Properties

Label 169.10.a.f.1.12
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.12
Root 5.958855.95885 of defining polynomial
Character χ\chi == 169.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+5.95885q2250.658q3476.492q4+841.807q51493.64q6+1268.09q75890.28q8+43146.7q9+5016.20q1041521.0q11+119437.q12+7556.36q14211006.q15+208865.q16310093.q17+257105.q18+713979.q19401114.q20317857.q21247418.q221.16979e6q23+1.47645e6q241.24449e6q255.88137e6q27604234.q283.99892e6q291.25735e6q308.02230e6q31+4.26042e6q32+1.04076e7q331.84780e6q34+1.06749e6q352.05590e7q36+9.31295e6q37+4.25450e6q384.95848e6q403.10759e7q411.89406e6q422.70078e7q43+1.97844e7q44+3.63212e7q456.97060e6q469.72681e6q475.23537e7q483.87456e7q497.41571e6q50+7.77274e7q51+8.53737e6q533.50462e7q543.49527e7q557.46940e6q561.78965e8q572.38290e7q58+1.61549e8q59+1.00543e8q604.26305e7q614.78037e7q62+5.47138e7q638.15515e7q64+6.20174e7q66+1.07291e8q67+1.47757e8q68+2.93218e8q69+6.36099e6q70+1.58736e8q712.54146e8q727.49326e7q73+5.54945e7q74+3.11941e8q753.40205e8q765.26524e7q77+3.17665e8q79+1.75824e8q80+6.24959e8q811.85177e8q82+7.42376e8q83+1.51456e8q842.61038e8q851.60935e8q86+1.00236e9q87+2.44571e8q88+2.00141e8q89+2.16432e8q90+5.57395e8q92+2.01086e9q935.79606e7q94+6.01032e8q951.06791e9q96+3.37384e8q972.30879e8q981.79149e9q99+O(q100)q+5.95885 q^{2} -250.658 q^{3} -476.492 q^{4} +841.807 q^{5} -1493.64 q^{6} +1268.09 q^{7} -5890.28 q^{8} +43146.7 q^{9} +5016.20 q^{10} -41521.0 q^{11} +119437. q^{12} +7556.36 q^{14} -211006. q^{15} +208865. q^{16} -310093. q^{17} +257105. q^{18} +713979. q^{19} -401114. q^{20} -317857. q^{21} -247418. q^{22} -1.16979e6 q^{23} +1.47645e6 q^{24} -1.24449e6 q^{25} -5.88137e6 q^{27} -604234. q^{28} -3.99892e6 q^{29} -1.25735e6 q^{30} -8.02230e6 q^{31} +4.26042e6 q^{32} +1.04076e7 q^{33} -1.84780e6 q^{34} +1.06749e6 q^{35} -2.05590e7 q^{36} +9.31295e6 q^{37} +4.25450e6 q^{38} -4.95848e6 q^{40} -3.10759e7 q^{41} -1.89406e6 q^{42} -2.70078e7 q^{43} +1.97844e7 q^{44} +3.63212e7 q^{45} -6.97060e6 q^{46} -9.72681e6 q^{47} -5.23537e7 q^{48} -3.87456e7 q^{49} -7.41571e6 q^{50} +7.77274e7 q^{51} +8.53737e6 q^{53} -3.50462e7 q^{54} -3.49527e7 q^{55} -7.46940e6 q^{56} -1.78965e8 q^{57} -2.38290e7 q^{58} +1.61549e8 q^{59} +1.00543e8 q^{60} -4.26305e7 q^{61} -4.78037e7 q^{62} +5.47138e7 q^{63} -8.15515e7 q^{64} +6.20174e7 q^{66} +1.07291e8 q^{67} +1.47757e8 q^{68} +2.93218e8 q^{69} +6.36099e6 q^{70} +1.58736e8 q^{71} -2.54146e8 q^{72} -7.49326e7 q^{73} +5.54945e7 q^{74} +3.11941e8 q^{75} -3.40205e8 q^{76} -5.26524e7 q^{77} +3.17665e8 q^{79} +1.75824e8 q^{80} +6.24959e8 q^{81} -1.85177e8 q^{82} +7.42376e8 q^{83} +1.51456e8 q^{84} -2.61038e8 q^{85} -1.60935e8 q^{86} +1.00236e9 q^{87} +2.44571e8 q^{88} +2.00141e8 q^{89} +2.16432e8 q^{90} +5.57395e8 q^{92} +2.01086e9 q^{93} -5.79606e7 q^{94} +6.01032e8 q^{95} -1.06791e9 q^{96} +3.37384e8 q^{97} -2.30879e8 q^{98} -1.79149e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 5.95885 0.263347 0.131673 0.991293i 0.457965π-0.457965\pi
0.131673 + 0.991293i 0.457965π0.457965\pi
33 −250.658 −1.78664 −0.893319 0.449422i 0.851630π-0.851630\pi
−0.893319 + 0.449422i 0.851630π0.851630\pi
44 −476.492 −0.930649
55 841.807 0.602348 0.301174 0.953569i 0.402622π-0.402622\pi
0.301174 + 0.953569i 0.402622π0.402622\pi
66 −1493.64 −0.470505
77 1268.09 0.199622 0.0998110 0.995006i 0.468176π-0.468176\pi
0.0998110 + 0.995006i 0.468176π0.468176\pi
88 −5890.28 −0.508430
99 43146.7 2.19208
1010 5016.20 0.158626
1111 −41521.0 −0.855069 −0.427534 0.903999i 0.640618π-0.640618\pi
−0.427534 + 0.903999i 0.640618π0.640618\pi
1212 119437. 1.66273
1313 0 0
1414 7556.36 0.0525698
1515 −211006. −1.07618
1616 208865. 0.796755
1717 −310093. −0.900475 −0.450238 0.892909i 0.648661π-0.648661\pi
−0.450238 + 0.892909i 0.648661π0.648661\pi
1818 257105. 0.577276
1919 713979. 1.25688 0.628440 0.777858i 0.283694π-0.283694\pi
0.628440 + 0.777858i 0.283694π0.283694\pi
2020 −401114. −0.560574
2121 −317857. −0.356652
2222 −247418. −0.225179
2323 −1.16979e6 −0.871630 −0.435815 0.900036i 0.643540π-0.643540\pi
−0.435815 + 0.900036i 0.643540π0.643540\pi
2424 1.47645e6 0.908380
2525 −1.24449e6 −0.637177
2626 0 0
2727 −5.88137e6 −2.12981
2828 −604234. −0.185778
2929 −3.99892e6 −1.04991 −0.524955 0.851130i 0.675918π-0.675918\pi
−0.524955 + 0.851130i 0.675918π0.675918\pi
3030 −1.25735e6 −0.283408
3131 −8.02230e6 −1.56017 −0.780084 0.625675i 0.784824π-0.784824\pi
−0.780084 + 0.625675i 0.784824π0.784824\pi
3232 4.26042e6 0.718253
3333 1.04076e7 1.52770
3434 −1.84780e6 −0.237137
3535 1.06749e6 0.120242
3636 −2.05590e7 −2.04005
3737 9.31295e6 0.816920 0.408460 0.912776i 0.366066π-0.366066\pi
0.408460 + 0.912776i 0.366066π0.366066\pi
3838 4.25450e6 0.330995
3939 0 0
4040 −4.95848e6 −0.306252
4141 −3.10759e7 −1.71750 −0.858750 0.512394i 0.828759π-0.828759\pi
−0.858750 + 0.512394i 0.828759π0.828759\pi
4242 −1.89406e6 −0.0939232
4343 −2.70078e7 −1.20470 −0.602352 0.798230i 0.705770π-0.705770\pi
−0.602352 + 0.798230i 0.705770π0.705770\pi
4444 1.97844e7 0.795769
4545 3.63212e7 1.32039
4646 −6.97060e6 −0.229541
4747 −9.72681e6 −0.290757 −0.145378 0.989376i 0.546440π-0.546440\pi
−0.145378 + 0.989376i 0.546440π0.546440\pi
4848 −5.23537e7 −1.42351
4949 −3.87456e7 −0.960151
5050 −7.41571e6 −0.167798
5151 7.77274e7 1.60882
5252 0 0
5353 8.53737e6 0.148622 0.0743110 0.997235i 0.476324π-0.476324\pi
0.0743110 + 0.997235i 0.476324π0.476324\pi
5454 −3.50462e7 −0.560879
5555 −3.49527e7 −0.515049
5656 −7.46940e6 −0.101494
5757 −1.78965e8 −2.24559
5858 −2.38290e7 −0.276490
5959 1.61549e8 1.73568 0.867842 0.496840i 0.165506π-0.165506\pi
0.867842 + 0.496840i 0.165506π0.165506\pi
6060 1.00543e8 1.00154
6161 −4.26305e7 −0.394218 −0.197109 0.980382i 0.563155π-0.563155\pi
−0.197109 + 0.980382i 0.563155π0.563155\pi
6262 −4.78037e7 −0.410865
6363 5.47138e7 0.437587
6464 −8.15515e7 −0.607606
6565 0 0
6666 6.20174e7 0.402314
6767 1.07291e8 0.650468 0.325234 0.945634i 0.394557π-0.394557\pi
0.325234 + 0.945634i 0.394557π0.394557\pi
6868 1.47757e8 0.838026
6969 2.93218e8 1.55729
7070 6.36099e6 0.0316653
7171 1.58736e8 0.741333 0.370666 0.928766i 0.379129π-0.379129\pi
0.370666 + 0.928766i 0.379129π0.379129\pi
7272 −2.54146e8 −1.11452
7373 −7.49326e7 −0.308829 −0.154414 0.988006i 0.549349π-0.549349\pi
−0.154414 + 0.988006i 0.549349π0.549349\pi
7474 5.54945e7 0.215133
7575 3.11941e8 1.13841
7676 −3.40205e8 −1.16971
7777 −5.26524e7 −0.170691
7878 0 0
7979 3.17665e8 0.917586 0.458793 0.888543i 0.348282π-0.348282\pi
0.458793 + 0.888543i 0.348282π0.348282\pi
8080 1.75824e8 0.479924
8181 6.24959e8 1.61313
8282 −1.85177e8 −0.452298
8383 7.42376e8 1.71701 0.858505 0.512806i 0.171394π-0.171394\pi
0.858505 + 0.512806i 0.171394π0.171394\pi
8484 1.51456e8 0.331918
8585 −2.61038e8 −0.542399
8686 −1.60935e8 −0.317255
8787 1.00236e9 1.87581
8888 2.44571e8 0.434742
8989 2.00141e8 0.338128 0.169064 0.985605i 0.445925π-0.445925\pi
0.169064 + 0.985605i 0.445925π0.445925\pi
9090 2.16432e8 0.347721
9191 0 0
9292 5.57395e8 0.811181
9393 2.01086e9 2.78746
9494 −5.79606e7 −0.0765698
9595 6.01032e8 0.757080
9696 −1.06791e9 −1.28326
9797 3.37384e8 0.386947 0.193474 0.981105i 0.438025π-0.438025\pi
0.193474 + 0.981105i 0.438025π0.438025\pi
9898 −2.30879e8 −0.252853
9999 −1.79149e9 −1.87438
100100 5.92988e8 0.592988
101101 −8.99494e8 −0.860106 −0.430053 0.902804i 0.641505π-0.641505\pi
−0.430053 + 0.902804i 0.641505π0.641505\pi
102102 4.63166e8 0.423678
103103 −1.30979e9 −1.14666 −0.573331 0.819324i 0.694349π-0.694349\pi
−0.573331 + 0.819324i 0.694349π0.694349\pi
104104 0 0
105105 −2.67574e8 −0.214829
106106 5.08730e7 0.0391391
107107 −6.26831e8 −0.462299 −0.231150 0.972918i 0.574249π-0.574249\pi
−0.231150 + 0.972918i 0.574249π0.574249\pi
108108 2.80242e9 1.98211
109109 −7.68123e8 −0.521208 −0.260604 0.965446i 0.583922π-0.583922\pi
−0.260604 + 0.965446i 0.583922π0.583922\pi
110110 −2.08278e8 −0.135636
111111 −2.33437e9 −1.45954
112112 2.64859e8 0.159050
113113 −1.42711e9 −0.823389 −0.411694 0.911322i 0.635063π-0.635063\pi
−0.411694 + 0.911322i 0.635063π0.635063\pi
114114 −1.06643e9 −0.591369
115115 −9.84736e8 −0.525025
116116 1.90546e9 0.977097
117117 0 0
118118 9.62648e8 0.457087
119119 −3.93225e8 −0.179755
120120 1.24288e9 0.547161
121121 −6.33951e8 −0.268857
122122 −2.54029e8 −0.103816
123123 7.78945e9 3.06855
124124 3.82256e9 1.45197
125125 −2.69177e9 −0.986150
126126 3.26032e8 0.115237
127127 −2.55295e9 −0.870815 −0.435408 0.900233i 0.643396π-0.643396\pi
−0.435408 + 0.900233i 0.643396π0.643396\pi
128128 −2.66729e9 −0.878264
129129 6.76972e9 2.15237
130130 0 0
131131 −1.50087e9 −0.445268 −0.222634 0.974902i 0.571465π-0.571465\pi
−0.222634 + 0.974902i 0.571465π0.571465\pi
132132 −4.95914e9 −1.42175
133133 9.05389e8 0.250901
134134 6.39330e8 0.171298
135135 −4.95097e9 −1.28289
136136 1.82653e9 0.457828
137137 5.49548e8 0.133279 0.0666397 0.997777i 0.478772π-0.478772\pi
0.0666397 + 0.997777i 0.478772π0.478772\pi
138138 1.74724e9 0.410107
139139 3.33033e9 0.756695 0.378347 0.925664i 0.376493π-0.376493\pi
0.378347 + 0.925664i 0.376493π0.376493\pi
140140 −5.08649e8 −0.111903
141141 2.43811e9 0.519478
142142 9.45885e8 0.195228
143143 0 0
144144 9.01181e9 1.74655
145145 −3.36632e9 −0.632411
146146 −4.46512e8 −0.0813290
147147 9.71190e9 1.71544
148148 −4.43755e9 −0.760265
149149 5.84923e9 0.972212 0.486106 0.873900i 0.338417π-0.338417\pi
0.486106 + 0.873900i 0.338417π0.338417\pi
150150 1.85881e9 0.299795
151151 −5.21852e9 −0.816867 −0.408433 0.912788i 0.633925π-0.633925\pi
−0.408433 + 0.912788i 0.633925π0.633925\pi
152152 −4.20553e9 −0.639036
153153 −1.33795e10 −1.97391
154154 −3.13748e8 −0.0449508
155155 −6.75323e9 −0.939764
156156 0 0
157157 −2.70457e9 −0.355262 −0.177631 0.984097i 0.556843π-0.556843\pi
−0.177631 + 0.984097i 0.556843π0.556843\pi
158158 1.89292e9 0.241643
159159 −2.13996e9 −0.265534
160160 3.58645e9 0.432638
161161 −1.48340e9 −0.173997
162162 3.72404e9 0.424812
163163 −6.07123e9 −0.673647 −0.336823 0.941568i 0.609353π-0.609353\pi
−0.336823 + 0.941568i 0.609353π0.609353\pi
164164 1.48074e10 1.59839
165165 8.76119e9 0.920206
166166 4.42371e9 0.452169
167167 3.39724e9 0.337988 0.168994 0.985617i 0.445948π-0.445948\pi
0.168994 + 0.985617i 0.445948π0.445948\pi
168168 1.87227e9 0.181333
169169 0 0
170170 −1.55549e9 −0.142839
171171 3.08058e10 2.75518
172172 1.28690e10 1.12116
173173 −3.31703e9 −0.281542 −0.140771 0.990042i 0.544958π-0.544958\pi
−0.140771 + 0.990042i 0.544958π0.544958\pi
174174 5.97294e9 0.493988
175175 −1.57812e9 −0.127195
176176 −8.67227e9 −0.681281
177177 −4.04937e10 −3.10104
178178 1.19261e9 0.0890450
179179 1.76717e10 1.28659 0.643295 0.765618i 0.277567π-0.277567\pi
0.643295 + 0.765618i 0.277567π0.277567\pi
180180 −1.73067e10 −1.22882
181181 6.42302e9 0.444821 0.222411 0.974953i 0.428607π-0.428607\pi
0.222411 + 0.974953i 0.428607π0.428607\pi
182182 0 0
183183 1.06857e10 0.704325
184184 6.89039e9 0.443163
185185 7.83971e9 0.492070
186186 1.19824e10 0.734067
187187 1.28754e10 0.769968
188188 4.63475e9 0.270592
189189 −7.45810e9 −0.425158
190190 3.58146e9 0.199374
191191 3.10908e10 1.69037 0.845185 0.534474i 0.179490π-0.179490\pi
0.845185 + 0.534474i 0.179490π0.179490\pi
192192 2.04416e10 1.08557
193193 1.18347e10 0.613971 0.306985 0.951714i 0.400680π-0.400680\pi
0.306985 + 0.951714i 0.400680π0.400680\pi
194194 2.01042e9 0.101901
195195 0 0
196196 1.84620e10 0.893563
197197 5.10133e9 0.241316 0.120658 0.992694i 0.461500π-0.461500\pi
0.120658 + 0.992694i 0.461500π0.461500\pi
198198 −1.06753e10 −0.493611
199199 −3.46014e9 −0.156406 −0.0782032 0.996937i 0.524918π-0.524918\pi
−0.0782032 + 0.996937i 0.524918π0.524918\pi
200200 7.33037e9 0.323960
201201 −2.68933e10 −1.16215
202202 −5.35995e9 −0.226506
203203 −5.07099e9 −0.209585
204204 −3.70365e10 −1.49725
205205 −2.61599e10 −1.03453
206206 −7.80487e9 −0.301970
207207 −5.04725e10 −1.91068
208208 0 0
209209 −2.96451e10 −1.07472
210210 −1.59444e9 −0.0565745
211211 1.60621e10 0.557869 0.278935 0.960310i 0.410019π-0.410019\pi
0.278935 + 0.960310i 0.410019π0.410019\pi
212212 −4.06799e9 −0.138315
213213 −3.97886e10 −1.32449
214214 −3.73519e9 −0.121745
215215 −2.27353e10 −0.725651
216216 3.46429e10 1.08286
217217 −1.01730e10 −0.311444
218218 −4.57713e9 −0.137258
219219 1.87825e10 0.551765
220220 1.66547e10 0.479330
221221 0 0
222222 −1.39102e10 −0.384365
223223 8.34952e9 0.226094 0.113047 0.993590i 0.463939π-0.463939\pi
0.113047 + 0.993590i 0.463939π0.463939\pi
224224 5.40259e9 0.143379
225225 −5.36954e10 −1.39674
226226 −8.50395e9 −0.216837
227227 −7.13717e8 −0.0178406 −0.00892031 0.999960i 0.502839π-0.502839\pi
−0.00892031 + 0.999960i 0.502839π0.502839\pi
228228 8.52753e10 2.08986
229229 6.88093e10 1.65344 0.826718 0.562617i 0.190205π-0.190205\pi
0.826718 + 0.562617i 0.190205π0.190205\pi
230230 −5.86790e9 −0.138263
231231 1.31978e10 0.304962
232232 2.35548e10 0.533806
233233 1.62829e10 0.361936 0.180968 0.983489i 0.442077π-0.442077\pi
0.180968 + 0.983489i 0.442077π0.442077\pi
234234 0 0
235235 −8.18809e9 −0.175137
236236 −7.69769e10 −1.61531
237237 −7.96253e10 −1.63939
238238 −2.34317e9 −0.0473378
239239 9.39077e10 1.86170 0.930852 0.365397i 0.119067π-0.119067\pi
0.930852 + 0.365397i 0.119067π0.119067\pi
240240 −4.40717e10 −0.857451
241241 7.50295e10 1.43270 0.716350 0.697741i 0.245812π-0.245812\pi
0.716350 + 0.697741i 0.245812π0.245812\pi
242242 −3.77762e9 −0.0708027
243243 −4.08882e10 −0.752263
244244 2.03131e10 0.366878
245245 −3.26163e10 −0.578345
246246 4.64162e10 0.808093
247247 0 0
248248 4.72536e10 0.793236
249249 −1.86083e11 −3.06768
250250 −1.60399e10 −0.259699
251251 −3.76195e10 −0.598248 −0.299124 0.954214i 0.596694π-0.596694\pi
−0.299124 + 0.954214i 0.596694π0.596694\pi
252252 −2.60707e10 −0.407240
253253 4.85709e10 0.745304
254254 −1.52127e10 −0.229326
255255 6.54315e10 0.969072
256256 2.58604e10 0.376318
257257 −5.20095e10 −0.743676 −0.371838 0.928298i 0.621272π-0.621272\pi
−0.371838 + 0.928298i 0.621272π0.621272\pi
258258 4.03398e10 0.566820
259259 1.18096e10 0.163075
260260 0 0
261261 −1.72540e11 −2.30148
262262 −8.94345e9 −0.117260
263263 4.77077e10 0.614876 0.307438 0.951568i 0.400528π-0.400528\pi
0.307438 + 0.951568i 0.400528π0.400528\pi
264264 −6.13037e10 −0.776728
265265 7.18682e9 0.0895221
266266 5.39508e9 0.0660740
267267 −5.01671e10 −0.604113
268268 −5.11232e10 −0.605357
269269 −1.56389e11 −1.82105 −0.910524 0.413457i 0.864321π-0.864321\pi
−0.910524 + 0.413457i 0.864321π0.864321\pi
270270 −2.95021e10 −0.337844
271271 −2.01739e10 −0.227211 −0.113605 0.993526i 0.536240π-0.536240\pi
−0.113605 + 0.993526i 0.536240π0.536240\pi
272272 −6.47674e10 −0.717458
273273 0 0
274274 3.27467e9 0.0350987
275275 5.16724e10 0.544830
276276 −1.39716e11 −1.44929
277277 −1.00639e11 −1.02709 −0.513543 0.858064i 0.671667π-0.671667\pi
−0.513543 + 0.858064i 0.671667π0.671667\pi
278278 1.98449e10 0.199273
279279 −3.46136e11 −3.42001
280280 −6.28779e9 −0.0611346
281281 3.67033e9 0.0351178 0.0175589 0.999846i 0.494411π-0.494411\pi
0.0175589 + 0.999846i 0.494411π0.494411\pi
282282 1.45283e10 0.136803
283283 1.39676e11 1.29445 0.647223 0.762301i 0.275930π-0.275930\pi
0.647223 + 0.762301i 0.275930π0.275930\pi
284284 −7.56365e10 −0.689920
285285 −1.50654e11 −1.35263
286286 0 0
287287 −3.94071e10 −0.342851
288288 1.83823e11 1.57447
289289 −2.24303e10 −0.189145
290290 −2.00594e10 −0.166543
291291 −8.45682e10 −0.691335
292292 3.57048e10 0.287411
293293 −7.26723e10 −0.576056 −0.288028 0.957622i 0.593000π-0.593000\pi
−0.288028 + 0.957622i 0.593000π0.593000\pi
294294 5.78718e10 0.451756
295295 1.35993e11 1.04549
296296 −5.48559e10 −0.415346
297297 2.44200e11 1.82114
298298 3.48547e10 0.256029
299299 0 0
300300 −1.48637e11 −1.05946
301301 −3.42482e10 −0.240486
302302 −3.10964e10 −0.215119
303303 2.25466e11 1.53670
304304 1.49125e11 1.00143
305305 −3.58867e10 −0.237456
306306 −7.97263e10 −0.519823
307307 −2.00120e11 −1.28579 −0.642893 0.765956i 0.722266π-0.722266\pi
−0.642893 + 0.765956i 0.722266π0.722266\pi
308308 2.50884e10 0.158853
309309 3.28311e11 2.04867
310310 −4.02415e10 −0.247484
311311 7.40889e10 0.449088 0.224544 0.974464i 0.427911π-0.427911\pi
0.224544 + 0.974464i 0.427911π0.427911\pi
312312 0 0
313313 2.85248e11 1.67986 0.839930 0.542694i 0.182596π-0.182596\pi
0.839930 + 0.542694i 0.182596π0.182596\pi
314314 −1.61161e10 −0.0935571
315315 4.60585e10 0.263580
316316 −1.51365e11 −0.853950
317317 3.13947e11 1.74618 0.873090 0.487559i 0.162112π-0.162112\pi
0.873090 + 0.487559i 0.162112π0.162112\pi
318318 −1.27517e10 −0.0699274
319319 1.66039e11 0.897746
320320 −6.86506e10 −0.365990
321321 1.57120e11 0.825962
322322 −8.83934e9 −0.0458214
323323 −2.21400e11 −1.13179
324324 −2.97788e11 −1.50125
325325 0 0
326326 −3.61776e10 −0.177403
327327 1.92536e11 0.931211
328328 1.83046e11 0.873229
329329 −1.23345e10 −0.0580415
330330 5.22066e10 0.242333
331331 2.76607e10 0.126659 0.0633296 0.997993i 0.479828π-0.479828\pi
0.0633296 + 0.997993i 0.479828π0.479828\pi
332332 −3.53736e11 −1.59793
333333 4.01823e11 1.79075
334334 2.02436e10 0.0890081
335335 9.03181e10 0.391808
336336 −6.63891e10 −0.284165
337337 2.23096e11 0.942232 0.471116 0.882071i 0.343851π-0.343851\pi
0.471116 + 0.882071i 0.343851π0.343851\pi
338338 0 0
339339 3.57718e11 1.47110
340340 1.24383e11 0.504783
341341 3.33094e11 1.33405
342342 1.83567e11 0.725567
343343 −1.00305e11 −0.391289
344344 1.59083e11 0.612508
345345 2.46833e11 0.938029
346346 −1.97657e10 −0.0741430
347347 4.59478e10 0.170130 0.0850652 0.996375i 0.472890π-0.472890\pi
0.0850652 + 0.996375i 0.472890π0.472890\pi
348348 −4.77619e11 −1.74572
349349 −8.20298e10 −0.295976 −0.147988 0.988989i 0.547280π-0.547280\pi
−0.147988 + 0.988989i 0.547280π0.547280\pi
350350 −9.40378e9 −0.0334963
351351 0 0
352352 −1.76897e11 −0.614155
353353 −2.20118e11 −0.754518 −0.377259 0.926108i 0.623133π-0.623133\pi
−0.377259 + 0.926108i 0.623133π0.623133\pi
354354 −2.41296e11 −0.816649
355355 1.33625e11 0.446540
356356 −9.53657e10 −0.314679
357357 9.85653e10 0.321157
358358 1.05303e11 0.338819
359359 3.75070e11 1.19175 0.595877 0.803075i 0.296804π-0.296804\pi
0.595877 + 0.803075i 0.296804π0.296804\pi
360360 −2.13942e11 −0.671327
361361 1.87078e11 0.579749
362362 3.82738e10 0.117142
363363 1.58905e11 0.480351
364364 0 0
365365 −6.30787e10 −0.186022
366366 6.36745e10 0.185482
367367 1.09206e10 0.0314230 0.0157115 0.999877i 0.494999π-0.494999\pi
0.0157115 + 0.999877i 0.494999π0.494999\pi
368368 −2.44328e11 −0.694476
369369 −1.34082e12 −3.76490
370370 4.67157e10 0.129585
371371 1.08261e10 0.0296682
372372 −9.58158e11 −2.59414
373373 −3.75175e11 −1.00356 −0.501781 0.864995i 0.667321π-0.667321\pi
−0.501781 + 0.864995i 0.667321π0.667321\pi
374374 7.67225e10 0.202769
375375 6.74715e11 1.76189
376376 5.72936e10 0.147829
377377 0 0
378378 −4.44417e10 −0.111964
379379 −6.23413e11 −1.55203 −0.776014 0.630716i 0.782761π-0.782761\pi
−0.776014 + 0.630716i 0.782761π0.782761\pi
380380 −2.86387e11 −0.704575
381381 6.39919e11 1.55583
382382 1.85265e11 0.445153
383383 6.22449e11 1.47812 0.739059 0.673641i 0.235270π-0.235270\pi
0.739059 + 0.673641i 0.235270π0.235270\pi
384384 6.68578e11 1.56914
385385 −4.43231e10 −0.102815
386386 7.05210e10 0.161687
387387 −1.16529e12 −2.64081
388388 −1.60761e11 −0.360112
389389 5.65612e11 1.25241 0.626204 0.779659i 0.284608π-0.284608\pi
0.626204 + 0.779659i 0.284608π0.284608\pi
390390 0 0
391391 3.62743e11 0.784881
392392 2.28222e11 0.488169
393393 3.76205e11 0.795533
394394 3.03981e10 0.0635497
395395 2.67412e11 0.552706
396396 8.53633e11 1.74439
397397 −5.77427e11 −1.16665 −0.583324 0.812239i 0.698248π-0.698248\pi
−0.583324 + 0.812239i 0.698248π0.698248\pi
398398 −2.06184e10 −0.0411891
399399 −2.26943e11 −0.448270
400400 −2.59929e11 −0.507674
401401 −5.09487e11 −0.983973 −0.491986 0.870603i 0.663729π-0.663729\pi
−0.491986 + 0.870603i 0.663729π0.663729\pi
402402 −1.60253e11 −0.306048
403403 0 0
404404 4.28602e11 0.800456
405405 5.26094e11 0.971664
406406 −3.02173e10 −0.0551936
407407 −3.86683e11 −0.698523
408408 −4.57836e11 −0.817974
409409 −6.35433e10 −0.112283 −0.0561416 0.998423i 0.517880π-0.517880\pi
−0.0561416 + 0.998423i 0.517880π0.517880\pi
410410 −1.55883e11 −0.272441
411411 −1.37749e11 −0.238122
412412 6.24106e11 1.06714
413413 2.04859e11 0.346481
414414 −3.00758e11 −0.503171
415415 6.24937e11 1.03424
416416 0 0
417417 −8.34775e11 −1.35194
418418 −1.76651e11 −0.283024
419419 9.02911e11 1.43114 0.715569 0.698542i 0.246167π-0.246167\pi
0.715569 + 0.698542i 0.246167π0.246167\pi
420420 1.27497e11 0.199930
421421 1.03641e12 1.60791 0.803956 0.594689i 0.202725π-0.202725\pi
0.803956 + 0.594689i 0.202725π0.202725\pi
422422 9.57119e10 0.146913
423423 −4.19679e11 −0.637362
424424 −5.02875e10 −0.0755638
425425 3.85906e11 0.573762
426426 −2.37094e11 −0.348801
427427 −5.40593e10 −0.0786946
428428 2.98680e11 0.430238
429429 0 0
430430 −1.35476e11 −0.191098
431431 −3.10199e10 −0.0433005 −0.0216503 0.999766i 0.506892π-0.506892\pi
−0.0216503 + 0.999766i 0.506892π0.506892\pi
432432 −1.22841e12 −1.69694
433433 6.70076e11 0.916069 0.458035 0.888934i 0.348554π-0.348554\pi
0.458035 + 0.888934i 0.348554π0.348554\pi
434434 −6.06194e10 −0.0820177
435435 8.43797e11 1.12989
436436 3.66004e11 0.485062
437437 −8.35205e11 −1.09554
438438 1.11922e11 0.145306
439439 −4.77633e11 −0.613767 −0.306884 0.951747i 0.599286π-0.599286\pi
−0.306884 + 0.951747i 0.599286π0.599286\pi
440440 2.05881e11 0.261866
441441 −1.67174e12 −2.10473
442442 0 0
443443 5.02360e11 0.619723 0.309862 0.950782i 0.399717π-0.399717\pi
0.309862 + 0.950782i 0.399717π0.399717\pi
444444 1.11231e12 1.35832
445445 1.68480e11 0.203671
446446 4.97535e10 0.0595411
447447 −1.46616e12 −1.73699
448448 −1.03415e11 −0.121292
449449 −4.72576e11 −0.548735 −0.274368 0.961625i 0.588469π-0.588469\pi
−0.274368 + 0.961625i 0.588469π0.588469\pi
450450 −3.19963e11 −0.367827
451451 1.29031e12 1.46858
452452 6.80007e11 0.766286
453453 1.30807e12 1.45945
454454 −4.25294e9 −0.00469827
455455 0 0
456456 1.05415e12 1.14173
457457 8.00021e11 0.857982 0.428991 0.903309i 0.358869π-0.358869\pi
0.428991 + 0.903309i 0.358869π0.358869\pi
458458 4.10024e11 0.435427
459459 1.82377e12 1.91784
460460 4.69219e11 0.488613
461461 −1.75335e12 −1.80807 −0.904034 0.427461i 0.859408π-0.859408\pi
−0.904034 + 0.427461i 0.859408π0.859408\pi
462462 7.86435e10 0.0803108
463463 4.08855e11 0.413481 0.206740 0.978396i 0.433714π-0.433714\pi
0.206740 + 0.978396i 0.433714π0.433714\pi
464464 −8.35234e11 −0.836522
465465 1.69275e12 1.67902
466466 9.70277e10 0.0953145
467467 9.38289e10 0.0912874 0.0456437 0.998958i 0.485466π-0.485466\pi
0.0456437 + 0.998958i 0.485466π0.485466\pi
468468 0 0
469469 1.36054e11 0.129848
470470 −4.87917e10 −0.0461217
471471 6.77922e11 0.634726
472472 −9.51570e11 −0.882474
473473 1.12139e12 1.03011
474474 −4.74476e11 −0.431729
475475 −8.88537e11 −0.800856
476476 1.87369e11 0.167288
477477 3.68359e11 0.325791
478478 5.59582e11 0.490273
479479 −5.16728e11 −0.448490 −0.224245 0.974533i 0.571992π-0.571992\pi
−0.224245 + 0.974533i 0.571992π0.571992\pi
480480 −8.98974e11 −0.772968
481481 0 0
482482 4.47090e11 0.377297
483483 3.71826e11 0.310869
484484 3.02073e11 0.250212
485485 2.84012e11 0.233077
486486 −2.43647e11 −0.198106
487487 5.00815e11 0.403457 0.201728 0.979442i 0.435344π-0.435344\pi
0.201728 + 0.979442i 0.435344π0.435344\pi
488488 2.51106e11 0.200432
489489 1.52180e12 1.20356
490490 −1.94356e11 −0.152305
491491 4.95601e11 0.384827 0.192414 0.981314i 0.438368π-0.438368\pi
0.192414 + 0.981314i 0.438368π0.438368\pi
492492 −3.71161e12 −2.85574
493493 1.24004e12 0.945418
494494 0 0
495495 −1.50809e12 −1.12903
496496 −1.67558e12 −1.24307
497497 2.01292e11 0.147986
498498 −1.10884e12 −0.807862
499499 4.85674e11 0.350665 0.175332 0.984509i 0.443900π-0.443900\pi
0.175332 + 0.984509i 0.443900π0.443900\pi
500500 1.28261e12 0.917759
501501 −8.51546e11 −0.603863
502502 −2.24169e11 −0.157547
503503 1.17653e12 0.819494 0.409747 0.912199i 0.365617π-0.365617\pi
0.409747 + 0.912199i 0.365617π0.365617\pi
504504 −3.22280e11 −0.222482
505505 −7.57200e11 −0.518083
506506 2.89427e11 0.196273
507507 0 0
508508 1.21646e12 0.810423
509509 −1.59444e11 −0.105288 −0.0526439 0.998613i 0.516765π-0.516765\pi
−0.0526439 + 0.998613i 0.516765π0.516765\pi
510510 3.89897e11 0.255202
511511 −9.50212e10 −0.0616490
512512 1.51975e12 0.977366
513513 −4.19917e12 −2.67692
514514 −3.09917e11 −0.195845
515515 −1.10259e12 −0.690689
516516 −3.22572e12 −2.00310
517517 4.03867e11 0.248617
518518 7.03720e10 0.0429453
519519 8.31443e11 0.503013
520520 0 0
521521 −1.66196e12 −0.988211 −0.494105 0.869402i 0.664504π-0.664504\pi
−0.494105 + 0.869402i 0.664504π0.664504\pi
522522 −1.02814e12 −0.606088
523523 −3.12718e12 −1.82766 −0.913830 0.406096i 0.866890π-0.866890\pi
−0.913830 + 0.406096i 0.866890π0.866890\pi
524524 7.15151e11 0.414388
525525 3.95569e11 0.227251
526526 2.84283e11 0.161925
527527 2.48766e12 1.40489
528528 2.17378e12 1.21720
529529 −4.32746e11 −0.240261
530530 4.28252e10 0.0235753
531531 6.97031e12 3.80476
532532 −4.31410e11 −0.233501
533533 0 0
534534 −2.98938e11 −0.159091
535535 −5.27670e11 −0.278465
536536 −6.31972e11 −0.330717
537537 −4.42957e12 −2.29867
538538 −9.31900e11 −0.479567
539539 1.60876e12 0.820995
540540 2.35910e12 1.19392
541541 3.81175e11 0.191310 0.0956548 0.995415i 0.469506π-0.469506\pi
0.0956548 + 0.995415i 0.469506π0.469506\pi
542542 −1.20213e11 −0.0598351
543543 −1.60998e12 −0.794735
544544 −1.32113e12 −0.646769
545545 −6.46611e11 −0.313949
546546 0 0
547547 −5.62804e11 −0.268791 −0.134395 0.990928i 0.542909π-0.542909\pi
−0.134395 + 0.990928i 0.542909π0.542909\pi
548548 −2.61855e11 −0.124036
549549 −1.83936e12 −0.864156
550550 3.07908e11 0.143479
551551 −2.85515e12 −1.31961
552552 −1.72713e12 −0.791772
553553 4.02827e11 0.183170
554554 −5.99693e11 −0.270480
555555 −1.96509e12 −0.879151
556556 −1.58688e12 −0.704217
557557 2.46974e12 1.08718 0.543592 0.839349i 0.317064π-0.317064\pi
0.543592 + 0.839349i 0.317064π0.317064\pi
558558 −2.06257e12 −0.900648
559559 0 0
560560 2.22960e11 0.0958034
561561 −3.22732e12 −1.37565
562562 2.18710e10 0.00924814
563563 −3.89266e11 −0.163290 −0.0816449 0.996661i 0.526017π-0.526017\pi
−0.0816449 + 0.996661i 0.526017π0.526017\pi
564564 −1.16174e12 −0.483451
565565 −1.20135e12 −0.495966
566566 8.32311e11 0.340888
567567 7.92503e11 0.322016
568568 −9.35000e11 −0.376916
569569 −1.73577e12 −0.694205 −0.347102 0.937827i 0.612834π-0.612834\pi
−0.347102 + 0.937827i 0.612834π0.612834\pi
570570 −8.97724e11 −0.356210
571571 −6.09927e11 −0.240113 −0.120056 0.992767i 0.538308π-0.538308\pi
−0.120056 + 0.992767i 0.538308π0.538308\pi
572572 0 0
573573 −7.79317e12 −3.02008
574574 −2.34821e11 −0.0902887
575575 1.45579e12 0.555383
576576 −3.51867e12 −1.33192
577577 3.15162e12 1.18370 0.591852 0.806047i 0.298397π-0.298397\pi
0.591852 + 0.806047i 0.298397π0.298397\pi
578578 −1.33659e11 −0.0498106
579579 −2.96646e12 −1.09694
580580 1.60403e12 0.588553
581581 9.41399e11 0.342753
582582 −5.03929e11 −0.182061
583583 −3.54481e11 −0.127082
584584 4.41374e11 0.157018
585585 0 0
586586 −4.33044e11 −0.151702
587587 4.30912e11 0.149802 0.0749010 0.997191i 0.476136π-0.476136\pi
0.0749010 + 0.997191i 0.476136π0.476136\pi
588588 −4.62764e12 −1.59647
589589 −5.72775e12 −1.96095
590590 8.10364e11 0.275325
591591 −1.27869e12 −0.431144
592592 1.94515e12 0.650885
593593 1.36406e12 0.452987 0.226494 0.974013i 0.427274π-0.427274\pi
0.226494 + 0.974013i 0.427274π0.427274\pi
594594 1.45515e12 0.479590
595595 −3.31020e11 −0.108275
596596 −2.78711e12 −0.904787
597597 8.67312e11 0.279442
598598 0 0
599599 8.07677e11 0.256340 0.128170 0.991752i 0.459090π-0.459090\pi
0.128170 + 0.991752i 0.459090π0.459090\pi
600600 −1.83742e12 −0.578799
601601 5.46410e12 1.70838 0.854188 0.519964i 0.174055π-0.174055\pi
0.854188 + 0.519964i 0.174055π0.174055\pi
602602 −2.04080e11 −0.0633311
603603 4.62924e12 1.42588
604604 2.48658e12 0.760216
605605 −5.33665e11 −0.161946
606606 1.34352e12 0.404684
607607 −1.26439e12 −0.378035 −0.189017 0.981974i 0.560530π-0.560530\pi
−0.189017 + 0.981974i 0.560530π0.560530\pi
608608 3.04185e12 0.902758
609609 1.27109e12 0.374453
610610 −2.13843e11 −0.0625333
611611 0 0
612612 6.37521e12 1.83702
613613 −9.45976e11 −0.270588 −0.135294 0.990806i 0.543198π-0.543198\pi
−0.135294 + 0.990806i 0.543198π0.543198\pi
614614 −1.19249e12 −0.338607
615615 6.55721e12 1.84834
616616 3.10137e11 0.0867842
617617 −1.89715e12 −0.527008 −0.263504 0.964658i 0.584878π-0.584878\pi
−0.263504 + 0.964658i 0.584878π0.584878\pi
618618 1.95636e12 0.539510
619619 −3.25858e12 −0.892115 −0.446057 0.895004i 0.647172π-0.647172\pi
−0.446057 + 0.895004i 0.647172π0.647172\pi
620620 3.21786e12 0.874590
621621 6.87996e12 1.85641
622622 4.41485e11 0.118266
623623 2.53797e11 0.0674979
624624 0 0
625625 1.64686e11 0.0431716
626626 1.69975e12 0.442386
627627 7.43080e12 1.92014
628628 1.28870e12 0.330624
629629 −2.88788e12 −0.735616
630630 2.74456e11 0.0694128
631631 −2.46400e12 −0.618741 −0.309370 0.950942i 0.600118π-0.600118\pi
−0.309370 + 0.950942i 0.600118π0.600118\pi
632632 −1.87113e12 −0.466528
633633 −4.02611e12 −0.996711
634634 1.87076e12 0.459851
635635 −2.14909e12 −0.524534
636636 1.01968e12 0.247119
637637 0 0
638638 9.89405e11 0.236418
639639 6.84894e12 1.62506
640640 −2.24534e12 −0.529020
641641 1.69101e12 0.395625 0.197813 0.980240i 0.436616π-0.436616\pi
0.197813 + 0.980240i 0.436616π0.436616\pi
642642 9.36258e11 0.217514
643643 −2.23177e12 −0.514873 −0.257436 0.966295i 0.582878π-0.582878\pi
−0.257436 + 0.966295i 0.582878π0.582878\pi
644644 7.06827e11 0.161930
645645 5.69880e12 1.29648
646646 −1.31929e12 −0.298053
647647 6.95547e12 1.56048 0.780238 0.625483i 0.215098π-0.215098\pi
0.780238 + 0.625483i 0.215098π0.215098\pi
648648 −3.68118e12 −0.820162
649649 −6.70769e12 −1.48413
650650 0 0
651651 2.54995e12 0.556438
652652 2.89289e12 0.626928
653653 −6.69648e12 −1.44124 −0.720622 0.693329i 0.756143π-0.756143\pi
−0.720622 + 0.693329i 0.756143π0.756143\pi
654654 1.14730e12 0.245231
655655 −1.26344e12 −0.268206
656656 −6.49066e12 −1.36843
657657 −3.23309e12 −0.676977
658658 −7.34992e10 −0.0152850
659659 5.91884e12 1.22251 0.611255 0.791434i 0.290665π-0.290665\pi
0.611255 + 0.791434i 0.290665π0.290665\pi
660660 −4.17464e12 −0.856389
661661 8.01661e12 1.63337 0.816685 0.577084i 0.195810π-0.195810\pi
0.816685 + 0.577084i 0.195810π0.195810\pi
662662 1.64826e11 0.0333553
663663 0 0
664664 −4.37280e12 −0.872979
665665 7.62162e11 0.151130
666666 2.39440e12 0.471589
667667 4.67790e12 0.915134
668668 −1.61876e12 −0.314548
669669 −2.09288e12 −0.403949
670670 5.38192e11 0.103181
671671 1.77006e12 0.337083
672672 −1.35420e12 −0.256167
673673 −5.73165e12 −1.07699 −0.538496 0.842628i 0.681007π-0.681007\pi
−0.538496 + 0.842628i 0.681007π0.681007\pi
674674 1.32940e12 0.248134
675675 7.31928e12 1.35707
676676 0 0
677677 6.69302e12 1.22454 0.612271 0.790648i 0.290256π-0.290256\pi
0.612271 + 0.790648i 0.290256π0.290256\pi
678678 2.13159e12 0.387409
679679 4.27833e11 0.0772432
680680 1.53759e12 0.275772
681681 1.78899e11 0.0318747
682682 1.98486e12 0.351318
683683 −8.33919e12 −1.46633 −0.733163 0.680053i 0.761957π-0.761957\pi
−0.733163 + 0.680053i 0.761957π0.761957\pi
684684 −1.46787e13 −2.56410
685685 4.62613e11 0.0802805
686686 −5.97701e11 −0.103045
687687 −1.72476e13 −2.95409
688688 −5.64097e12 −0.959855
689689 0 0
690690 1.47084e12 0.247027
691691 5.09310e12 0.849827 0.424914 0.905234i 0.360304π-0.360304\pi
0.424914 + 0.905234i 0.360304π0.360304\pi
692692 1.58054e12 0.262016
693693 −2.27177e12 −0.374167
694694 2.73796e11 0.0448033
695695 2.80349e12 0.455793
696696 −5.90421e12 −0.953718
697697 9.63643e12 1.54657
698698 −4.88803e11 −0.0779444
699699 −4.08146e12 −0.646648
700700 7.51961e11 0.118373
701701 1.44378e12 0.225824 0.112912 0.993605i 0.463982π-0.463982\pi
0.112912 + 0.993605i 0.463982π0.463982\pi
702702 0 0
703703 6.64925e12 1.02677
704704 3.38610e12 0.519545
705705 2.05242e12 0.312906
706706 −1.31165e12 −0.198700
707707 −1.14064e12 −0.171696
708708 1.92949e13 2.88598
709709 1.08655e13 1.61488 0.807439 0.589951i 0.200853π-0.200853\pi
0.807439 + 0.589951i 0.200853π0.200853\pi
710710 7.96253e11 0.117595
711711 1.37062e13 2.01142
712712 −1.17889e12 −0.171915
713713 9.38440e12 1.35989
714714 5.87336e11 0.0845755
715715 0 0
716716 −8.42043e12 −1.19736
717717 −2.35388e13 −3.32619
718718 2.23499e12 0.313845
719719 9.35835e12 1.30593 0.652964 0.757389i 0.273525π-0.273525\pi
0.652964 + 0.757389i 0.273525π0.273525\pi
720720 7.58620e12 1.05203
721721 −1.66093e12 −0.228899
722722 1.11477e12 0.152675
723723 −1.88068e13 −2.55972
724724 −3.06052e12 −0.413972
725725 4.97661e12 0.668979
726726 9.46894e11 0.126499
727727 1.29034e13 1.71316 0.856582 0.516010i 0.172583π-0.172583\pi
0.856582 + 0.516010i 0.172583π0.172583\pi
728728 0 0
729729 −2.05208e12 −0.269105
730730 −3.75877e11 −0.0489884
731731 8.37492e12 1.08481
732732 −5.09165e12 −0.655479
733733 −9.05352e12 −1.15838 −0.579188 0.815194i 0.696630π-0.696630\pi
−0.579188 + 0.815194i 0.696630π0.696630\pi
734734 6.50741e10 0.00827514
735735 8.17554e12 1.03329
736736 −4.98379e12 −0.626051
737737 −4.45482e12 −0.556195
738738 −7.98977e12 −0.991472
739739 9.20185e12 1.13495 0.567473 0.823392i 0.307921π-0.307921\pi
0.567473 + 0.823392i 0.307921π0.307921\pi
740740 −3.73556e12 −0.457944
741741 0 0
742742 6.45114e10 0.00781302
743743 5.38869e12 0.648684 0.324342 0.945940i 0.394857π-0.394857\pi
0.324342 + 0.945940i 0.394857π0.394857\pi
744744 −1.18445e13 −1.41723
745745 4.92392e12 0.585610
746746 −2.23561e12 −0.264284
747747 3.20311e13 3.76382
748748 −6.13502e12 −0.716570
749749 −7.94877e11 −0.0922852
750750 4.02053e12 0.463989
751751 −1.07905e13 −1.23783 −0.618915 0.785458i 0.712427π-0.712427\pi
−0.618915 + 0.785458i 0.712427π0.712427\pi
752752 −2.03159e12 −0.231662
753753 9.42965e12 1.06885
754754 0 0
755755 −4.39299e12 −0.492038
756756 3.55372e12 0.395672
757757 −1.49917e13 −1.65928 −0.829638 0.558302i 0.811453π-0.811453\pi
−0.829638 + 0.558302i 0.811453π0.811453\pi
758758 −3.71483e12 −0.408721
759759 −1.21747e13 −1.33159
760760 −3.54025e12 −0.384922
761761 4.65403e12 0.503035 0.251517 0.967853i 0.419070π-0.419070\pi
0.251517 + 0.967853i 0.419070π0.419070\pi
762762 3.81319e12 0.409723
763763 −9.74048e11 −0.104045
764764 −1.48145e13 −1.57314
765765 −1.12629e13 −1.18898
766766 3.70908e12 0.389257
767767 0 0
768768 −6.48212e12 −0.672345
769769 −4.09205e12 −0.421961 −0.210980 0.977490i 0.567666π-0.567666\pi
−0.210980 + 0.977490i 0.567666π0.567666\pi
770770 −2.64115e11 −0.0270760
771771 1.30366e13 1.32868
772772 −5.63912e12 −0.571391
773773 −1.18223e13 −1.19095 −0.595476 0.803373i 0.703037π-0.703037\pi
−0.595476 + 0.803373i 0.703037π0.703037\pi
774774 −6.94382e12 −0.695447
775775 9.98365e12 0.994103
776776 −1.98729e12 −0.196736
777777 −2.96019e12 −0.291357
778778 3.37040e12 0.329817
779779 −2.21876e13 −2.15869
780780 0 0
781781 −6.59089e12 −0.633891
782782 2.16153e12 0.206696
783783 2.35191e13 2.23611
784784 −8.09258e12 −0.765005
785785 −2.27672e12 −0.213992
786786 2.24175e12 0.209501
787787 5.60653e12 0.520964 0.260482 0.965479i 0.416118π-0.416118\pi
0.260482 + 0.965479i 0.416118π0.416118\pi
788788 −2.43074e12 −0.224580
789789 −1.19583e13 −1.09856
790790 1.59347e12 0.145553
791791 −1.80970e12 −0.164367
792792 1.05524e13 0.952989
793793 0 0
794794 −3.44081e12 −0.307233
795795 −1.80144e12 −0.159944
796796 1.64873e12 0.145559
797797 2.35495e12 0.206737 0.103369 0.994643i 0.467038π-0.467038\pi
0.103369 + 0.994643i 0.467038π0.467038\pi
798798 −1.35232e12 −0.118050
799799 3.01621e12 0.261819
800800 −5.30203e12 −0.457654
801801 8.63543e12 0.741204
802802 −3.03596e12 −0.259126
803803 3.11128e12 0.264070
804804 1.28145e13 1.08155
805805 −1.24873e12 −0.104807
806806 0 0
807807 3.92003e13 3.25355
808808 5.29827e12 0.437303
809809 −1.67444e12 −0.137436 −0.0687182 0.997636i 0.521891π-0.521891\pi
−0.0687182 + 0.997636i 0.521891π0.521891\pi
810810 3.13492e12 0.255884
811811 −1.66227e13 −1.34930 −0.674649 0.738139i 0.735705π-0.735705\pi
−0.674649 + 0.738139i 0.735705π0.735705\pi
812812 2.41629e12 0.195050
813813 5.05677e12 0.405943
814814 −2.30419e12 −0.183954
815815 −5.11080e12 −0.405770
816816 1.62345e13 1.28184
817817 −1.92830e13 −1.51417
818818 −3.78645e11 −0.0295694
819819 0 0
820820 1.24650e13 0.962787
821821 9.85538e12 0.757058 0.378529 0.925589i 0.376430π-0.376430\pi
0.378529 + 0.925589i 0.376430π0.376430\pi
822822 −8.20825e11 −0.0627086
823823 8.78584e12 0.667550 0.333775 0.942653i 0.391677π-0.391677\pi
0.333775 + 0.942653i 0.391677π0.391677\pi
824824 7.71505e12 0.582997
825825 −1.29521e13 −0.973415
826826 1.22072e12 0.0912446
827827 −1.63242e13 −1.21355 −0.606776 0.794873i 0.707537π-0.707537\pi
−0.606776 + 0.794873i 0.707537π0.707537\pi
828828 2.40497e13 1.77817
829829 −6.63239e11 −0.0487725 −0.0243862 0.999703i 0.507763π-0.507763\pi
−0.0243862 + 0.999703i 0.507763π0.507763\pi
830830 3.72391e12 0.272363
831831 2.52260e13 1.83503
832832 0 0
833833 1.20147e13 0.864592
834834 −4.97430e12 −0.356029
835835 2.85982e12 0.203587
836836 1.41257e13 1.00019
837837 4.71821e13 3.32287
838838 5.38031e12 0.376886
839839 −1.88038e13 −1.31013 −0.655067 0.755571i 0.727360π-0.727360\pi
−0.655067 + 0.755571i 0.727360π0.727360\pi
840840 1.57609e12 0.109225
841841 1.48425e12 0.102312
842842 6.17582e12 0.423438
843843 −9.19999e11 −0.0627427
844844 −7.65348e12 −0.519180
845845 0 0
846846 −2.50081e12 −0.167847
847847 −8.03907e11 −0.0536699
848848 1.78316e12 0.118415
849849 −3.50111e13 −2.31271
850850 2.29956e12 0.151098
851851 −1.08942e13 −0.712052
852852 1.89589e13 1.23264
853853 6.21462e12 0.401924 0.200962 0.979599i 0.435593π-0.435593\pi
0.200962 + 0.979599i 0.435593π0.435593\pi
854854 −3.22131e11 −0.0207240
855855 2.59325e13 1.65958
856856 3.69221e12 0.235047
857857 −1.74523e13 −1.10519 −0.552597 0.833448i 0.686363π-0.686363\pi
−0.552597 + 0.833448i 0.686363π0.686363\pi
858858 0 0
859859 −1.42322e13 −0.891871 −0.445936 0.895065i 0.647129π-0.647129\pi
−0.445936 + 0.895065i 0.647129π0.647129\pi
860860 1.08332e13 0.675326
861861 9.87771e12 0.612551
862862 −1.84843e11 −0.0114030
863863 −1.13528e12 −0.0696715 −0.0348358 0.999393i 0.511091π-0.511091\pi
−0.0348358 + 0.999393i 0.511091π0.511091\pi
864864 −2.50571e13 −1.52974
865865 −2.79230e12 −0.169586
866866 3.99288e12 0.241244
867867 5.62233e12 0.337933
868868 4.84735e12 0.289845
869869 −1.31898e13 −0.784599
870870 5.02806e12 0.297553
871871 0 0
872872 4.52446e12 0.264998
873873 1.45570e13 0.848219
874874 −4.97686e12 −0.288506
875875 −3.41340e12 −0.196857
876876 −8.94970e12 −0.513500
877877 −4.64607e11 −0.0265209 −0.0132604 0.999912i 0.504221π-0.504221\pi
−0.0132604 + 0.999912i 0.504221π0.504221\pi
878878 −2.84614e12 −0.161634
879879 1.82159e13 1.02920
880880 −7.30038e12 −0.410368
881881 2.48442e13 1.38942 0.694711 0.719289i 0.255532π-0.255532\pi
0.694711 + 0.719289i 0.255532π0.255532\pi
882882 −9.96166e12 −0.554272
883883 −2.41732e13 −1.33817 −0.669085 0.743185i 0.733314π-0.733314\pi
−0.669085 + 0.743185i 0.733314π0.733314\pi
884884 0 0
885885 −3.40879e13 −1.86791
886886 2.99349e12 0.163202
887887 −2.19116e12 −0.118855 −0.0594275 0.998233i 0.518928π-0.518928\pi
−0.0594275 + 0.998233i 0.518928π0.518928\pi
888888 1.37501e13 0.742074
889889 −3.23737e12 −0.173834
890890 1.00395e12 0.0536360
891891 −2.59489e13 −1.37933
892892 −3.97848e12 −0.210414
893893 −6.94474e12 −0.365447
894894 −8.73663e12 −0.457431
895895 1.48762e13 0.774975
896896 −3.38236e12 −0.175321
897897 0 0
898898 −2.81601e12 −0.144508
899899 3.20806e13 1.63804
900900 2.55854e13 1.29988
901901 −2.64738e12 −0.133830
902902 7.68874e12 0.386746
903903 8.58461e12 0.429661
904904 8.40609e12 0.418635
905905 5.40694e12 0.267937
906906 7.79458e12 0.384340
907907 −3.43961e13 −1.68763 −0.843813 0.536637i 0.819694π-0.819694\pi
−0.843813 + 0.536637i 0.819694π0.819694\pi
908908 3.40081e11 0.0166033
909909 −3.88101e13 −1.88542
910910 0 0
911911 −1.14361e13 −0.550104 −0.275052 0.961429i 0.588695π-0.588695\pi
−0.275052 + 0.961429i 0.588695π0.588695\pi
912912 −3.73794e13 −1.78919
913913 −3.08242e13 −1.46816
914914 4.76721e12 0.225947
915915 8.99530e12 0.424249
916916 −3.27871e13 −1.53877
917917 −1.90323e12 −0.0888853
918918 1.08676e13 0.505057
919919 −5.34901e12 −0.247374 −0.123687 0.992321i 0.539472π-0.539472\pi
−0.123687 + 0.992321i 0.539472π0.539472\pi
920920 5.80037e12 0.266938
921921 5.01618e13 2.29723
922922 −1.04480e13 −0.476148
923923 0 0
924924 −6.28863e12 −0.283813
925925 −1.15898e13 −0.520523
926926 2.43631e12 0.108889
927927 −5.65132e13 −2.51357
928928 −1.70371e13 −0.754101
929929 −1.85437e13 −0.816820 −0.408410 0.912799i 0.633917π-0.633917\pi
−0.408410 + 0.912799i 0.633917π0.633917\pi
930930 1.00869e13 0.442164
931931 −2.76635e13 −1.20680
932932 −7.75869e12 −0.336835
933933 −1.85710e13 −0.802358
934934 5.59113e11 0.0240402
935935 1.08386e13 0.463789
936936 0 0
937937 −9.05294e12 −0.383673 −0.191837 0.981427i 0.561444π-0.561444\pi
−0.191837 + 0.981427i 0.561444π0.561444\pi
938938 8.10727e11 0.0341949
939939 −7.14999e13 −3.00130
940940 3.90156e12 0.162991
941941 1.49307e13 0.620766 0.310383 0.950612i 0.399543π-0.399543\pi
0.310383 + 0.950612i 0.399543π0.399543\pi
942942 4.03964e12 0.167153
943943 3.63523e13 1.49703
944944 3.37419e13 1.38292
945945 −6.27828e12 −0.256093
946946 6.68220e12 0.271275
947947 −3.23761e13 −1.30812 −0.654062 0.756441i 0.726937π-0.726937\pi
−0.654062 + 0.756441i 0.726937π0.726937\pi
948948 3.79408e13 1.52570
949949 0 0
950950 −5.29466e12 −0.210903
951951 −7.86934e13 −3.11979
952952 2.31621e12 0.0913926
953953 −2.06348e13 −0.810370 −0.405185 0.914235i 0.632793π-0.632793\pi
−0.405185 + 0.914235i 0.632793π0.632793\pi
954954 2.19500e12 0.0857959
955955 2.61724e13 1.01819
956956 −4.47463e13 −1.73259
957957 −4.16192e13 −1.60395
958958 −3.07911e12 −0.118108
959959 6.96875e11 0.0266055
960960 1.72079e13 0.653892
961961 3.79177e13 1.43413
962962 0 0
963963 −2.70457e13 −1.01340
964964 −3.57509e13 −1.33334
965965 9.96249e12 0.369824
966966 2.21566e12 0.0818663
967967 8.19814e12 0.301506 0.150753 0.988571i 0.451830π-0.451830\pi
0.150753 + 0.988571i 0.451830π0.451830\pi
968968 3.73415e12 0.136695
969969 5.54957e13 2.02210
970970 1.69239e12 0.0613800
971971 1.60623e13 0.579859 0.289929 0.957048i 0.406368π-0.406368\pi
0.289929 + 0.957048i 0.406368π0.406368\pi
972972 1.94829e13 0.700093
973973 4.22315e12 0.151053
974974 2.98428e12 0.106249
975975 0 0
976976 −8.90401e12 −0.314095
977977 3.96308e13 1.39158 0.695789 0.718246i 0.255055π-0.255055\pi
0.695789 + 0.718246i 0.255055π0.255055\pi
978978 9.06821e12 0.316954
979979 −8.31007e12 −0.289123
980980 1.55414e13 0.538236
981981 −3.31419e13 −1.14253
982982 2.95322e12 0.101343
983983 6.58546e12 0.224955 0.112477 0.993654i 0.464121π-0.464121\pi
0.112477 + 0.993654i 0.464121π0.464121\pi
984984 −4.58820e13 −1.56014
985985 4.29433e12 0.145356
986986 7.38921e12 0.248973
987987 3.09174e12 0.103699
988988 0 0
989989 3.15934e13 1.05006
990990 −8.98650e12 −0.297326
991991 2.00271e12 0.0659608 0.0329804 0.999456i 0.489500π-0.489500\pi
0.0329804 + 0.999456i 0.489500π0.489500\pi
992992 −3.41784e13 −1.12059
993993 −6.93338e12 −0.226294
994994 1.19947e12 0.0389717
995995 −2.91277e12 −0.0942110
996996 8.86670e13 2.85493
997997 6.23620e12 0.199890 0.0999452 0.994993i 0.468133π-0.468133\pi
0.0999452 + 0.994993i 0.468133π0.468133\pi
998998 2.89406e12 0.0923464
999999 −5.47729e13 −1.73989
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.12 20
13.6 odd 12 13.10.e.a.10.5 yes 20
13.11 odd 12 13.10.e.a.4.5 20
13.12 even 2 inner 169.10.a.f.1.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.5 20 13.11 odd 12
13.10.e.a.10.5 yes 20 13.6 odd 12
169.10.a.f.1.9 20 13.12 even 2 inner
169.10.a.f.1.12 20 1.1 even 1 trivial