Properties

Label 169.10.a.f.1.15
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.15
Root 20.256420.2564 of defining polynomial
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+20.2564q299.3079q3101.676q4+1799.37q52011.63q61935.26q712430.9q89820.93q9+36448.7q1053677.8q11+10097.3q1239201.4q14178691.q15199748.q16+396185.q17198937.q18+503022.q19182953.q20+192186.q211.08732e6q221.19761e6q23+1.23449e6q24+1.28459e6q25+2.92997e6q27+196770.q284.89369e6q293.61965e6q30+2.72295e6q31+2.31845e6q32+5.33063e6q33+8.02531e6q343.48223e6q35+998558.q366.11067e6q37+1.01894e7q382.23677e7q40+2.63954e7q41+3.89301e6q42+1.72494e7q43+5.45777e6q441.76714e7q452.42594e7q461.60235e7q47+1.98365e7q483.66084e7q49+2.60213e7q503.93444e7q514.91716e7q53+5.93509e7q549.65860e7q55+2.40570e7q564.99541e7q579.91287e7q58+4.85011e7q59+1.81687e7q60+1.31634e8q61+5.51574e7q62+1.90060e7q63+1.49234e8q64+1.07980e8q66+1.25404e8q674.02827e7q68+1.18932e8q697.05377e7q70+3.00073e8q71+1.22083e8q72+2.58604e8q731.23780e8q741.27570e8q755.11455e7q76+1.03880e8q77+8.39745e7q793.59419e8q809.76644e7q81+5.34677e8q82+3.52165e8q831.95408e7q84+7.12882e8q85+3.49411e8q86+4.85982e8q87+6.67264e8q88+1.14069e9q893.57961e8q90+1.21769e8q922.70411e8q933.24579e8q94+9.05120e8q952.30240e8q961.39071e9q977.41556e8q98+5.27166e8q99+O(q100)q+20.2564 q^{2} -99.3079 q^{3} -101.676 q^{4} +1799.37 q^{5} -2011.63 q^{6} -1935.26 q^{7} -12430.9 q^{8} -9820.93 q^{9} +36448.7 q^{10} -53677.8 q^{11} +10097.3 q^{12} -39201.4 q^{14} -178691. q^{15} -199748. q^{16} +396185. q^{17} -198937. q^{18} +503022. q^{19} -182953. q^{20} +192186. q^{21} -1.08732e6 q^{22} -1.19761e6 q^{23} +1.23449e6 q^{24} +1.28459e6 q^{25} +2.92997e6 q^{27} +196770. q^{28} -4.89369e6 q^{29} -3.61965e6 q^{30} +2.72295e6 q^{31} +2.31845e6 q^{32} +5.33063e6 q^{33} +8.02531e6 q^{34} -3.48223e6 q^{35} +998558. q^{36} -6.11067e6 q^{37} +1.01894e7 q^{38} -2.23677e7 q^{40} +2.63954e7 q^{41} +3.89301e6 q^{42} +1.72494e7 q^{43} +5.45777e6 q^{44} -1.76714e7 q^{45} -2.42594e7 q^{46} -1.60235e7 q^{47} +1.98365e7 q^{48} -3.66084e7 q^{49} +2.60213e7 q^{50} -3.93444e7 q^{51} -4.91716e7 q^{53} +5.93509e7 q^{54} -9.65860e7 q^{55} +2.40570e7 q^{56} -4.99541e7 q^{57} -9.91287e7 q^{58} +4.85011e7 q^{59} +1.81687e7 q^{60} +1.31634e8 q^{61} +5.51574e7 q^{62} +1.90060e7 q^{63} +1.49234e8 q^{64} +1.07980e8 q^{66} +1.25404e8 q^{67} -4.02827e7 q^{68} +1.18932e8 q^{69} -7.05377e7 q^{70} +3.00073e8 q^{71} +1.22083e8 q^{72} +2.58604e8 q^{73} -1.23780e8 q^{74} -1.27570e8 q^{75} -5.11455e7 q^{76} +1.03880e8 q^{77} +8.39745e7 q^{79} -3.59419e8 q^{80} -9.76644e7 q^{81} +5.34677e8 q^{82} +3.52165e8 q^{83} -1.95408e7 q^{84} +7.12882e8 q^{85} +3.49411e8 q^{86} +4.85982e8 q^{87} +6.67264e8 q^{88} +1.14069e9 q^{89} -3.57961e8 q^{90} +1.21769e8 q^{92} -2.70411e8 q^{93} -3.24579e8 q^{94} +9.05120e8 q^{95} -2.30240e8 q^{96} -1.39071e9 q^{97} -7.41556e8 q^{98} +5.27166e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 20.2564 0.895217 0.447608 0.894230i 0.352276π-0.352276\pi
0.447608 + 0.894230i 0.352276π0.352276\pi
33 −99.3079 −0.707845 −0.353923 0.935275i 0.615152π-0.615152\pi
−0.353923 + 0.935275i 0.615152π0.615152\pi
44 −101.676 −0.198587
55 1799.37 1.28752 0.643761 0.765227i 0.277373π-0.277373\pi
0.643761 + 0.765227i 0.277373π0.277373\pi
66 −2011.63 −0.633675
77 −1935.26 −0.304647 −0.152324 0.988331i 0.548676π-0.548676\pi
−0.152324 + 0.988331i 0.548676π0.548676\pi
88 −12430.9 −1.07300
99 −9820.93 −0.498955
1010 36448.7 1.15261
1111 −53677.8 −1.10542 −0.552711 0.833373i 0.686407π-0.686407\pi
−0.552711 + 0.833373i 0.686407π0.686407\pi
1212 10097.3 0.140569
1313 0 0
1414 −39201.4 −0.272725
1515 −178691. −0.911366
1616 −199748. −0.761976
1717 396185. 1.15048 0.575239 0.817985i 0.304909π-0.304909\pi
0.575239 + 0.817985i 0.304909π0.304909\pi
1818 −198937. −0.446673
1919 503022. 0.885515 0.442757 0.896641i 0.354000π-0.354000\pi
0.442757 + 0.896641i 0.354000π0.354000\pi
2020 −182953. −0.255685
2121 192186. 0.215643
2222 −1.08732e6 −0.989592
2323 −1.19761e6 −0.892362 −0.446181 0.894943i 0.647216π-0.647216\pi
−0.446181 + 0.894943i 0.647216π0.647216\pi
2424 1.23449e6 0.759515
2525 1.28459e6 0.657711
2626 0 0
2727 2.92997e6 1.06103
2828 196770. 0.0604990
2929 −4.89369e6 −1.28483 −0.642415 0.766357i 0.722067π-0.722067\pi
−0.642415 + 0.766357i 0.722067π0.722067\pi
3030 −3.61965e6 −0.815870
3131 2.72295e6 0.529557 0.264779 0.964309i 0.414701π-0.414701\pi
0.264779 + 0.964309i 0.414701π0.414701\pi
3232 2.31845e6 0.390861
3333 5.33063e6 0.782467
3434 8.02531e6 1.02993
3535 −3.48223e6 −0.392240
3636 998558. 0.0990859
3737 −6.11067e6 −0.536020 −0.268010 0.963416i 0.586366π-0.586366\pi
−0.268010 + 0.963416i 0.586366π0.586366\pi
3838 1.01894e7 0.792728
3939 0 0
4040 −2.23677e7 −1.38150
4141 2.63954e7 1.45882 0.729409 0.684078i 0.239795π-0.239795\pi
0.729409 + 0.684078i 0.239795π0.239795\pi
4242 3.89301e6 0.193047
4343 1.72494e7 0.769423 0.384712 0.923037i 0.374301π-0.374301\pi
0.384712 + 0.923037i 0.374301π0.374301\pi
4444 5.45777e6 0.219522
4545 −1.76714e7 −0.642415
4646 −2.42594e7 −0.798858
4747 −1.60235e7 −0.478979 −0.239489 0.970899i 0.576980π-0.576980\pi
−0.239489 + 0.970899i 0.576980π0.576980\pi
4848 1.98365e7 0.539361
4949 −3.66084e7 −0.907190
5050 2.60213e7 0.588794
5151 −3.93444e7 −0.814360
5252 0 0
5353 −4.91716e7 −0.855998 −0.427999 0.903779i 0.640781π-0.640781\pi
−0.427999 + 0.903779i 0.640781π0.640781\pi
5454 5.93509e7 0.949850
5555 −9.65860e7 −1.42325
5656 2.40570e7 0.326885
5757 −4.99541e7 −0.626807
5858 −9.91287e7 −1.15020
5959 4.85011e7 0.521096 0.260548 0.965461i 0.416097π-0.416097\pi
0.260548 + 0.965461i 0.416097π0.416097\pi
6060 1.81687e7 0.180985
6161 1.31634e8 1.21726 0.608631 0.793454i 0.291719π-0.291719\pi
0.608631 + 0.793454i 0.291719π0.291719\pi
6262 5.51574e7 0.474068
6363 1.90060e7 0.152005
6464 1.49234e8 1.11188
6565 0 0
6666 1.07980e8 0.700478
6767 1.25404e8 0.760285 0.380142 0.924928i 0.375875π-0.375875\pi
0.380142 + 0.924928i 0.375875π0.375875\pi
6868 −4.02827e7 −0.228470
6969 1.18932e8 0.631654
7070 −7.05377e7 −0.351140
7171 3.00073e8 1.40141 0.700704 0.713452i 0.252869π-0.252869\pi
0.700704 + 0.713452i 0.252869π0.252869\pi
7272 1.22083e8 0.535376
7373 2.58604e8 1.06581 0.532907 0.846174i 0.321099π-0.321099\pi
0.532907 + 0.846174i 0.321099π0.321099\pi
7474 −1.23780e8 −0.479854
7575 −1.27570e8 −0.465557
7676 −5.11455e7 −0.175852
7777 1.03880e8 0.336764
7878 0 0
7979 8.39745e7 0.242564 0.121282 0.992618i 0.461300π-0.461300\pi
0.121282 + 0.992618i 0.461300π0.461300\pi
8080 −3.59419e8 −0.981061
8181 −9.76644e7 −0.252089
8282 5.34677e8 1.30596
8383 3.52165e8 0.814506 0.407253 0.913315i 0.366487π-0.366487\pi
0.407253 + 0.913315i 0.366487π0.366487\pi
8484 −1.95408e7 −0.0428239
8585 7.12882e8 1.48126
8686 3.49411e8 0.688801
8787 4.85982e8 0.909460
8888 6.67264e8 1.18611
8989 1.14069e9 1.92714 0.963571 0.267451i 0.0861814π-0.0861814\pi
0.963571 + 0.267451i 0.0861814π0.0861814\pi
9090 −3.57961e8 −0.575101
9191 0 0
9292 1.21769e8 0.177211
9393 −2.70411e8 −0.374845
9494 −3.24579e8 −0.428790
9595 9.05120e8 1.14012
9696 −2.30240e8 −0.276669
9797 −1.39071e9 −1.59501 −0.797503 0.603315i 0.793846π-0.793846\pi
−0.797503 + 0.603315i 0.793846π0.793846\pi
9898 −7.41556e8 −0.812132
9999 5.27166e8 0.551555
100100 −1.30613e8 −0.130613
101101 −9.84869e8 −0.941743 −0.470871 0.882202i 0.656060π-0.656060\pi
−0.470871 + 0.882202i 0.656060π0.656060\pi
102102 −7.96977e8 −0.729029
103103 8.44246e8 0.739097 0.369548 0.929211i 0.379512π-0.379512\pi
0.369548 + 0.929211i 0.379512π0.379512\pi
104104 0 0
105105 3.45813e8 0.277645
106106 −9.96042e8 −0.766304
107107 2.58204e9 1.90430 0.952151 0.305628i 0.0988664π-0.0988664\pi
0.952151 + 0.305628i 0.0988664π0.0988664\pi
108108 −2.97909e8 −0.210706
109109 4.43075e8 0.300648 0.150324 0.988637i 0.451968π-0.451968\pi
0.150324 + 0.988637i 0.451968π0.451968\pi
110110 −1.95649e9 −1.27412
111111 6.06838e8 0.379419
112112 3.86563e8 0.232134
113113 2.18556e9 1.26098 0.630491 0.776197i 0.282854π-0.282854\pi
0.630491 + 0.776197i 0.282854π0.282854\pi
114114 −1.01189e9 −0.561129
115115 −2.15494e9 −1.14894
116116 4.97573e8 0.255150
117117 0 0
118118 9.82460e8 0.466494
119119 −7.66720e8 −0.350490
120120 2.22129e9 0.977891
121121 5.23361e8 0.221956
122122 2.66644e9 1.08971
123123 −2.62127e9 −1.03262
124124 −2.76860e8 −0.105163
125125 −1.20294e9 −0.440705
126126 3.84994e8 0.136078
127127 −4.65614e9 −1.58821 −0.794107 0.607778i 0.792061π-0.792061\pi
−0.794107 + 0.607778i 0.792061π0.792061\pi
128128 1.83591e9 0.604514
129129 −1.71300e9 −0.544633
130130 0 0
131131 5.42014e9 1.60801 0.804007 0.594619i 0.202697π-0.202697\pi
0.804007 + 0.594619i 0.202697π0.202697\pi
132132 −5.42000e8 −0.155388
133133 −9.73477e8 −0.269770
134134 2.54025e9 0.680620
135135 5.27210e9 1.36610
136136 −4.92494e9 −1.23446
137137 −3.41682e9 −0.828666 −0.414333 0.910125i 0.635985π-0.635985\pi
−0.414333 + 0.910125i 0.635985π0.635985\pi
138138 2.40915e9 0.565468
139139 −4.70867e9 −1.06987 −0.534936 0.844893i 0.679664π-0.679664\pi
−0.534936 + 0.844893i 0.679664π0.679664\pi
140140 3.54061e8 0.0778937
141141 1.59126e9 0.339043
142142 6.07842e9 1.25456
143143 0 0
144144 1.96171e9 0.380192
145145 −8.80554e9 −1.65424
146146 5.23839e9 0.954135
147147 3.63550e9 0.642150
148148 6.21311e8 0.106447
149149 −5.19976e9 −0.864262 −0.432131 0.901811i 0.642238π-0.642238\pi
−0.432131 + 0.901811i 0.642238π0.642238\pi
150150 −2.58412e9 −0.416775
151151 9.29610e9 1.45514 0.727570 0.686034i 0.240650π-0.240650\pi
0.727570 + 0.686034i 0.240650π0.240650\pi
152152 −6.25302e9 −0.950153
153153 −3.89091e9 −0.574037
154154 2.10425e9 0.301476
155155 4.89959e9 0.681816
156156 0 0
157157 −3.83536e9 −0.503800 −0.251900 0.967753i 0.581055π-0.581055\pi
−0.251900 + 0.967753i 0.581055π0.581055\pi
158158 1.70103e9 0.217147
159159 4.88313e9 0.605914
160160 4.17173e9 0.503242
161161 2.31769e9 0.271856
162162 −1.97833e9 −0.225674
163163 1.21061e10 1.34326 0.671632 0.740885i 0.265594π-0.265594\pi
0.671632 + 0.740885i 0.265594π0.265594\pi
164164 −2.68379e9 −0.289702
165165 9.59176e9 1.00744
166166 7.13361e9 0.729160
167167 −3.09065e9 −0.307486 −0.153743 0.988111i 0.549133π-0.549133\pi
−0.153743 + 0.988111i 0.549133π0.549133\pi
168168 −2.38905e9 −0.231384
169169 0 0
170170 1.44405e10 1.32605
171171 −4.94014e9 −0.441832
172172 −1.75386e9 −0.152797
173173 8.97038e9 0.761383 0.380692 0.924702i 0.375686π-0.375686\pi
0.380692 + 0.924702i 0.375686π0.375686\pi
174174 9.84427e9 0.814164
175175 −2.48601e9 −0.200370
176176 1.07220e10 0.842305
177177 −4.81654e9 −0.368855
178178 2.31064e10 1.72521
179179 −7.56223e9 −0.550569 −0.275284 0.961363i 0.588772π-0.588772\pi
−0.275284 + 0.961363i 0.588772π0.588772\pi
180180 1.79677e9 0.127575
181181 1.96786e9 0.136283 0.0681414 0.997676i 0.478293π-0.478293\pi
0.0681414 + 0.997676i 0.478293π0.478293\pi
182182 0 0
183183 −1.30723e10 −0.861633
184184 1.48874e10 0.957500
185185 −1.09953e10 −0.690137
186186 −5.47757e9 −0.335567
187187 −2.12664e10 −1.27176
188188 1.62921e9 0.0951189
189189 −5.67025e9 −0.323239
190190 1.83345e10 1.02065
191191 3.44779e9 0.187452 0.0937260 0.995598i 0.470122π-0.470122\pi
0.0937260 + 0.995598i 0.470122π0.470122\pi
192192 −1.48201e10 −0.787040
193193 8.02066e7 0.00416104 0.00208052 0.999998i 0.499338π-0.499338\pi
0.00208052 + 0.999998i 0.499338π0.499338\pi
194194 −2.81707e10 −1.42788
195195 0 0
196196 3.72221e9 0.180156
197197 −1.78999e10 −0.846747 −0.423373 0.905955i 0.639154π-0.639154\pi
−0.423373 + 0.905955i 0.639154π0.639154\pi
198198 1.06785e10 0.493762
199199 1.17170e10 0.529635 0.264818 0.964299i 0.414688π-0.414688\pi
0.264818 + 0.964299i 0.414688π0.414688\pi
200200 −1.59686e10 −0.705720
201201 −1.24537e10 −0.538164
202202 −1.99499e10 −0.843064
203203 9.47054e9 0.391420
204204 4.00040e9 0.161721
205205 4.74950e10 1.87826
206206 1.71014e10 0.661652
207207 1.17617e10 0.445249
208208 0 0
209209 −2.70011e10 −0.978867
210210 7.00495e9 0.248553
211211 −4.53207e10 −1.57407 −0.787037 0.616905i 0.788386π-0.788386\pi
−0.787037 + 0.616905i 0.788386π0.788386\pi
212212 4.99959e9 0.169990
213213 −2.97996e10 −0.991980
214214 5.23029e10 1.70476
215215 3.10379e10 0.990649
216216 −3.64222e10 −1.13848
217217 −5.26962e9 −0.161328
218218 8.97513e9 0.269145
219219 −2.56814e10 −0.754432
220220 9.82053e9 0.282639
221221 0 0
222222 1.22924e10 0.339662
223223 7.30981e10 1.97940 0.989702 0.143145i 0.0457214π-0.0457214\pi
0.989702 + 0.143145i 0.0457214π0.0457214\pi
224224 −4.48679e9 −0.119075
225225 −1.26159e10 −0.328168
226226 4.42716e10 1.12885
227227 1.35949e10 0.339828 0.169914 0.985459i 0.445651π-0.445651\pi
0.169914 + 0.985459i 0.445651π0.445651\pi
228228 5.07915e9 0.124476
229229 −8.08453e8 −0.0194265 −0.00971327 0.999953i 0.503092π-0.503092\pi
−0.00971327 + 0.999953i 0.503092π0.503092\pi
230230 −4.36515e10 −1.02855
231231 −1.03161e10 −0.238377
232232 6.08330e10 1.37862
233233 4.41310e10 0.980939 0.490469 0.871458i 0.336825π-0.336825\pi
0.490469 + 0.871458i 0.336825π0.336825\pi
234234 0 0
235235 −2.88321e10 −0.616695
236236 −4.93142e9 −0.103483
237237 −8.33934e9 −0.171697
238238 −1.55310e10 −0.313765
239239 1.97834e10 0.392202 0.196101 0.980584i 0.437172π-0.437172\pi
0.196101 + 0.980584i 0.437172π0.437172\pi
240240 3.56931e10 0.694439
241241 2.31372e10 0.441808 0.220904 0.975296i 0.429099π-0.429099\pi
0.220904 + 0.975296i 0.429099π0.429099\pi
242242 1.06014e10 0.198699
243243 −4.79718e10 −0.882588
244244 −1.33841e10 −0.241732
245245 −6.58719e10 −1.16803
246246 −5.30977e10 −0.924416
247247 0 0
248248 −3.38488e10 −0.568212
249249 −3.49728e10 −0.576544
250250 −2.43672e10 −0.394526
251251 −1.17864e11 −1.87434 −0.937170 0.348872i 0.886565π-0.886565\pi
−0.937170 + 0.348872i 0.886565π0.886565\pi
252252 −1.93247e9 −0.0301863
253253 6.42852e10 0.986436
254254 −9.43168e10 −1.42180
255255 −7.07949e10 −1.04851
256256 −3.92189e10 −0.570710
257257 −3.70538e10 −0.529826 −0.264913 0.964272i 0.585343π-0.585343\pi
−0.264913 + 0.964272i 0.585343π0.585343\pi
258258 −3.46993e10 −0.487564
259259 1.18257e10 0.163297
260260 0 0
261261 4.80606e10 0.641072
262262 1.09793e11 1.43952
263263 3.67802e10 0.474038 0.237019 0.971505i 0.423830π-0.423830\pi
0.237019 + 0.971505i 0.423830π0.423830\pi
264264 −6.62646e10 −0.839583
265265 −8.84777e10 −1.10212
266266 −1.97192e10 −0.241502
267267 −1.13280e11 −1.36412
268268 −1.27507e10 −0.150983
269269 −5.26657e9 −0.0613257 −0.0306629 0.999530i 0.509762π-0.509762\pi
−0.0306629 + 0.999530i 0.509762π0.509762\pi
270270 1.06794e11 1.22295
271271 2.74908e9 0.0309617 0.0154809 0.999880i 0.495072π-0.495072\pi
0.0154809 + 0.999880i 0.495072π0.495072\pi
272272 −7.91371e10 −0.876637
273273 0 0
274274 −6.92126e10 −0.741836
275275 −6.89541e10 −0.727047
276276 −1.20926e10 −0.125438
277277 8.27302e9 0.0844316 0.0422158 0.999109i 0.486558π-0.486558\pi
0.0422158 + 0.999109i 0.486558π0.486558\pi
278278 −9.53809e10 −0.957767
279279 −2.67420e10 −0.264225
280280 4.32873e10 0.420871
281281 −1.96602e11 −1.88109 −0.940546 0.339666i 0.889686π-0.889686\pi
−0.940546 + 0.339666i 0.889686π0.889686\pi
282282 3.22332e10 0.303517
283283 −2.43028e10 −0.225225 −0.112613 0.993639i 0.535922π-0.535922\pi
−0.112613 + 0.993639i 0.535922π0.535922\pi
284284 −3.05104e10 −0.278301
285285 −8.98857e10 −0.807028
286286 0 0
287287 −5.10819e10 −0.444425
288288 −2.27693e10 −0.195022
289289 3.83750e10 0.323599
290290 −1.78369e11 −1.48091
291291 1.38108e11 1.12902
292292 −2.62939e10 −0.211657
293293 −1.21394e10 −0.0962262 −0.0481131 0.998842i 0.515321π-0.515321\pi
−0.0481131 + 0.998842i 0.515321π0.515321\pi
294294 7.36424e10 0.574864
295295 8.72712e10 0.670922
296296 7.59611e10 0.575147
297297 −1.57275e11 −1.17288
298298 −1.05329e11 −0.773702
299299 0 0
300300 1.29709e10 0.0924536
301301 −3.33820e10 −0.234403
302302 1.88306e11 1.30267
303303 9.78053e10 0.666608
304304 −1.00477e11 −0.674741
305305 2.36858e11 1.56725
306306 −7.88160e10 −0.513887
307307 −1.40000e11 −0.899509 −0.449754 0.893152i 0.648489π-0.648489\pi
−0.449754 + 0.893152i 0.648489π0.648489\pi
308308 −1.05622e10 −0.0668768
309309 −8.38403e10 −0.523166
310310 9.92483e10 0.610373
311311 1.59754e11 0.968344 0.484172 0.874973i 0.339121π-0.339121\pi
0.484172 + 0.874973i 0.339121π0.339121\pi
312312 0 0
313313 2.71629e10 0.159965 0.0799827 0.996796i 0.474513π-0.474513\pi
0.0799827 + 0.996796i 0.474513π0.474513\pi
314314 −7.76908e10 −0.451010
315315 3.41988e10 0.195710
316316 −8.53823e9 −0.0481699
317317 −8.01897e10 −0.446018 −0.223009 0.974816i 0.571588π-0.571588\pi
−0.223009 + 0.974816i 0.571588π0.571588\pi
318318 9.89148e10 0.542425
319319 2.62683e11 1.42028
320320 2.68527e11 1.43157
321321 −2.56417e11 −1.34795
322322 4.69481e10 0.243370
323323 1.99290e11 1.01877
324324 9.93017e9 0.0500615
325325 0 0
326326 2.45227e11 1.20251
327327 −4.40009e10 −0.212812
328328 −3.28119e11 −1.56530
329329 3.10095e10 0.145920
330330 1.94295e11 0.901880
331331 −4.46025e10 −0.204237 −0.102118 0.994772i 0.532562π-0.532562\pi
−0.102118 + 0.994772i 0.532562π0.532562\pi
332332 −3.58069e10 −0.161750
333333 6.00125e10 0.267450
334334 −6.26055e10 −0.275267
335335 2.25648e11 0.978883
336336 −3.83888e10 −0.164315
337337 1.80607e11 0.762782 0.381391 0.924414i 0.375445π-0.375445\pi
0.381391 + 0.924414i 0.375445π0.375445\pi
338338 0 0
339339 −2.17043e11 −0.892580
340340 −7.24834e10 −0.294160
341341 −1.46162e11 −0.585384
342342 −1.00070e11 −0.395535
343343 1.48941e11 0.581020
344344 −2.14425e11 −0.825587
345345 2.14003e11 0.813268
346346 1.81708e11 0.681603
347347 8.40688e10 0.311281 0.155640 0.987814i 0.450256π-0.450256\pi
0.155640 + 0.987814i 0.450256π0.450256\pi
348348 −4.94130e10 −0.180607
349349 4.06721e10 0.146751 0.0733757 0.997304i 0.476623π-0.476623\pi
0.0733757 + 0.997304i 0.476623π0.476623\pi
350350 −5.03578e10 −0.179374
351351 0 0
352352 −1.24449e11 −0.432066
353353 3.72744e11 1.27769 0.638843 0.769337i 0.279413π-0.279413\pi
0.638843 + 0.769337i 0.279413π0.279413\pi
354354 −9.75660e10 −0.330205
355355 5.39941e11 1.80434
356356 −1.15982e11 −0.382705
357357 7.61414e10 0.248093
358358 −1.53184e11 −0.492878
359359 −1.65323e11 −0.525302 −0.262651 0.964891i 0.584597π-0.584597\pi
−0.262651 + 0.964891i 0.584597π0.584597\pi
360360 2.19672e11 0.689308
361361 −6.96566e10 −0.215864
362362 3.98619e10 0.122003
363363 −5.19739e10 −0.157111
364364 0 0
365365 4.65322e11 1.37226
366366 −2.64798e11 −0.771348
367367 5.04443e11 1.45149 0.725746 0.687963i 0.241495π-0.241495\pi
0.725746 + 0.687963i 0.241495π0.241495\pi
368368 2.39220e11 0.679959
369369 −2.59227e11 −0.727884
370370 −2.22726e11 −0.617822
371371 9.51596e10 0.260778
372372 2.74944e10 0.0744392
373373 5.76983e11 1.54338 0.771691 0.635998i 0.219411π-0.219411\pi
0.771691 + 0.635998i 0.219411π0.219411\pi
374374 −4.30781e11 −1.13850
375375 1.19461e11 0.311951
376376 1.99186e11 0.513942
377377 0 0
378378 −1.14859e11 −0.289369
379379 3.81859e11 0.950662 0.475331 0.879807i 0.342328π-0.342328\pi
0.475331 + 0.879807i 0.342328π0.342328\pi
380380 −9.20295e10 −0.226413
381381 4.62392e11 1.12421
382382 6.98399e10 0.167810
383383 −4.69117e11 −1.11400 −0.557002 0.830511i 0.688048π-0.688048\pi
−0.557002 + 0.830511i 0.688048π0.688048\pi
384384 −1.82320e11 −0.427903
385385 1.86919e11 0.433590
386386 1.62470e9 0.00372504
387387 −1.69405e11 −0.383908
388388 1.41402e11 0.316747
389389 1.41227e11 0.312713 0.156356 0.987701i 0.450025π-0.450025\pi
0.156356 + 0.987701i 0.450025π0.450025\pi
390390 0 0
391391 −4.74477e11 −1.02664
392392 4.55075e11 0.973410
393393 −5.38263e11 −1.13823
394394 −3.62589e11 −0.758022
395395 1.51101e11 0.312306
396396 −5.36004e10 −0.109532
397397 −4.08885e11 −0.826122 −0.413061 0.910703i 0.635540π-0.635540\pi
−0.413061 + 0.910703i 0.635540π0.635540\pi
398398 2.37344e11 0.474138
399399 9.66740e10 0.190955
400400 −2.56594e11 −0.501160
401401 −5.41734e11 −1.04625 −0.523126 0.852255i 0.675234π-0.675234\pi
−0.523126 + 0.852255i 0.675234π0.675234\pi
402402 −2.52267e11 −0.481774
403403 0 0
404404 1.00138e11 0.187018
405405 −1.75734e11 −0.324570
406406 1.91840e11 0.350406
407407 3.28007e11 0.592528
408408 4.89086e11 0.873805
409409 −9.14685e11 −1.61628 −0.808140 0.588990i 0.799526π-0.799526\pi
−0.808140 + 0.588990i 0.799526π0.799526\pi
410410 9.62079e11 1.68145
411411 3.39317e11 0.586568
412412 −8.58399e10 −0.146775
413413 −9.38620e10 −0.158750
414414 2.38250e11 0.398594
415415 6.33673e11 1.04869
416416 0 0
417417 4.67608e11 0.757303
418418 −5.46947e11 −0.876298
419419 3.73691e11 0.592311 0.296156 0.955140i 0.404295π-0.404295\pi
0.296156 + 0.955140i 0.404295π0.404295\pi
420420 −3.51611e10 −0.0551367
421421 4.33964e11 0.673262 0.336631 0.941637i 0.390713π-0.390713\pi
0.336631 + 0.941637i 0.390713π0.390713\pi
422422 −9.18036e11 −1.40914
423423 1.57365e11 0.238989
424424 6.11247e11 0.918482
425425 5.08936e11 0.756682
426426 −6.03635e11 −0.888037
427427 −2.54746e11 −0.370835
428428 −2.62533e11 −0.378169
429429 0 0
430430 6.28718e11 0.886845
431431 −8.45377e11 −1.18006 −0.590028 0.807383i 0.700883π-0.700883\pi
−0.590028 + 0.807383i 0.700883π0.700883\pi
432432 −5.85255e11 −0.808479
433433 −5.91980e11 −0.809303 −0.404652 0.914471i 0.632607π-0.632607\pi
−0.404652 + 0.914471i 0.632607π0.632607\pi
434434 −1.06744e11 −0.144424
435435 8.74460e11 1.17095
436436 −4.50503e10 −0.0597047
437437 −6.02426e11 −0.790200
438438 −5.20214e11 −0.675380
439439 1.26798e12 1.62938 0.814692 0.579894i 0.196906π-0.196906\pi
0.814692 + 0.579894i 0.196906π0.196906\pi
440440 1.20065e12 1.52714
441441 3.59528e11 0.452647
442442 0 0
443443 −1.96396e11 −0.242279 −0.121140 0.992635i 0.538655π-0.538655\pi
−0.121140 + 0.992635i 0.538655π0.538655\pi
444444 −6.17011e10 −0.0753477
445445 2.05252e12 2.48124
446446 1.48071e12 1.77200
447447 5.16378e11 0.611764
448448 −2.88807e11 −0.338732
449449 −2.80407e11 −0.325597 −0.162799 0.986659i 0.552052π-0.552052\pi
−0.162799 + 0.986659i 0.552052π0.552052\pi
450450 −2.55553e11 −0.293782
451451 −1.41685e12 −1.61261
452452 −2.22220e11 −0.250414
453453 −9.23177e11 −1.03001
454454 2.75384e11 0.304219
455455 0 0
456456 6.20974e11 0.672561
457457 −6.84356e11 −0.733938 −0.366969 0.930233i 0.619604π-0.619604\pi
−0.366969 + 0.930233i 0.619604π0.619604\pi
458458 −1.63764e10 −0.0173910
459459 1.16081e12 1.22069
460460 2.19107e11 0.228163
461461 1.74700e12 1.80152 0.900761 0.434315i 0.143009π-0.143009\pi
0.900761 + 0.434315i 0.143009π0.143009\pi
462462 −2.08968e11 −0.213399
463463 1.01806e12 1.02958 0.514788 0.857318i 0.327871π-0.327871\pi
0.514788 + 0.857318i 0.327871π0.327871\pi
464464 9.77502e11 0.979010
465465 −4.86568e11 −0.482620
466466 8.93937e11 0.878153
467467 −2.73806e11 −0.266389 −0.133195 0.991090i 0.542524π-0.542524\pi
−0.133195 + 0.991090i 0.542524π0.542524\pi
468468 0 0
469469 −2.42690e11 −0.231619
470470 −5.84035e11 −0.552076
471471 3.80882e11 0.356612
472472 −6.02912e11 −0.559133
473473 −9.25909e11 −0.850537
474474 −1.68925e11 −0.153706
475475 6.46178e11 0.582413
476476 7.79574e10 0.0696027
477477 4.82911e11 0.427105
478478 4.00741e11 0.351106
479479 −8.56952e11 −0.743784 −0.371892 0.928276i 0.621291π-0.621291\pi
−0.371892 + 0.928276i 0.621291π0.621291\pi
480480 −4.14286e11 −0.356217
481481 0 0
482482 4.68677e11 0.395514
483483 −2.30165e11 −0.192432
484484 −5.32135e10 −0.0440775
485485 −2.50239e12 −2.05360
486486 −9.71739e11 −0.790108
487487 −2.02529e12 −1.63157 −0.815787 0.578352i 0.803696π-0.803696\pi
−0.815787 + 0.578352i 0.803696π0.803696\pi
488488 −1.63633e12 −1.30612
489489 −1.20224e12 −0.950823
490490 −1.33433e12 −1.04564
491491 6.32049e11 0.490777 0.245388 0.969425i 0.421085π-0.421085\pi
0.245388 + 0.969425i 0.421085π0.421085\pi
492492 2.66522e11 0.205064
493493 −1.93881e12 −1.47817
494494 0 0
495495 9.48565e11 0.710139
496496 −5.43904e11 −0.403510
497497 −5.80719e11 −0.426935
498498 −7.08424e11 −0.516132
499499 2.07591e12 1.49884 0.749420 0.662094i 0.230332π-0.230332\pi
0.749420 + 0.662094i 0.230332π0.230332\pi
500500 1.22310e11 0.0875181
501501 3.06926e11 0.217653
502502 −2.38750e12 −1.67794
503503 8.87539e11 0.618204 0.309102 0.951029i 0.399972π-0.399972\pi
0.309102 + 0.951029i 0.399972π0.399972\pi
504504 −2.36262e11 −0.163101
505505 −1.77214e12 −1.21251
506506 1.30219e12 0.883074
507507 0 0
508508 4.73420e11 0.315398
509509 2.72435e11 0.179901 0.0899505 0.995946i 0.471329π-0.471329\pi
0.0899505 + 0.995946i 0.471329π0.471329\pi
510510 −1.43405e12 −0.938640
511511 −5.00464e11 −0.324697
512512 −1.73442e12 −1.11542
513513 1.47384e12 0.939556
514514 −7.50577e11 −0.474309
515515 1.51911e12 0.951603
516516 1.74172e11 0.108157
517517 8.60105e11 0.529473
518518 2.39547e11 0.146186
519519 −8.90830e11 −0.538941
520520 0 0
521521 −1.81355e12 −1.07835 −0.539174 0.842194i 0.681263π-0.681263\pi
−0.539174 + 0.842194i 0.681263π0.681263\pi
522522 9.73537e11 0.573898
523523 3.31885e12 1.93968 0.969840 0.243742i 0.0783749π-0.0783749\pi
0.969840 + 0.243742i 0.0783749π0.0783749\pi
524524 −5.51101e11 −0.319331
525525 2.46881e11 0.141831
526526 7.45035e11 0.424366
527527 1.07879e12 0.609244
528528 −1.06478e12 −0.596222
529529 −3.66876e11 −0.203690
530530 −1.79224e12 −0.986633
531531 −4.76326e11 −0.260003
532532 9.89797e10 0.0535727
533533 0 0
534534 −2.29465e12 −1.22118
535535 4.64603e12 2.45183
536536 −1.55889e12 −0.815782
537537 7.50990e11 0.389717
538538 −1.06682e11 −0.0548998
539539 1.96506e12 1.00283
540540 −5.36048e11 −0.271289
541541 −9.76068e11 −0.489883 −0.244942 0.969538i 0.578769π-0.578769\pi
−0.244942 + 0.969538i 0.578769π0.578769\pi
542542 5.56866e10 0.0277175
543543 −1.95424e11 −0.0964671
544544 9.18535e11 0.449677
545545 7.97254e11 0.387091
546546 0 0
547547 −3.95412e12 −1.88846 −0.944229 0.329291i 0.893190π-0.893190\pi
−0.944229 + 0.329291i 0.893190π0.893190\pi
548548 3.47410e11 0.164562
549549 −1.29277e12 −0.607359
550550 −1.39676e12 −0.650865
551551 −2.46163e12 −1.13774
552552 −1.47844e12 −0.677762
553553 −1.62512e11 −0.0738963
554554 1.67582e11 0.0755846
555555 1.09192e12 0.488510
556556 4.78761e11 0.212462
557557 8.83169e11 0.388772 0.194386 0.980925i 0.437729π-0.437729\pi
0.194386 + 0.980925i 0.437729π0.437729\pi
558558 −5.41697e11 −0.236539
559559 0 0
560560 6.95568e11 0.298878
561561 2.11192e12 0.900211
562562 −3.98246e12 −1.68399
563563 3.28351e11 0.137737 0.0688684 0.997626i 0.478061π-0.478061\pi
0.0688684 + 0.997626i 0.478061π0.478061\pi
564564 −1.61794e11 −0.0673295
565565 3.93261e12 1.62354
566566 −4.92288e11 −0.201625
567567 1.89006e11 0.0767982
568568 −3.73018e12 −1.50370
569569 3.01900e12 1.20742 0.603709 0.797204i 0.293689π-0.293689\pi
0.603709 + 0.797204i 0.293689π0.293689\pi
570570 −1.82076e12 −0.722465
571571 1.93373e12 0.761260 0.380630 0.924727i 0.375707π-0.375707\pi
0.380630 + 0.924727i 0.375707π0.375707\pi
572572 0 0
573573 −3.42393e11 −0.132687
574574 −1.03474e12 −0.397857
575575 −1.53844e12 −0.586916
576576 −1.46562e12 −0.554779
577577 −7.89015e11 −0.296343 −0.148171 0.988962i 0.547339π-0.547339\pi
−0.148171 + 0.988962i 0.547339π0.547339\pi
578578 7.77340e11 0.289692
579579 −7.96515e9 −0.00294537
580580 8.95316e11 0.328511
581581 −6.81529e11 −0.248137
582582 2.79758e12 1.01072
583583 2.63942e12 0.946238
584584 −3.21468e12 −1.14361
585585 0 0
586586 −2.45901e11 −0.0861433
587587 −1.02520e12 −0.356400 −0.178200 0.983994i 0.557027π-0.557027\pi
−0.178200 + 0.983994i 0.557027π0.557027\pi
588588 −3.69645e11 −0.127523
589589 1.36971e12 0.468931
590590 1.76780e12 0.600620
591591 1.77761e12 0.599366
592592 1.22059e12 0.408435
593593 −1.46514e12 −0.486558 −0.243279 0.969956i 0.578223π-0.578223\pi
−0.243279 + 0.969956i 0.578223π0.578223\pi
594594 −3.18583e12 −1.04998
595595 −1.37961e12 −0.451263
596596 5.28694e11 0.171631
597597 −1.16359e12 −0.374900
598598 0 0
599599 2.10151e12 0.666978 0.333489 0.942754i 0.391774π-0.391774\pi
0.333489 + 0.942754i 0.391774π0.391774\pi
600600 1.58581e12 0.499541
601601 −3.20560e12 −1.00225 −0.501123 0.865376i 0.667080π-0.667080\pi
−0.501123 + 0.865376i 0.667080π0.667080\pi
602602 −6.76200e11 −0.209841
603603 −1.23159e12 −0.379348
604604 −9.45195e11 −0.288972
605605 9.41717e11 0.285773
606606 1.98119e12 0.596759
607607 2.93741e12 0.878244 0.439122 0.898427i 0.355290π-0.355290\pi
0.439122 + 0.898427i 0.355290π0.355290\pi
608608 1.16623e12 0.346113
609609 −9.40500e11 −0.277065
610610 4.79789e12 1.40303
611611 0 0
612612 3.95614e11 0.113996
613613 2.34718e12 0.671390 0.335695 0.941971i 0.391029π-0.391029\pi
0.335695 + 0.941971i 0.391029π0.391029\pi
614614 −2.83590e12 −0.805256
615615 −4.71663e12 −1.32952
616616 −1.29133e12 −0.361346
617617 6.60966e12 1.83610 0.918048 0.396468i 0.129764π-0.129764\pi
0.918048 + 0.396468i 0.129764π0.129764\pi
618618 −1.69831e12 −0.468347
619619 5.28581e11 0.144712 0.0723559 0.997379i 0.476948π-0.476948\pi
0.0723559 + 0.997379i 0.476948π0.476948\pi
620620 −4.98173e11 −0.135400
621621 −3.50898e12 −0.946822
622622 3.23605e12 0.866878
623623 −2.20753e12 −0.587099
624624 0 0
625625 −4.67349e12 −1.22513
626626 5.50223e11 0.143204
627627 2.68143e12 0.692886
628628 3.89966e11 0.100048
629629 −2.42096e12 −0.616679
630630 6.92746e11 0.175203
631631 3.06685e12 0.770124 0.385062 0.922891i 0.374180π-0.374180\pi
0.385062 + 0.922891i 0.374180π0.374180\pi
632632 −1.04388e12 −0.260270
633633 4.50070e12 1.11420
634634 −1.62436e12 −0.399283
635635 −8.37809e12 −2.04486
636636 −4.96499e11 −0.120327
637637 0 0
638638 5.32101e12 1.27146
639639 −2.94700e12 −0.699240
640640 3.30347e12 0.778325
641641 6.09117e12 1.42508 0.712541 0.701630i 0.247544π-0.247544\pi
0.712541 + 0.701630i 0.247544π0.247544\pi
642642 −5.19410e12 −1.20671
643643 −9.51786e11 −0.219579 −0.109789 0.993955i 0.535018π-0.535018\pi
−0.109789 + 0.993955i 0.535018π0.535018\pi
644644 −2.35654e11 −0.0539870
645645 −3.08231e12 −0.701226
646646 4.03691e12 0.912016
647647 2.39734e12 0.537848 0.268924 0.963161i 0.413332π-0.413332\pi
0.268924 + 0.963161i 0.413332π0.413332\pi
648648 1.21406e12 0.270490
649649 −2.60343e12 −0.576030
650650 0 0
651651 5.23315e11 0.114195
652652 −1.23091e12 −0.266755
653653 7.79616e12 1.67792 0.838960 0.544193i 0.183164π-0.183164\pi
0.838960 + 0.544193i 0.183164π0.183164\pi
654654 −8.91302e11 −0.190513
655655 9.75282e12 2.07035
656656 −5.27242e12 −1.11158
657657 −2.53973e12 −0.531793
658658 6.28143e11 0.130630
659659 1.35009e11 0.0278855 0.0139427 0.999903i 0.495562π-0.495562\pi
0.0139427 + 0.999903i 0.495562π0.495562\pi
660660 −9.75256e11 −0.200065
661661 1.05609e12 0.215176 0.107588 0.994196i 0.465687π-0.465687\pi
0.107588 + 0.994196i 0.465687π0.465687\pi
662662 −9.03489e11 −0.182836
663663 0 0
664664 −4.37773e12 −0.873961
665665 −1.75164e12 −0.347334
666666 1.21564e12 0.239426
667667 5.86074e12 1.14653
668668 3.14246e11 0.0610627
669669 −7.25922e12 −1.40111
670670 4.57084e12 0.876312
671671 −7.06583e12 −1.34559
672672 4.45574e11 0.0842865
673673 7.88255e12 1.48115 0.740574 0.671974i 0.234553π-0.234553\pi
0.740574 + 0.671974i 0.234553π0.234553\pi
674674 3.65846e12 0.682855
675675 3.76382e12 0.697850
676676 0 0
677677 4.65420e12 0.851523 0.425761 0.904835i 0.360006π-0.360006\pi
0.425761 + 0.904835i 0.360006π0.360006\pi
678678 −4.39652e12 −0.799053
679679 2.69137e12 0.485914
680680 −8.86177e12 −1.58939
681681 −1.35008e12 −0.240545
682682 −2.96073e12 −0.524045
683683 −3.75943e12 −0.661042 −0.330521 0.943799i 0.607225π-0.607225\pi
−0.330521 + 0.943799i 0.607225π0.607225\pi
684684 5.02296e11 0.0877420
685685 −6.14811e12 −1.06693
686686 3.01702e12 0.520139
687687 8.02858e10 0.0137510
688688 −3.44552e12 −0.586282
689689 0 0
690690 4.33494e12 0.728052
691691 −1.46171e12 −0.243899 −0.121949 0.992536i 0.538915π-0.538915\pi
−0.121949 + 0.992536i 0.538915π0.538915\pi
692692 −9.12076e11 −0.151201
693693 −1.02020e12 −0.168030
694694 1.70293e12 0.278664
695695 −8.47262e12 −1.37748
696696 −6.04120e12 −0.975846
697697 1.04575e13 1.67834
698698 8.23872e11 0.131374
699699 −4.38256e12 −0.694353
700700 2.52769e11 0.0397908
701701 −1.56446e12 −0.244700 −0.122350 0.992487i 0.539043π-0.539043\pi
−0.122350 + 0.992487i 0.539043π0.539043\pi
702702 0 0
703703 −3.07380e12 −0.474654
704704 −8.01057e12 −1.22910
705705 2.86326e12 0.436525
706706 7.55047e12 1.14381
707707 1.90597e12 0.286899
708708 4.89729e11 0.0732498
709709 −8.13253e10 −0.0120870 −0.00604349 0.999982i 0.501924π-0.501924\pi
−0.00604349 + 0.999982i 0.501924π0.501924\pi
710710 1.09373e13 1.61528
711711 −8.24708e11 −0.121028
712712 −1.41798e13 −2.06781
713713 −3.26105e12 −0.472557
714714 1.54235e12 0.222097
715715 0 0
716716 7.68901e11 0.109336
717717 −1.96465e12 −0.277619
718718 −3.34886e12 −0.470259
719719 5.67153e12 0.791444 0.395722 0.918370i 0.370494π-0.370494\pi
0.395722 + 0.918370i 0.370494π0.370494\pi
720720 3.52983e12 0.489505
721721 −1.63383e12 −0.225164
722722 −1.41099e12 −0.193245
723723 −2.29771e12 −0.312732
724724 −2.00085e11 −0.0270640
725725 −6.28639e12 −0.845046
726726 −1.05281e12 −0.140648
727727 7.98313e12 1.05991 0.529954 0.848026i 0.322209π-0.322209\pi
0.529954 + 0.848026i 0.322209π0.322209\pi
728728 0 0
729729 6.68631e12 0.876825
730730 9.42577e12 1.22847
731731 6.83395e12 0.885204
732732 1.32915e12 0.171109
733733 9.62385e12 1.23135 0.615674 0.788001i 0.288884π-0.288884\pi
0.615674 + 0.788001i 0.288884π0.288884\pi
734734 1.02182e13 1.29940
735735 6.54160e12 0.826782
736736 −2.77660e12 −0.348790
737737 −6.73144e12 −0.840435
738738 −5.25103e12 −0.651614
739739 2.67570e12 0.330018 0.165009 0.986292i 0.447235π-0.447235\pi
0.165009 + 0.986292i 0.447235π0.447235\pi
740740 1.11797e12 0.137052
741741 0 0
742742 1.92760e12 0.233452
743743 −1.17772e13 −1.41773 −0.708865 0.705344i 0.750792π-0.750792\pi
−0.708865 + 0.705344i 0.750792π0.750792\pi
744744 3.36145e12 0.402206
745745 −9.35628e12 −1.11276
746746 1.16876e13 1.38166
747747 −3.45859e12 −0.406402
748748 2.16229e12 0.252555
749749 −4.99691e12 −0.580140
750750 2.41986e12 0.279264
751751 5.03731e12 0.577855 0.288927 0.957351i 0.406701π-0.406701\pi
0.288927 + 0.957351i 0.406701π0.406701\pi
752752 3.20065e12 0.364971
753753 1.17048e13 1.32674
754754 0 0
755755 1.67271e13 1.87352
756756 5.76531e11 0.0641911
757757 −6.66068e11 −0.0737203 −0.0368601 0.999320i 0.511736π-0.511736\pi
−0.0368601 + 0.999320i 0.511736π0.511736\pi
758758 7.73510e12 0.851049
759759 −6.38404e12 −0.698244
760760 −1.12515e13 −1.22334
761761 9.59754e12 1.03736 0.518680 0.854969i 0.326424π-0.326424\pi
0.518680 + 0.854969i 0.326424π0.326424\pi
762762 9.36641e12 1.00641
763763 −8.57464e11 −0.0915916
764764 −3.50559e11 −0.0372255
765765 −7.00117e12 −0.739084
766766 −9.50264e12 −0.997275
767767 0 0
768768 3.89475e12 0.403975
769769 7.48650e12 0.771988 0.385994 0.922501i 0.373859π-0.373859\pi
0.385994 + 0.922501i 0.373859π0.373859\pi
770770 3.78631e12 0.388157
771771 3.67973e12 0.375035
772772 −8.15512e9 −0.000826328 0
773773 −2.93392e12 −0.295556 −0.147778 0.989021i 0.547212π-0.547212\pi
−0.147778 + 0.989021i 0.547212π0.547212\pi
774774 −3.43154e12 −0.343681
775775 3.49788e12 0.348295
776776 1.72877e13 1.71143
777777 −1.17439e12 −0.115589
778778 2.86077e12 0.279946
779779 1.32775e13 1.29180
780780 0 0
781781 −1.61073e13 −1.54915
782782 −9.61121e12 −0.919068
783783 −1.43384e13 −1.36324
784784 7.31244e12 0.691257
785785 −6.90122e12 −0.648653
786786 −1.09033e13 −1.01896
787787 −1.07787e13 −1.00157 −0.500784 0.865572i 0.666955π-0.666955\pi
−0.500784 + 0.865572i 0.666955π0.666955\pi
788788 1.82000e12 0.168153
789789 −3.65256e12 −0.335545
790790 3.06077e12 0.279581
791791 −4.22961e12 −0.384155
792792 −6.55315e12 −0.591816
793793 0 0
794794 −8.28256e12 −0.739558
795795 8.78654e12 0.780127
796796 −1.19134e12 −0.105179
797797 9.76856e11 0.0857567 0.0428784 0.999080i 0.486347π-0.486347\pi
0.0428784 + 0.999080i 0.486347π0.486347\pi
798798 1.95827e12 0.170946
799799 −6.34827e12 −0.551054
800800 2.97826e12 0.257073
801801 −1.12027e13 −0.961558
802802 −1.09736e13 −0.936623
803803 −1.38813e13 −1.17817
804804 1.26624e12 0.106872
805805 4.17037e12 0.350020
806806 0 0
807807 5.23012e11 0.0434091
808808 1.22428e13 1.01049
809809 −5.80790e12 −0.476706 −0.238353 0.971179i 0.576608π-0.576608\pi
−0.238353 + 0.971179i 0.576608π0.576608\pi
810810 −3.55974e12 −0.290560
811811 −1.08989e13 −0.884685 −0.442342 0.896846i 0.645852π-0.645852\pi
−0.442342 + 0.896846i 0.645852π0.645852\pi
812812 −9.62931e11 −0.0777308
813813 −2.73005e11 −0.0219161
814814 6.64426e12 0.530441
815815 2.17834e13 1.72948
816816 7.85894e12 0.620523
817817 8.67681e12 0.681336
818818 −1.85283e13 −1.44692
819819 0 0
820820 −4.82912e12 −0.372997
821821 −6.54036e12 −0.502409 −0.251205 0.967934i 0.580827π-0.580827\pi
−0.251205 + 0.967934i 0.580827π0.580827\pi
822822 6.87337e12 0.525105
823823 1.64051e13 1.24646 0.623231 0.782038i 0.285820π-0.285820\pi
0.623231 + 0.782038i 0.285820π0.285820\pi
824824 −1.04947e13 −0.793047
825825 6.84769e12 0.514637
826826 −1.90131e12 −0.142116
827827 1.09682e13 0.815379 0.407690 0.913121i 0.366335π-0.366335\pi
0.407690 + 0.913121i 0.366335π0.366335\pi
828828 −1.19589e12 −0.0884205
829829 1.59259e13 1.17114 0.585571 0.810621i 0.300870π-0.300870\pi
0.585571 + 0.810621i 0.300870π0.300870\pi
830830 1.28360e13 0.938809
831831 −8.21576e11 −0.0597645
832832 0 0
833833 −1.45037e13 −1.04370
834834 9.47208e12 0.677951
835835 −5.56121e12 −0.395895
836836 2.74538e12 0.194390
837837 7.97819e12 0.561875
838838 7.56966e12 0.530247
839839 2.61649e11 0.0182301 0.00911506 0.999958i 0.497099π-0.497099\pi
0.00911506 + 0.999958i 0.497099π0.497099\pi
840840 −4.29877e12 −0.297912
841841 9.44105e12 0.650786
842842 8.79056e12 0.602715
843843 1.95242e13 1.33152
844844 4.60805e12 0.312591
845845 0 0
846846 3.18766e12 0.213947
847847 −1.01284e12 −0.0676183
848848 9.82190e12 0.652250
849849 2.41346e12 0.159425
850850 1.03092e13 0.677394
851851 7.31821e12 0.478324
852852 3.02992e12 0.196994
853853 −1.54700e12 −0.100051 −0.0500254 0.998748i 0.515930π-0.515930\pi
−0.0500254 + 0.998748i 0.515930π0.515930\pi
854854 −5.16024e12 −0.331978
855855 −8.88913e12 −0.568868
856856 −3.20971e13 −2.04331
857857 −1.27687e13 −0.808598 −0.404299 0.914627i 0.632485π-0.632485\pi
−0.404299 + 0.914627i 0.632485π0.632485\pi
858858 0 0
859859 2.16957e13 1.35958 0.679791 0.733406i 0.262071π-0.262071\pi
0.679791 + 0.733406i 0.262071π0.262071\pi
860860 −3.15583e12 −0.196730
861861 5.07284e12 0.314584
862862 −1.71243e13 −1.05641
863863 −1.13113e13 −0.694167 −0.347083 0.937834i 0.612828π-0.612828\pi
−0.347083 + 0.937834i 0.612828π0.612828\pi
864864 6.79299e12 0.414715
865865 1.61410e13 0.980297
866866 −1.19914e13 −0.724502
867867 −3.81094e12 −0.229058
868868 5.35796e11 0.0320376
869869 −4.50757e12 −0.268135
870870 1.77134e13 1.04825
871871 0 0
872872 −5.50783e12 −0.322594
873873 1.36580e13 0.795836
874874 −1.22030e13 −0.707400
875875 2.32799e12 0.134259
876876 2.61119e12 0.149820
877877 7.02980e12 0.401277 0.200639 0.979665i 0.435698π-0.435698\pi
0.200639 + 0.979665i 0.435698π0.435698\pi
878878 2.56848e13 1.45865
879879 1.20554e12 0.0681133
880880 1.92928e13 1.08449
881881 1.37124e13 0.766871 0.383436 0.923568i 0.374741π-0.374741\pi
0.383436 + 0.923568i 0.374741π0.374741\pi
882882 7.28277e12 0.405217
883883 −1.34667e13 −0.745483 −0.372742 0.927935i 0.621582π-0.621582\pi
−0.372742 + 0.927935i 0.621582π0.621582\pi
884884 0 0
885885 −8.66672e12 −0.474909
886886 −3.97829e12 −0.216893
887887 −2.55342e13 −1.38505 −0.692527 0.721392i 0.743502π-0.743502\pi
−0.692527 + 0.721392i 0.743502π0.743502\pi
888888 −7.54354e12 −0.407115
889889 9.01082e12 0.483845
890890 4.15768e13 2.22125
891891 5.24241e12 0.278664
892892 −7.43236e12 −0.393084
893893 −8.06016e12 −0.424143
894894 1.04600e13 0.547661
895895 −1.36072e13 −0.708869
896896 −3.55296e12 −0.184164
897897 0 0
898898 −5.68005e12 −0.291480
899899 −1.33253e13 −0.680390
900900 1.28274e12 0.0651699
901901 −1.94811e13 −0.984807
902902 −2.87003e13 −1.44363
903903 3.31509e12 0.165921
904904 −2.71684e13 −1.35303
905905 3.54090e12 0.175467
906906 −1.87003e13 −0.922085
907907 −1.12761e13 −0.553255 −0.276627 0.960977i 0.589217π-0.589217\pi
−0.276627 + 0.960977i 0.589217π0.589217\pi
908908 −1.38228e12 −0.0674853
909909 9.67233e12 0.469887
910910 0 0
911911 4.27042e12 0.205418 0.102709 0.994711i 0.467249π-0.467249\pi
0.102709 + 0.994711i 0.467249π0.467249\pi
912912 9.97821e12 0.477612
913913 −1.89034e13 −0.900373
914914 −1.38626e13 −0.657034
915915 −2.35219e13 −1.10937
916916 8.22007e10 0.00385785
917917 −1.04894e13 −0.489877
918918 2.35139e13 1.09278
919919 −4.00984e13 −1.85442 −0.927209 0.374544i 0.877799π-0.877799\pi
−0.927209 + 0.374544i 0.877799π0.877799\pi
920920 2.67879e13 1.23280
921921 1.39031e13 0.636713
922922 3.53881e13 1.61275
923923 0 0
924924 1.04891e12 0.0473384
925925 −7.84971e12 −0.352546
926926 2.06222e13 0.921693
927927 −8.29128e12 −0.368776
928928 −1.13458e13 −0.502190
929929 7.00571e11 0.0308590 0.0154295 0.999881i 0.495088π-0.495088\pi
0.0154295 + 0.999881i 0.495088π0.495088\pi
930930 −9.85614e12 −0.432050
931931 −1.84148e13 −0.803330
932932 −4.48708e12 −0.194802
933933 −1.58648e13 −0.685438
934934 −5.54634e12 −0.238476
935935 −3.82660e13 −1.63742
936936 0 0
937937 −4.14637e12 −0.175728 −0.0878638 0.996132i 0.528004π-0.528004\pi
−0.0878638 + 0.996132i 0.528004π0.528004\pi
938938 −4.91603e12 −0.207349
939939 −2.69749e12 −0.113231
940940 2.93154e12 0.122468
941941 2.16143e13 0.898643 0.449322 0.893370i 0.351666π-0.351666\pi
0.449322 + 0.893370i 0.351666π0.351666\pi
942942 7.71531e12 0.319245
943943 −3.16115e13 −1.30179
944944 −9.68797e12 −0.397063
945945 −1.02029e13 −0.416178
946946 −1.87556e13 −0.761415
947947 1.67051e13 0.674955 0.337477 0.941334i 0.390426π-0.390426\pi
0.337477 + 0.941334i 0.390426π0.390426\pi
948948 8.47914e11 0.0340969
949949 0 0
950950 1.30893e13 0.521386
951951 7.96348e12 0.315712
952952 9.53103e12 0.376074
953953 −1.43090e12 −0.0561941 −0.0280971 0.999605i 0.508945π-0.508945\pi
−0.0280971 + 0.999605i 0.508945π0.508945\pi
954954 9.78206e12 0.382351
955955 6.20383e12 0.241348
956956 −2.01151e12 −0.0778862
957957 −2.60865e13 −1.00534
958958 −1.73588e13 −0.665848
959959 6.61242e12 0.252451
960960 −2.66669e13 −1.01333
961961 −1.90251e13 −0.719569
962962 0 0
963963 −2.53580e13 −0.950161
964964 −2.35251e12 −0.0877373
965965 1.44321e11 0.00535743
966966 −4.66232e12 −0.172268
967967 9.08218e12 0.334019 0.167009 0.985955i 0.446589π-0.446589\pi
0.167009 + 0.985955i 0.446589π0.446589\pi
968968 −6.50584e12 −0.238158
969969 −1.97911e13 −0.721128
970970 −5.06895e13 −1.83842
971971 2.46609e13 0.890271 0.445136 0.895463i 0.353155π-0.353155\pi
0.445136 + 0.895463i 0.353155π0.353155\pi
972972 4.87761e12 0.175270
973973 9.11248e12 0.325933
974974 −4.10252e13 −1.46061
975975 0 0
976976 −2.62936e13 −0.927524
977977 2.01448e12 0.0707354 0.0353677 0.999374i 0.488740π-0.488740\pi
0.0353677 + 0.999374i 0.488740π0.488740\pi
978978 −2.43530e13 −0.851193
979979 −6.12299e13 −2.13030
980980 6.69762e12 0.231955
981981 −4.35141e12 −0.150010
982982 1.28031e13 0.439352
983983 −5.90624e12 −0.201753 −0.100876 0.994899i 0.532165π-0.532165\pi
−0.100876 + 0.994899i 0.532165π0.532165\pi
984984 3.25848e13 1.10799
985985 −3.22085e13 −1.09020
986986 −3.92734e13 −1.32328
987987 −3.07949e12 −0.103289
988988 0 0
989989 −2.06581e13 −0.686604
990990 1.92145e13 0.635729
991991 5.76104e13 1.89745 0.948723 0.316108i 0.102376π-0.102376\pi
0.948723 + 0.316108i 0.102376π0.102376\pi
992992 6.31303e12 0.206983
993993 4.42939e12 0.144568
994994 −1.17633e13 −0.382200
995995 2.10831e13 0.681917
996996 3.55591e12 0.114494
997997 −1.11789e13 −0.358320 −0.179160 0.983820i 0.557338π-0.557338\pi
−0.179160 + 0.983820i 0.557338π0.557338\pi
998998 4.20505e13 1.34179
999999 −1.79041e13 −0.568732
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.15 20
13.2 odd 12 13.10.e.a.4.8 20
13.7 odd 12 13.10.e.a.10.8 yes 20
13.12 even 2 inner 169.10.a.f.1.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.8 20 13.2 odd 12
13.10.e.a.10.8 yes 20 13.7 odd 12
169.10.a.f.1.6 20 13.12 even 2 inner
169.10.a.f.1.15 20 1.1 even 1 trivial