560π0.498560\pi
264264 −4.40276e11 −5.57837
265265 −5.99434e10 −0.746681
266266 8.13275e8 0.00996024
267267 1.53481e11 1.84822
268268 −6.53897e10 −0.774289
269269 −4.37432e9 −0.0509360 −0.0254680 0.999676i 0.508108π-0.508108\pi
−0.0254680 + 0.999676i 0.508108π0.508108\pi
270270 9.49909e10 1.08779
271271 8.18198e9 0.0921503 0.0460752 0.998938i 0.485329π-0.485329\pi
0.0460752 + 0.998938i 0.485329π0.485329\pi
272272 −1.57859e11 −1.74867
273273 0 0
274274 −9.18312e10 −0.984266
275275 −5.88180e10 −0.620174
276276 6.68307e11 6.93243
277277 6.44866e10 0.658128 0.329064 0.944308i 0.393267π-0.393267\pi
0.329064 + 0.944308i 0.393267π0.393267\pi
278278 2.81498e11 2.82666
279279 6.86799e10 0.678595
280280 5.88064e9 0.0571760
281281 −1.56666e11 −1.49898 −0.749489 0.662017i 0.769701π-0.769701\pi
−0.749489 + 0.662017i 0.769701π0.769701\pi
282282 −2.18449e11 −2.05698
283283 1.55686e10 0.144281 0.0721406 0.997394i 0.477017π-0.477017\pi
0.0721406 + 0.997394i 0.477017π0.477017\pi
284284 −1.68562e11 −1.53755
285285 5.62078e10 0.504655
286286 0 0
287287 −6.54273e8 −0.00569233
288288 2.26283e11 1.93814
289289 −3.93797e10 −0.332072
290290 −6.86758e10 −0.570181
291291 4.26503e10 0.348661
292292 5.14924e10 0.414496
293293 −2.38890e11 −1.89363 −0.946813 0.321784i 0.895718π-0.895718\pi
−0.946813 + 0.321784i 0.895718π0.895718\pi
294294 −3.57121e11 −2.78774
295295 −8.94423e10 −0.687613
296296 1.56937e10 0.118827
297297 −1.00030e11 −0.745978
298298 2.94919e11 2.16636
299299 0 0
300300 2.08366e11 1.48519
301301 1.66820e9 0.0117139
302302 −4.01128e11 −2.77493
303303 2.44432e11 1.66596
304304 8.85716e10 0.594789
305305 1.73083e11 1.14526
306306 −3.04224e11 −1.98357
307307 4.63794e10 0.297991 0.148995 0.988838i 0.452396π-0.452396\pi
0.148995 + 0.988838i 0.452396π0.452396\pi
308308 −1.08101e10 −0.0684468
309309 −2.27276e11 −1.41821
310310 1.80737e11 1.11153
311311 −6.35548e10 −0.385236 −0.192618 0.981274i 0.561698π-0.561698\pi
−0.192618 + 0.981274i 0.561698π0.561698\pi
312312 0 0
313313 −4.62147e10 −0.272164 −0.136082 0.990698i 0.543451π-0.543451\pi
−0.136082 + 0.990698i 0.543451π0.543451\pi
314314 2.77601e11 1.61152
315315 5.41179e9 0.0309702
316316 −3.39140e11 −1.91332
317317 1.57383e11 0.875367 0.437684 0.899129i 0.355799π-0.355799\pi
0.437684 + 0.899129i 0.355799π0.355799\pi
318318 −3.19135e11 −1.75006
319319 7.23189e10 0.391015
320320 1.17933e11 0.628722
321321 4.32149e11 2.27175
322322 1.34151e10 0.0695411
323323 −4.44422e10 −0.227187
324324 −2.62247e11 −1.32208
325325 0 0
326326 3.44499e11 1.68931
327327 −1.84532e11 −0.892496
328328 −1.49219e11 −0.711854
329329 −3.07254e9 −0.0144583
330330 −1.06625e12 −4.94934
331331 −1.89830e11 −0.869238 −0.434619 0.900614i 0.643117π-0.643117\pi
−0.434619 + 0.900614i 0.643117π0.643117\pi
332332 −5.29622e11 −2.39246
333333 1.44425e10 0.0643641
334334 −7.18857e11 −3.16070
335335 −9.07163e10 −0.393535
336336 1.49503e10 0.0639917
337337 6.99731e10 0.295526 0.147763 0.989023i 0.452793π-0.452793\pi
0.147763 + 0.989023i 0.452793π0.452793\pi
338338 0 0
339339 −3.89663e11 −1.60247
340340 −5.60972e11 −2.27660
341341 −1.90325e11 −0.762257
342342 1.70694e11 0.674685
343343 −1.00479e10 −0.0391969
344344 3.80464e11 1.46488
345345 9.27155e11 3.52343
346346 6.20464e11 2.32742
347347 −1.03906e10 −0.0384730 −0.0192365 0.999815i 0.506124π-0.506124\pi
−0.0192365 + 0.999815i 0.506124π0.506124\pi
348348 −2.56193e11 −0.936399
349349 −2.36535e11 −0.853457 −0.426729 0.904380i 0.640334π-0.640334\pi
−0.426729 + 0.904380i 0.640334π0.640334\pi
350350 4.18257e9 0.0148983
351351 0 0
352352 −6.27073e11 −2.17709
353353 −3.53919e10 −0.121316 −0.0606580 0.998159i 0.519320π-0.519320\pi
−0.0606580 + 0.998159i 0.519320π0.519320\pi
354354 −4.76186e11 −1.61162
355355 −2.33850e11 −0.781465
356356 8.59460e11 2.83596
357357 −7.50156e9 −0.0244424
358358 1.08899e12 3.50390
359359 3.89544e11 1.23775 0.618873 0.785491i 0.287590π-0.287590\pi
0.618873 + 0.785491i 0.287590π0.287590\pi
360360 1.23426e12 3.87297
361361 −2.97752e11 −0.922725
362362 5.52966e11 1.69243
363363 6.18090e11 1.86841
364364 0 0
365365 7.14363e10 0.210669
366366 9.21482e11 2.68424
367367 1.68314e11 0.484309 0.242154 0.970238i 0.422146π-0.422146\pi
0.242154 + 0.970238i 0.422146π0.422146\pi
368368 1.46100e12 4.15274
369369 −1.37322e11 −0.385586
370370 3.80068e10 0.105427
371371 −4.48871e9 −0.0123010
372372 6.74236e11 1.82544
373373 2.15603e11 0.576721 0.288361 0.957522i 0.406890π-0.406890\pi
0.288361 + 0.957522i 0.406890π0.406890\pi
374374 8.43061e11 2.22811
375375 −4.06140e11 −1.06056
376376 −7.00749e11 −1.80808
377377 0 0
378378 7.11316e9 0.0179205
379379 5.68776e11 1.41600 0.708002 0.706210i 0.249597π-0.249597\pi
0.708002 + 0.706210i 0.249597π0.249597\pi
380380 3.14751e11 0.774356
381381 −7.26575e11 −1.76652
382382 8.98462e11 2.15881
383383 3.38261e11 0.803262 0.401631 0.915802i 0.368443π-0.368443\pi
0.401631 + 0.915802i 0.368443π0.368443\pi
384384 −3.21019e11 −0.753425
385385 −1.49971e10 −0.0347884
386386 7.82698e11 1.79453
387387 3.50131e11 0.793471
388388 2.38832e11 0.534995
389389 6.44312e11 1.42667 0.713334 0.700825i 0.247184π-0.247184\pi
0.713334 + 0.700825i 0.247184π0.247184\pi
390390 0 0
391391 −7.33080e11 −1.58619
392392 −1.14558e12 −2.45041
393393 2.81488e11 0.595242
394394 1.52289e12 3.18372
395395 −4.70495e11 −0.972453
396396 −2.26888e12 −4.63643
397397 4.08070e11 0.824474 0.412237 0.911077i 0.364748π-0.364748\pi
0.412237 + 0.911077i 0.364748π0.364748\pi
398398 −4.38980e11 −0.876941
399399 4.20898e9 0.00831379
400400 4.55512e11 0.889673
401401 −5.71961e10 −0.110463 −0.0552315 0.998474i 0.517590π-0.517590\pi
−0.0552315 + 0.998474i 0.517590π0.517590\pi
402402 −4.82968e11 −0.922362
403403 0 0
404404 1.36876e12 2.55630
405405 −3.63821e11 −0.671954
406406 −5.14262e9 −0.00939328
407407 −4.00230e10 −0.0722993
408408 −1.71087e12 −3.05665
409409 5.61035e11 0.991368 0.495684 0.868503i 0.334917π-0.334917\pi
0.495684 + 0.868503i 0.334917π0.334917\pi
410410 −3.61375e11 −0.631583
411411 −4.75259e11 −0.821565
412412 −1.27270e12 −2.17614
413413 −6.69767e9 −0.0113279
414414 2.81562e12 4.71056
415415 −7.34754e11 −1.21598
416416 0 0
417417 1.45685e12 2.35941
418418 −4.73025e11 −0.757864
419419 −3.10894e11 −0.492776 −0.246388 0.969171i 0.579244π-0.579244\pi
−0.246388 + 0.969171i 0.579244π0.579244\pi
420420 5.31279e10 0.0833108
421421 2.32067e10 0.0360034 0.0180017 0.999838i 0.494270π-0.494270\pi
0.0180017 + 0.999838i 0.494270π0.494270\pi
422422 5.74233e11 0.881418
423423 −6.44880e11 −0.979372
424424 −1.02373e12 −1.53830
425425 −2.28561e11 −0.339822
426426 −1.24500e12 −1.83158
427427 1.29609e10 0.0188673
428428 2.41994e12 3.48584
429429 0 0
430430 9.21400e11 1.29969
431431 8.87725e11 1.23917 0.619585 0.784930i 0.287301π-0.287301\pi
0.619585 + 0.784930i 0.287301π0.287301\pi
432432 7.74676e11 1.07015
433433 1.18770e12 1.62372 0.811862 0.583850i 0.198454π-0.198454\pi
0.811862 + 0.583850i 0.198454π0.198454\pi
434434 1.35341e10 0.0183115
435435 −3.55421e11 −0.475929
436436 −1.03334e12 −1.36947
437437 4.11317e11 0.539524
438438 3.80323e11 0.493763
439439 3.27305e11 0.420593 0.210297 0.977638i 0.432557π-0.432557\pi
0.210297 + 0.977638i 0.432557π0.432557\pi
440440 −3.42036e12 −4.35046
441441 −1.05425e12 −1.32730
442442 0 0
443443 −5.47305e11 −0.675169 −0.337584 0.941295i 0.609610π-0.609610\pi
−0.337584 + 0.941295i 0.609610π0.609610\pi
444444 1.41783e11 0.173142
445445 1.19234e12 1.44139
446446 −1.78249e12 −2.13314
447447 1.52631e12 1.80825
448448 8.83109e9 0.0103577
449449 1.93461e11 0.224639 0.112320 0.993672i 0.464172π-0.464172\pi
0.112320 + 0.993672i 0.464172π0.464172\pi
450450 8.77858e11 1.00918
451451 3.80545e11 0.433123
452452 −2.18203e12 −2.45888
453453 −2.07598e12 −2.31623
454454 7.28082e11 0.804320
455455 0 0
456456 9.59935e11 1.03968
457457 −8.87358e11 −0.951647 −0.475824 0.879541i 0.657850π-0.657850\pi
−0.475824 + 0.879541i 0.657850π0.657850\pi
458458 −2.07041e12 −2.19868
459459 −3.88706e11 −0.408756
460460 5.19186e12 5.40645
461461 6.75642e11 0.696727 0.348363 0.937360i 0.386738π-0.386738\pi
0.348363 + 0.937360i 0.386738π0.386738\pi
462462 −7.98437e10 −0.0815364
463463 −8.76098e11 −0.886009 −0.443005 0.896519i 0.646088π-0.646088\pi
−0.443005 + 0.896519i 0.646088π0.646088\pi
464464 −5.60069e11 −0.560932
465465 9.35379e11 0.927789
466466 1.66815e12 1.63870
467467 −1.66467e12 −1.61958 −0.809791 0.586718i 0.800420π-0.800420\pi
−0.809791 + 0.586718i 0.800420π0.800420\pi
468468 0 0
469469 −6.79307e9 −0.00648318
470470 −1.69706e12 −1.60419
471471 1.43668e12 1.34514
472472 −1.52753e12 −1.41661
473473 −9.70278e11 −0.891295
474474 −2.50489e12 −2.27922
475475 1.28241e11 0.115586
476476 −4.20071e10 −0.0375052
477477 −9.42113e11 −0.833241
478478 −2.90338e12 −2.54378
479479 6.46122e11 0.560795 0.280398 0.959884i 0.409534π-0.409534\pi
0.280398 + 0.959884i 0.409534π0.409534\pi
480480 3.08184e12 2.64987
481481 0 0
482482 −1.88031e12 −1.58678
483483 6.94277e10 0.0580458
484484 3.46117e12 2.86694
485485 3.31336e11 0.271913
486486 −3.06132e12 −2.48912
487487 1.40768e10 0.0113403 0.00567014 0.999984i 0.498195π-0.498195\pi
0.00567014 + 0.999984i 0.498195π0.498195\pi
488488 2.95596e12 2.35944
489489 1.78290e12 1.41006
490490 −2.77435e12 −2.17410
491491 2.01349e12 1.56345 0.781724 0.623624i 0.214341π-0.214341\pi
0.781724 + 0.623624i 0.214341π0.214341\pi
492492 −1.34810e12 −1.03724
493493 2.81024e11 0.214255
494494 0 0
495495 −3.14766e12 −2.35649
496496 1.47396e12 1.09350
497497 −1.75113e10 −0.0128740
498498 −3.91179e12 −2.84999
499499 1.30123e12 0.939512 0.469756 0.882796i 0.344342π-0.344342\pi
0.469756 + 0.882796i 0.344342π0.344342\pi
500500 −2.27429e12 −1.62735
501501 −3.72034e12 −2.63823
502502 3.67414e12 2.58220
503503 −1.87081e12 −1.30309 −0.651543 0.758612i 0.725878π-0.725878\pi
−0.651543 + 0.758612i 0.725878π0.725878\pi
504504 9.24243e10 0.0638042
505505 1.89891e12 1.29925
506506 −7.80262e12 −5.29131
507507 0 0
508508 −4.06865e12 −2.71059
509509 −9.71726e11 −0.641673 −0.320836 0.947135i 0.603964π-0.603964\pi
−0.320836 + 0.947135i 0.603964π0.603964\pi
510510 −4.14334e12 −2.71197
511511 5.34933e9 0.00347061
512512 −3.29945e12 −2.12191
513513 2.18095e11 0.139033
514514 −1.47807e12 −0.934027
515515 −1.76564e12 −1.10603
516516 3.43726e12 2.13446
517517 1.78709e12 1.10011
518518 2.84605e9 0.00173683
519519 3.21112e12 1.94269
520520 0 0
521521 1.09705e12 0.652316 0.326158 0.945315i 0.394246π-0.394246\pi
0.326158 + 0.945315i 0.394246π0.394246\pi
522522 −1.07936e12 −0.636280
523523 1.24282e12 0.726359 0.363180 0.931719i 0.381691π-0.381691\pi
0.363180 + 0.931719i 0.381691π0.381691\pi
524524 1.57627e12 0.913356
525525 2.16463e10 0.0124356
526526 2.90414e10 0.0165418
527527 −7.39583e11 −0.417676
528528 −8.69556e12 −4.86906
529529 4.98358e12 2.76688
530530 −2.47926e12 −1.36483
531531 −1.40574e12 −0.767325
532532 2.35694e10 0.0127569
533533 0 0
534534 6.34797e12 3.37831
535535 3.35722e12 1.77169
536536 −1.54928e12 −0.810754
537537 5.63592e12 2.92469
538538 −1.80921e11 −0.0931043
539539 2.92152e12 1.49094
540540 2.75291e12 1.39322
541541 −1.82157e11 −0.0914238 −0.0457119 0.998955i 0.514556π-0.514556\pi
−0.0457119 + 0.998955i 0.514556π0.514556\pi
542542 3.38406e11 0.168439
543543 2.86180e12 1.41267
544544 −2.43674e12 −1.19293
545545 −1.43357e12 −0.696039
546546 0 0
547547 2.12370e12 1.01426 0.507130 0.861869i 0.330706π-0.330706\pi
0.507130 + 0.861869i 0.330706π0.330706\pi
548548 −2.66134e12 −1.26063
549549 2.72029e12 1.27803
550550 −2.43271e12 −1.13360
551551 −1.57677e11 −0.0728763
552552 1.58342e13 7.25891
553553 −3.52319e10 −0.0160204
554554 2.66716e12 1.20297
555555 1.96698e11 0.0880000
556556 8.15803e12 3.62034
557557 2.76104e11 0.121541 0.0607706 0.998152i 0.480644π-0.480644\pi
0.0607706 + 0.998152i 0.480644π0.480644\pi
558558 2.84060e12 1.24038
559559 0 0
560560 1.16144e11 0.0499058
561561 4.36314e12 1.85980
562562 −6.47968e12 −2.73993
563563 −3.90784e12 −1.63927 −0.819633 0.572889i 0.805823π-0.805823\pi
−0.819633 + 0.572889i 0.805823π0.805823\pi
564564 −6.33084e12 −2.63454
565565 −3.02716e12 −1.24973
566566 6.43915e11 0.263727
567567 −2.72438e10 −0.0110699
568568 −3.99376e12 −1.60996
569569 −4.41437e12 −1.76548 −0.882742 0.469858i 0.844305π-0.844305\pi
−0.882742 + 0.469858i 0.844305π0.844305\pi
570570 2.32475e12 0.922443
571571 −1.60238e12 −0.630818 −0.315409 0.948956i 0.602142π-0.602142\pi
−0.315409 + 0.948956i 0.602142π0.602142\pi
572572 0 0
573573 4.64985e12 1.80195
574574 −2.70607e10 −0.0104048
575575 2.11535e12 0.807007
576576 1.85351e12 0.701608
577577 3.55043e12 1.33349 0.666745 0.745286i 0.267687π-0.267687\pi
0.666745 + 0.745286i 0.267687π0.267687\pi
578578 −1.62874e12 −0.606983
579579 4.05073e12 1.49789
580580 −1.99028e12 −0.730278
581581 −5.50202e10 −0.0200323
582582 1.76401e12 0.637306
583583 2.61077e12 0.935968
584584 1.22001e12 0.434017
585585 0 0
586586 −9.88049e12 −3.46130
587587 4.57130e12 1.58916 0.794581 0.607158i 0.207691π-0.207691\pi
0.794581 + 0.607158i 0.207691π0.207691\pi
588588 −1.03496e13 −3.57049
589589 4.14966e11 0.142067
590590 −3.69933e12 −1.25687
591591 7.88149e12 2.65745
592592 3.09955e11 0.103717
593593 −4.62392e12 −1.53555 −0.767775 0.640720i 0.778636π-0.778636\pi
−0.767775 + 0.640720i 0.778636π0.778636\pi
594594 −4.13723e12 −1.36355
595595 −5.82771e10 −0.0190622
596596 8.54700e12 2.77463
597597 −2.27187e12 −0.731981
598598 0 0
599599 7.99528e11 0.253754 0.126877 0.991918i 0.459505π-0.459505\pi
0.126877 + 0.991918i 0.459505π0.459505\pi
600600 4.93682e12 1.55513
601601 3.40928e12 1.06593 0.532963 0.846138i 0.321078π-0.321078\pi
0.532963 + 0.846138i 0.321078π0.321078\pi
602602 6.89968e10 0.0214114
603603 −1.42576e12 −0.439157
604604 −1.16250e13 −3.55408
605605 4.80174e12 1.45713
606606 1.01097e13 3.04516
607607 −1.67978e12 −0.502232 −0.251116 0.967957i 0.580798π-0.580798\pi
−0.251116 + 0.967957i 0.580798π0.580798\pi
608608 1.36721e12 0.405759
609609 −2.66149e10 −0.00784055
610610 7.15869e12 2.09339
611611 0 0
612612 −8.81664e12 −2.54052
613613 −1.99546e12 −0.570782 −0.285391 0.958411i 0.592124π-0.592124\pi
−0.285391 + 0.958411i 0.592124π0.592124\pi
614614 1.91825e12 0.544688
615615 −1.87024e12 −0.527181
616616 −2.56125e11 −0.0716703
617617 1.43732e11 0.0399274 0.0199637 0.999801i 0.493645π-0.493645\pi
0.0199637 + 0.999801i 0.493645π0.493645\pi
618618 −9.40014e12 −2.59231
619619 6.27659e12 1.71837 0.859184 0.511667i 0.170972π-0.170972\pi
0.859184 + 0.511667i 0.170972π0.170972\pi
620620 5.23791e12 1.42363
621621 3.59751e12 0.970712
622622 −2.62862e12 −0.704160
623623 8.92858e10 0.0237458
624624 0 0
625625 −4.74133e12 −1.24291
626626 −1.91144e12 −0.497480
627627 −2.44807e12 −0.632587
628628 8.04509e12 2.06401
629629 −1.55525e11 −0.0396161
630630 2.23831e11 0.0566094
631631 −4.60505e11 −0.115639 −0.0578193 0.998327i 0.518415π-0.518415\pi
−0.0578193 + 0.998327i 0.518415π0.518415\pi
632632 −8.03527e12 −2.00343
633633 2.97186e12 0.735718
634634 6.50934e12 1.60006
635635 −5.64452e12 −1.37767
636636 −9.24879e12 −2.24144
637637 0 0
638638 2.99111e12 0.714725
639639 −3.67535e12 −0.872057
640640 −2.49389e12 −0.587580
641641 −7.95795e11 −0.186183 −0.0930915 0.995658i 0.529675π-0.529675\pi
−0.0930915 + 0.995658i 0.529675π0.529675\pi
642642 1.78737e13 4.15246
643643 2.78399e12 0.642271 0.321136 0.947033i 0.395935π-0.395935\pi
0.321136 + 0.947033i 0.395935π0.395935\pi
644644 3.88780e11 0.0890670
645645 4.76857e12 1.08485
646646 −1.83813e12 −0.415269
647647 −4.43614e12 −0.995259 −0.497630 0.867390i 0.665796π-0.665796\pi
−0.497630 + 0.867390i 0.665796π0.665796\pi
648648 −6.21345e12 −1.38435
649649 3.89557e12 0.861926
650650 0 0
651651 7.00436e10 0.0152846
652652 9.98386e12 2.16364
653653 4.13689e12 0.890357 0.445178 0.895442i 0.353140π-0.353140\pi
0.445178 + 0.895442i 0.353140π0.353140\pi
654654 −7.63223e12 −1.63137
655655 2.18679e12 0.464217
656656 −2.94711e12 −0.621339
657657 1.12274e12 0.235091
658658 −1.27080e11 −0.0264278
659659 4.90170e12 1.01242 0.506212 0.862409i 0.331045π-0.331045\pi
0.506212 + 0.862409i 0.331045π0.331045\pi
660660 −3.09008e13 −6.33903
661661 −6.28240e12 −1.28003 −0.640013 0.768364i 0.721071π-0.721071\pi
−0.640013 + 0.768364i 0.721071π0.721071\pi
662662 −7.85135e12 −1.58885
663663 0 0
664664 −1.25484e13 −2.50513
665665 3.26982e10 0.00648375
666666 5.97342e11 0.117649
667667 −2.60090e12 −0.508813
668668 −2.08331e13 −4.04817
669669 −9.22501e12 −1.78053
670670 −3.75202e12 −0.719331
671671 −7.53844e12 −1.43559
672672 2.30776e11 0.0436545
673673 −6.99253e12 −1.31391 −0.656956 0.753929i 0.728156π-0.728156\pi
−0.656956 + 0.753929i 0.728156π0.728156\pi
674674 2.89408e12 0.540183
675675 1.12164e12 0.207963
676676 0 0
677677 −2.24164e12 −0.410126 −0.205063 0.978749i 0.565740π-0.565740\pi
−0.205063 + 0.978749i 0.565740π0.565740\pi
678678 −1.61164e13 −2.92911
679679 2.48113e10 0.00447956
680680 −1.32912e13 −2.38382
681681 3.76808e12 0.671364
682682 −7.87183e12 −1.39330
683683 4.85320e12 0.853365 0.426683 0.904401i 0.359682π-0.359682\pi
0.426683 + 0.904401i 0.359682π0.359682\pi
684684 4.94685e12 0.864124
685685 −3.69213e12 −0.640721
686686 −4.15581e11 −0.0716469
687687 −1.07151e13 −1.83524
688688 7.51426e12 1.27861
689689 0 0
690690 3.83471e13 6.44037
691691 −1.09872e12 −0.183330 −0.0916652 0.995790i 0.529219π-0.529219\pi
−0.0916652 + 0.995790i 0.529219π0.529219\pi
692692 1.79816e13 2.98092
693693 −2.35705e11 −0.0388212
694694 −4.29753e11 −0.0703236
695695 1.13178e13 1.84005
696696 −6.07000e12 −0.980499
697697 1.47876e12 0.237328
698698 −9.78309e12 −1.56001
699699 8.63326e12 1.36781
700700 1.21214e11 0.0190815
701701 5.77807e12 0.903758 0.451879 0.892079i 0.350754π-0.350754\pi
0.451879 + 0.892079i 0.350754π0.350754\pi
702702 0 0
703703 8.72621e10 0.0134749
704704 −5.13643e12 −0.788106
705705 −8.78288e12 −1.33902
706706 −1.46381e12 −0.221749
707707 1.42195e11 0.0214041
708708 −1.38002e13 −2.06413
709709 1.79240e11 0.0266395 0.0133198 0.999911i 0.495760π-0.495760\pi
0.0133198 + 0.999911i 0.495760π0.495760\pi
710710 −9.67201e12 −1.42841
711711 −7.39464e12 −1.08519
712712 2.03632e13 2.96952
713713 6.84492e12 0.991894
714714 −3.10264e11 −0.0446776
715715 0 0
716716 3.15599e13 4.48773
717717 −1.50260e13 −2.12328
718718 1.61115e13 2.26243
719719 5.40775e12 0.754634 0.377317 0.926084i 0.376847π-0.376847\pi
0.377317 + 0.926084i 0.376847π0.376847\pi
720720 2.43769e13 3.38051
721721 −1.32215e11 −0.0182210
722722 −1.23150e13 −1.68662
723723 −9.73124e12 −1.32448
724724 1.60254e13 2.16763
725725 −8.10913e11 −0.109007
726726 2.55642e13 3.41521
727727 −1.10551e13 −1.46777 −0.733883 0.679276i 0.762294π-0.762294\pi
−0.733883 + 0.679276i 0.762294π0.762294\pi
728728 0 0
729729 −1.15370e13 −1.51294
730730 2.95460e12 0.385076
731731 −3.77040e12 −0.488381
732732 2.67053e13 3.43793
733733 8.63452e12 1.10477 0.552383 0.833590i 0.313719π-0.313719\pi
0.552383 + 0.833590i 0.313719π0.313719\pi
734734 6.96145e12 0.885253
735735 −1.43582e13 −1.81471
736736 2.25523e13 2.83296
737737 3.95106e12 0.493298
738738 −5.67963e12 −0.704800
739739 7.56910e12 0.933565 0.466782 0.884372i 0.345413π-0.345413\pi
0.466782 + 0.884372i 0.345413π0.345413\pi
740740 1.10147e12 0.135030
741741 0 0
742742 −1.85653e11 −0.0224846
743743 1.07973e12 0.129976 0.0649882 0.997886i 0.479299π-0.479299\pi
0.0649882 + 0.997886i 0.479299π0.479299\pi
744744 1.59747e13 1.91141
745745 1.18574e13 1.41022
746746 8.91735e12 1.05417
747747 −1.15479e13 −1.35694
748748 2.44326e13 2.85373
749749 2.51397e11 0.0291872
750750 −1.67979e13 −1.93856
751751 3.09147e12 0.354639 0.177319 0.984153i 0.443257π-0.443257\pi
0.177319 + 0.984153i 0.443257π0.443257\pi
752752 −1.38400e13 −1.57817
753753 1.90150e13 2.15535
754754 0 0
755755 −1.61276e13 −1.80638
756756 2.06145e11 0.0229522
757757 1.12889e13 1.24945 0.624725 0.780845i 0.285211π-0.285211\pi
0.624725 + 0.780845i 0.285211π0.285211\pi
758758 2.35245e13 2.58827
759759 −4.03813e13 −4.41664
760760 7.45741e12 0.810825
761761 5.47810e12 0.592105 0.296053 0.955172i 0.404330π-0.404330\pi
0.296053 + 0.955172i 0.404330π0.404330\pi
762762 −3.00511e13 −3.22896
763763 −1.07349e11 −0.0114667
764764 2.60381e13 2.76497
765765 −1.22315e13 −1.29123
766766 1.39905e13 1.46826
767767 0 0
768768 −2.10497e13 −2.18334
769769 1.38364e13 1.42678 0.713388 0.700769i 0.247160π-0.247160\pi
0.713388 + 0.700769i 0.247160π0.247160\pi
770770 −6.20279e11 −0.0635885
771771 −7.64951e12 −0.779630
772772 2.26832e13 2.29840
773773 −1.83558e13 −1.84912 −0.924562 0.381031i 0.875569π-0.875569\pi
−0.924562 + 0.381031i 0.875569π0.875569\pi
774774 1.44814e13 1.45036
775775 2.13412e12 0.212501
776776 5.65866e12 0.560190
777777 1.47293e10 0.00144973
778778 2.66487e13 2.60776
779779 −8.29703e11 −0.0807242
780780 0 0
781781 1.01851e13 0.979569
782782 −3.03201e13 −2.89935
783783 −1.37909e12 −0.131119
784784 −2.26256e13 −2.13883
785785 1.11611e13 1.04904
786786 1.16423e13 1.08802
787787 4.95419e12 0.460348 0.230174 0.973149i 0.426070π-0.426070\pi
0.230174 + 0.973149i 0.426070π0.426070\pi
788788 4.41346e13 4.07766
789789 1.50300e11 0.0138074
790790 −1.94597e13 −1.77751
791791 −2.26682e11 −0.0205884
792792 −5.37568e13 −4.85479
793793 0 0
794794 1.68777e13 1.50703
795795 −1.28310e13 −1.13922
796796 −1.27220e13 −1.12317
797797 7.77957e12 0.682957 0.341478 0.939890i 0.389072π-0.389072\pi
0.341478 + 0.939890i 0.389072π0.389072\pi
798798 1.74083e11 0.0151965
799799 6.94442e12 0.602804
800800 7.03138e12 0.606925
801801 1.87397e13 1.60848
802802 −2.36563e12 −0.201912
803803 −3.11134e12 −0.264075
804804 −1.39968e13 −1.18135
805805 5.39361e11 0.0452687
806806 0 0
807807 −9.36332e11 −0.0777139
808808 3.24302e13 2.67669
809809 −2.25302e13 −1.84925 −0.924627 0.380873i 0.875624π-0.875624\pi
−0.924627 + 0.380873i 0.875624π0.875624\pi
810810 −1.50476e13 −1.22824
811811 −2.07312e13 −1.68279 −0.841394 0.540422i 0.818265π-0.818265\pi
−0.841394 + 0.540422i 0.818265π0.818265\pi
812812 −1.49037e11 −0.0120308
813813 1.75137e12 0.140595
814814 −1.65535e12 −0.132154
815815 1.38508e13 1.09968
816816 −3.37900e13 −2.66798
817817 2.11550e12 0.166117
818818 2.32044e13 1.81209
819819 0 0
820820 −1.04729e13 −0.808921
821821 −2.10879e13 −1.61990 −0.809952 0.586496i 0.800507π-0.800507\pi
−0.809952 + 0.586496i 0.800507π0.800507\pi
822822 −1.96567e13 −1.50171
823823 −1.46114e11 −0.0111017 −0.00555087 0.999985i 0.501767π-0.501767\pi
−0.00555087 + 0.999985i 0.501767π0.501767\pi
824824 −3.01541e13 −2.27863
825825 −1.25901e13 −0.946210
826826 −2.77015e11 −0.0207059
827827 −5.25930e12 −0.390979 −0.195490 0.980706i 0.562630π-0.562630\pi
−0.195490 + 0.980706i 0.562630π0.562630\pi
828828 8.15989e13 6.03320
829829 −5.68705e12 −0.418207 −0.209104 0.977894i 0.567055π-0.567055\pi
−0.209104 + 0.977894i 0.567055π0.567055\pi
830830 −3.03894e13 −2.22265
831831 1.38035e13 1.00412
832832 0 0
833833 1.13527e13 0.816955
834834 6.02552e13 4.31268
835835 −2.89021e13 −2.05750
836836 −1.37087e13 −0.970659
837837 3.62943e12 0.255607
838838 −1.28586e13 −0.900730
839839 −9.71153e12 −0.676641 −0.338321 0.941031i 0.609859π-0.609859\pi
−0.338321 + 0.941031i 0.609859π0.609859\pi
840840 1.25876e12 0.0872343
841841 −1.35101e13 −0.931272
842842 9.59826e11 0.0658094
843843 −3.35346e13 −2.28701
844844 1.66417e13 1.12891
845845 0 0
846846 −2.66722e13 −1.79016
847847 3.59567e11 0.0240051
848848 −2.02190e13 −1.34270
849849 3.33249e12 0.220132
850850 −9.45325e12 −0.621150
851851 1.43940e12 0.0940802
852852 −3.60812e13 −2.34586
853853 −1.13294e13 −0.732715 −0.366357 0.930474i 0.619395π-0.619395\pi
−0.366357 + 0.930474i 0.619395π0.619395\pi
854854 5.36061e11 0.0344869
855855 6.86285e12 0.439195
856856 5.73358e13 3.65001
857857 −5.84955e12 −0.370432 −0.185216 0.982698i 0.559299π-0.559299\pi
−0.185216 + 0.982698i 0.559299π0.559299\pi
858858 0 0
859859 −1.91819e13 −1.20205 −0.601026 0.799229i 0.705241π-0.705241\pi
−0.601026 + 0.799229i 0.705241π0.705241\pi
860860 2.67029e13 1.66462
861861 −1.40049e11 −0.00868489
862862 3.67163e13 2.26504
863863 −5.38209e12 −0.330295 −0.165148 0.986269i 0.552810π-0.552810\pi
−0.165148 + 0.986269i 0.552810π0.552810\pi
864864 1.19580e13 0.730042
865865 2.49461e13 1.51506
866866 4.91233e13 2.96795
867867 −8.42930e12 −0.506647
868868 3.92228e11 0.0234531
869869 2.04919e13 1.21897
870870 −1.47002e13 −0.869935
871871 0 0
872872 −2.44829e13 −1.43397
873873 5.20751e12 0.303435
874874 1.70121e13 0.986178
875875 −2.36267e11 −0.0136260
876876 1.10221e13 0.632403
877877 2.71005e13 1.54696 0.773481 0.633819i 0.218514π-0.218514\pi
0.773481 + 0.633819i 0.218514π0.218514\pi
878878 1.35373e13 0.768789
879879 −5.11350e13 −2.88914
880880 −6.75529e13 −3.79728
881881 −2.75007e13 −1.53799 −0.768993 0.639257i 0.779242π-0.779242\pi
−0.768993 + 0.639257i 0.779242π0.779242\pi
882882 −4.36037e13 −2.42613
883883 −2.51515e13 −1.39233 −0.696163 0.717884i 0.745111π-0.745111\pi
−0.696163 + 0.717884i 0.745111π0.745111\pi
884884 0 0
885885 −1.91453e13 −1.04910
886886 −2.26365e13 −1.23412
887887 2.07778e12 0.112705 0.0563524 0.998411i 0.482053π-0.482053\pi
0.0563524 + 0.998411i 0.482053π0.482053\pi
888888 3.35928e12 0.181296
889889 −4.22676e11 −0.0226960
890890 4.93153e13 2.63467
891891 1.58458e13 0.842298
892892 −5.16580e13 −2.73209
893893 −3.89638e12 −0.205036
894894 6.31281e13 3.30525
895895 4.37836e13 2.28091
896896 −1.86749e11 −0.00967992
897897 0 0
898898 8.00154e12 0.410610
899899 −2.62397e12 −0.133980
900900 2.54410e13 1.29254
901901 1.01452e13 0.512860
902902 1.57393e13 0.791693
903903 3.57083e11 0.0178720
904904 −5.16989e13 −2.57468
905905 2.22323e13 1.10171
906906 −8.58624e13 −4.23376
907907 −3.02045e13 −1.48197 −0.740985 0.671522i 0.765641π-0.765641\pi
−0.740985 + 0.671522i 0.765641π0.765641\pi
908908 2.11004e13 1.03016
909909 2.98446e13 1.44987
910910 0 0
911911 3.35277e13 1.61276 0.806382 0.591395i 0.201423π-0.201423\pi
0.806382 + 0.591395i 0.201423π0.201423\pi
912912 1.89589e13 0.907480
913913 3.20015e13 1.52423
914914 −3.67011e13 −1.73949
915915 3.70487e13 1.74734
916916 −6.00023e13 −2.81603
917917 1.63752e11 0.00764761
918918 −1.60769e13 −0.747152
919919 −3.78731e12 −0.175150 −0.0875751 0.996158i 0.527912π-0.527912\pi
−0.0875751 + 0.996158i 0.527912π0.527912\pi
920920 1.23011e14 5.66107
921921 9.92762e12 0.454650
922922 2.79445e13 1.27352
923923 0 0
924924 −2.31393e12 −0.104430
925925 4.48778e11 0.0201555
926926 −3.62354e13 −1.61951
927927 −2.77500e13 −1.23425
928928 −8.64533e12 −0.382662
929929 −3.73602e13 −1.64565 −0.822826 0.568293i 0.807604π-0.807604\pi
−0.822826 + 0.568293i 0.807604π0.807604\pi
930930 3.86872e13 1.69588
931931 −6.36980e12 −0.277877
932932 4.83443e13 2.09881
933933 −1.36040e13 −0.587761
934934 −6.88508e13 −2.96038
935935 3.38958e13 1.45042
936936 0 0
937937 1.56665e13 0.663964 0.331982 0.943286i 0.392283π-0.392283\pi
0.331982 + 0.943286i 0.392283π0.392283\pi
938938 −2.80961e11 −0.0118504
939939 −9.89237e12 −0.415246
940940 −4.91822e13 −2.05462
941941 3.66219e13 1.52261 0.761303 0.648396i 0.224560π-0.224560\pi
0.761303 + 0.648396i 0.224560π0.224560\pi
942942 5.94210e13 2.45873
943943 −1.36861e13 −0.563606
944944 −3.01690e13 −1.23648
945945 2.85989e11 0.0116656
946946 −4.01307e13 −1.62917
947947 4.08341e12 0.164986 0.0824931 0.996592i 0.473712π-0.473712\pi
0.0824931 + 0.996592i 0.473712π0.473712\pi
948948 −7.25937e13 −2.91918
949949 0 0
950950 5.30404e12 0.211276
951951 3.36881e13 1.33556
952952 −9.95276e11 −0.0392715
953953 1.60101e13 0.628749 0.314374 0.949299i 0.398205π-0.398205\pi
0.314374 + 0.949299i 0.398205π0.398205\pi
954954 −3.89657e13 −1.52305
955955 3.61232e13 1.40531
956956 −8.41424e13 −3.25802
957957 1.54800e13 0.596579
958958 2.67235e13 1.02506
959959 −2.76476e11 −0.0105554
960960 2.52437e13 0.959252
961961 −1.95340e13 −0.738815
962962 0 0
963963 5.27645e13 1.97708
964964 −5.44928e13 −2.03232
965965 3.14688e13 1.16817
966966 2.87153e12 0.106100
967967 3.50361e13 1.28854 0.644268 0.764800i 0.277162π-0.277162\pi
0.644268 + 0.764800i 0.277162π0.277162\pi
968968 8.20057e13 3.00196
969969 −9.51295e12 −0.346624
970970 1.37040e13 0.497022
971971 1.50255e13 0.542428 0.271214 0.962519i 0.412575π-0.412575\pi
0.271214 + 0.962519i 0.412575π0.412575\pi
972972 −8.87196e13 −3.18802
973973 8.47505e11 0.0303134
974974 5.82215e11 0.0207285
975975 0 0
976976 5.83810e13 2.05943
977977 5.63886e12 0.198000 0.0990001 0.995087i 0.468436π-0.468436\pi
0.0990001 + 0.995087i 0.468436π0.468436\pi
978978 7.37408e13 2.57741
979979 −5.19313e13 −1.80679
980980 −8.04029e13 −2.78455
981981 −2.25310e13 −0.776728
982982 8.32780e13 2.85778
983983 7.12741e12 0.243468 0.121734 0.992563i 0.461155π-0.461155\pi
0.121734 + 0.992563i 0.461155π0.461155\pi
984984 −3.19406e13 −1.08609
985985 6.12287e13 2.07249
986986 1.16231e13 0.391631
987987 −6.57685e11 −0.0220592
988988 0 0
989989 3.48954e13 1.15981
990990 −1.30187e14 −4.30735
991991 −1.35139e13 −0.445092 −0.222546 0.974922i 0.571437π-0.571437\pi
−0.222546 + 0.974922i 0.571437π0.571437\pi
992992 2.27523e13 0.745973
993993 −4.06335e13 −1.32621
994994 −7.24265e11 −0.0235320
995995 −1.76494e13 −0.570856
996996 −1.13367e14 −3.65021
997997 −3.09398e11 −0.00991721 −0.00495861 0.999988i 0.501578π-0.501578\pi
−0.00495861 + 0.999988i 0.501578π0.501578\pi
998998 5.38189e13 1.71730
999999 7.63222e11 0.0242441
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.20 20
13.2 odd 12 13.10.e.a.4.10 20
13.7 odd 12 13.10.e.a.10.10 yes 20
13.12 even 2 inner 169.10.a.f.1.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.10 20 13.2 odd 12
13.10.e.a.10.10 yes 20 13.7 odd 12
169.10.a.f.1.1 20 13.12 even 2 inner
169.10.a.f.1.20 20 1.1 even 1 trivial