Properties

Label 169.10.a.a.1.2
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-15.3567\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.35673 q^{2} +42.6243 q^{3} -457.879 q^{4} +1236.25 q^{5} -313.575 q^{6} -892.010 q^{7} +7135.13 q^{8} -17866.2 q^{9} +O(q^{10})\) \(q-7.35673 q^{2} +42.6243 q^{3} -457.879 q^{4} +1236.25 q^{5} -313.575 q^{6} -892.010 q^{7} +7135.13 q^{8} -17866.2 q^{9} -9094.74 q^{10} +27149.8 q^{11} -19516.8 q^{12} +6562.27 q^{14} +52694.2 q^{15} +181943. q^{16} -34643.4 q^{17} +131437. q^{18} -428885. q^{19} -566052. q^{20} -38021.3 q^{21} -199734. q^{22} +2.03704e6 q^{23} +304130. q^{24} -424814. q^{25} -1.60051e6 q^{27} +408432. q^{28} -5.26400e6 q^{29} -387657. q^{30} +4.15910e6 q^{31} -4.99169e6 q^{32} +1.15724e6 q^{33} +254862. q^{34} -1.10275e6 q^{35} +8.18054e6 q^{36} +7.58854e6 q^{37} +3.15519e6 q^{38} +8.82080e6 q^{40} +4.92536e6 q^{41} +279712. q^{42} +1.71882e7 q^{43} -1.24313e7 q^{44} -2.20870e7 q^{45} -1.49859e7 q^{46} +2.95568e7 q^{47} +7.75518e6 q^{48} -3.95579e7 q^{49} +3.12524e6 q^{50} -1.47665e6 q^{51} -2.72331e7 q^{53} +1.17745e7 q^{54} +3.35640e7 q^{55} -6.36461e6 q^{56} -1.82809e7 q^{57} +3.87258e7 q^{58} +1.13602e8 q^{59} -2.41276e7 q^{60} -3.76868e7 q^{61} -3.05973e7 q^{62} +1.59368e7 q^{63} -5.64321e7 q^{64} -8.51352e6 q^{66} -1.90094e8 q^{67} +1.58625e7 q^{68} +8.68273e7 q^{69} +8.11260e6 q^{70} -6.87130e7 q^{71} -1.27477e8 q^{72} -3.61495e8 q^{73} -5.58268e7 q^{74} -1.81074e7 q^{75} +1.96377e8 q^{76} -2.42179e7 q^{77} -1.42229e8 q^{79} +2.24926e8 q^{80} +2.83439e8 q^{81} -3.62346e7 q^{82} +5.80240e7 q^{83} +1.74091e7 q^{84} -4.28279e7 q^{85} -1.26449e8 q^{86} -2.24374e8 q^{87} +1.93718e8 q^{88} +8.59928e8 q^{89} +1.62488e8 q^{90} -9.32716e8 q^{92} +1.77279e8 q^{93} -2.17442e8 q^{94} -5.30208e8 q^{95} -2.12767e8 q^{96} -1.46970e9 q^{97} +2.91017e8 q^{98} -4.85064e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} - 163 q^{3} + 1429 q^{4} - 471 q^{5} + 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 33 q^{2} - 163 q^{3} + 1429 q^{4} - 471 q^{5} + 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9} - 67831 q^{10} + 40140 q^{11} - 155479 q^{12} - 277653 q^{14} - 83307 q^{15} + 726609 q^{16} + 78717 q^{17} - 1691026 q^{18} - 209664 q^{19} - 870843 q^{20} - 1138431 q^{21} + 1364090 q^{22} - 4257444 q^{23} - 3561573 q^{24} - 2900157 q^{25} - 2077801 q^{27} - 4035181 q^{28} - 1647936 q^{29} - 744143 q^{30} + 11366002 q^{31} + 29458959 q^{32} + 14413222 q^{33} - 26257659 q^{34} - 13789797 q^{35} - 11587714 q^{36} - 4636891 q^{37} + 25172466 q^{38} + 22536791 q^{40} - 13859538 q^{41} + 75564923 q^{42} - 33368081 q^{43} - 66489222 q^{44} + 17423928 q^{45} - 71369332 q^{46} + 3943005 q^{47} - 620787 q^{48} + 23294923 q^{49} + 4217748 q^{50} - 19664471 q^{51} - 171019326 q^{53} + 64946915 q^{54} - 121160538 q^{55} - 281552967 q^{56} + 47829030 q^{57} - 79964734 q^{58} + 63389388 q^{59} - 37708135 q^{60} + 77050190 q^{61} - 95878740 q^{62} + 155695476 q^{63} + 768962465 q^{64} - 42396374 q^{66} + 41174072 q^{67} - 717615423 q^{68} + 546642556 q^{69} - 409056389 q^{70} - 252460989 q^{71} - 562579254 q^{72} - 594415068 q^{73} - 957058539 q^{74} + 533318748 q^{75} + 326897170 q^{76} + 561950454 q^{77} + 115998984 q^{79} + 509107233 q^{80} + 437803700 q^{81} - 875148240 q^{82} + 79577862 q^{83} - 108899441 q^{84} - 549463469 q^{85} + 589924887 q^{86} - 1087526510 q^{87} - 2327564370 q^{88} + 1152240276 q^{89} + 877550038 q^{90} - 4213481460 q^{92} - 1618266556 q^{93} + 1859909503 q^{94} - 1273705170 q^{95} - 3171454029 q^{96} - 1049098084 q^{97} - 420532254 q^{98} - 2132181050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.35673 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(3\) 42.6243 0.303817 0.151908 0.988395i \(-0.451458\pi\)
0.151908 + 0.988395i \(0.451458\pi\)
\(4\) −457.879 −0.894294
\(5\) 1236.25 0.884588 0.442294 0.896870i \(-0.354165\pi\)
0.442294 + 0.896870i \(0.354165\pi\)
\(6\) −313.575 −0.0987782
\(7\) −892.010 −0.140420 −0.0702099 0.997532i \(-0.522367\pi\)
−0.0702099 + 0.997532i \(0.522367\pi\)
\(8\) 7135.13 0.615881
\(9\) −17866.2 −0.907695
\(10\) −9094.74 −0.287601
\(11\) 27149.8 0.559114 0.279557 0.960129i \(-0.409812\pi\)
0.279557 + 0.960129i \(0.409812\pi\)
\(12\) −19516.8 −0.271702
\(13\) 0 0
\(14\) 6562.27 0.0456539
\(15\) 52694.2 0.268753
\(16\) 181943. 0.694056
\(17\) −34643.4 −0.100601 −0.0503003 0.998734i \(-0.516018\pi\)
−0.0503003 + 0.998734i \(0.516018\pi\)
\(18\) 131437. 0.295114
\(19\) −428885. −0.755004 −0.377502 0.926009i \(-0.623217\pi\)
−0.377502 + 0.926009i \(0.623217\pi\)
\(20\) −566052. −0.791081
\(21\) −38021.3 −0.0426619
\(22\) −199734. −0.181782
\(23\) 2.03704e6 1.51783 0.758916 0.651188i \(-0.225729\pi\)
0.758916 + 0.651188i \(0.225729\pi\)
\(24\) 304130. 0.187115
\(25\) −424814. −0.217505
\(26\) 0 0
\(27\) −1.60051e6 −0.579590
\(28\) 408432. 0.125577
\(29\) −5.26400e6 −1.38205 −0.691026 0.722830i \(-0.742841\pi\)
−0.691026 + 0.722830i \(0.742841\pi\)
\(30\) −387657. −0.0873780
\(31\) 4.15910e6 0.808856 0.404428 0.914570i \(-0.367471\pi\)
0.404428 + 0.914570i \(0.367471\pi\)
\(32\) −4.99169e6 −0.841536
\(33\) 1.15724e6 0.169868
\(34\) 254862. 0.0327077
\(35\) −1.10275e6 −0.124214
\(36\) 8.18054e6 0.811747
\(37\) 7.58854e6 0.665657 0.332829 0.942987i \(-0.391997\pi\)
0.332829 + 0.942987i \(0.391997\pi\)
\(38\) 3.15519e6 0.245470
\(39\) 0 0
\(40\) 8.82080e6 0.544801
\(41\) 4.92536e6 0.272214 0.136107 0.990694i \(-0.456541\pi\)
0.136107 + 0.990694i \(0.456541\pi\)
\(42\) 279712. 0.0138704
\(43\) 1.71882e7 0.766696 0.383348 0.923604i \(-0.374771\pi\)
0.383348 + 0.923604i \(0.374771\pi\)
\(44\) −1.24313e7 −0.500012
\(45\) −2.20870e7 −0.802936
\(46\) −1.49859e7 −0.493484
\(47\) 2.95568e7 0.883522 0.441761 0.897133i \(-0.354354\pi\)
0.441761 + 0.897133i \(0.354354\pi\)
\(48\) 7.75518e6 0.210866
\(49\) −3.95579e7 −0.980282
\(50\) 3.12524e6 0.0707161
\(51\) −1.47665e6 −0.0305642
\(52\) 0 0
\(53\) −2.72331e7 −0.474084 −0.237042 0.971499i \(-0.576178\pi\)
−0.237042 + 0.971499i \(0.576178\pi\)
\(54\) 1.17745e7 0.188439
\(55\) 3.35640e7 0.494585
\(56\) −6.36461e6 −0.0864819
\(57\) −1.82809e7 −0.229383
\(58\) 3.87258e7 0.449339
\(59\) 1.13602e8 1.22054 0.610272 0.792192i \(-0.291060\pi\)
0.610272 + 0.792192i \(0.291060\pi\)
\(60\) −2.41276e7 −0.240344
\(61\) −3.76868e7 −0.348502 −0.174251 0.984701i \(-0.555750\pi\)
−0.174251 + 0.984701i \(0.555750\pi\)
\(62\) −3.05973e7 −0.262979
\(63\) 1.59368e7 0.127458
\(64\) −5.64321e7 −0.420452
\(65\) 0 0
\(66\) −8.51352e6 −0.0552283
\(67\) −1.90094e8 −1.15247 −0.576237 0.817283i \(-0.695479\pi\)
−0.576237 + 0.817283i \(0.695479\pi\)
\(68\) 1.58625e7 0.0899666
\(69\) 8.68273e7 0.461143
\(70\) 8.11260e6 0.0403849
\(71\) −6.87130e7 −0.320905 −0.160453 0.987044i \(-0.551295\pi\)
−0.160453 + 0.987044i \(0.551295\pi\)
\(72\) −1.27477e8 −0.559033
\(73\) −3.61495e8 −1.48987 −0.744937 0.667135i \(-0.767520\pi\)
−0.744937 + 0.667135i \(0.767520\pi\)
\(74\) −5.58268e7 −0.216421
\(75\) −1.81074e7 −0.0660816
\(76\) 1.96377e8 0.675196
\(77\) −2.42179e7 −0.0785107
\(78\) 0 0
\(79\) −1.42229e8 −0.410834 −0.205417 0.978675i \(-0.565855\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(80\) 2.24926e8 0.613953
\(81\) 2.83439e8 0.731606
\(82\) −3.62346e7 −0.0885035
\(83\) 5.80240e7 0.134201 0.0671006 0.997746i \(-0.478625\pi\)
0.0671006 + 0.997746i \(0.478625\pi\)
\(84\) 1.74091e7 0.0381523
\(85\) −4.28279e7 −0.0889901
\(86\) −1.26449e8 −0.249272
\(87\) −2.24374e8 −0.419891
\(88\) 1.93718e8 0.344348
\(89\) 8.59928e8 1.45280 0.726402 0.687270i \(-0.241191\pi\)
0.726402 + 0.687270i \(0.241191\pi\)
\(90\) 1.62488e8 0.261054
\(91\) 0 0
\(92\) −9.32716e8 −1.35739
\(93\) 1.77279e8 0.245744
\(94\) −2.17442e8 −0.287255
\(95\) −5.30208e8 −0.667867
\(96\) −2.12767e8 −0.255673
\(97\) −1.46970e9 −1.68560 −0.842802 0.538223i \(-0.819096\pi\)
−0.842802 + 0.538223i \(0.819096\pi\)
\(98\) 2.91017e8 0.318714
\(99\) −4.85064e8 −0.507505
\(100\) 1.94513e8 0.194513
\(101\) −4.15100e8 −0.396923 −0.198462 0.980109i \(-0.563595\pi\)
−0.198462 + 0.980109i \(0.563595\pi\)
\(102\) 1.08633e7 0.00993716
\(103\) 1.86377e9 1.63164 0.815821 0.578305i \(-0.196286\pi\)
0.815821 + 0.578305i \(0.196286\pi\)
\(104\) 0 0
\(105\) −4.70038e7 −0.0377382
\(106\) 2.00346e8 0.154136
\(107\) −7.50777e8 −0.553712 −0.276856 0.960911i \(-0.589293\pi\)
−0.276856 + 0.960911i \(0.589293\pi\)
\(108\) 7.32838e8 0.518324
\(109\) −2.07010e9 −1.40467 −0.702333 0.711849i \(-0.747858\pi\)
−0.702333 + 0.711849i \(0.747858\pi\)
\(110\) −2.46921e8 −0.160802
\(111\) 3.23456e8 0.202238
\(112\) −1.62295e8 −0.0974592
\(113\) −2.10155e9 −1.21251 −0.606257 0.795268i \(-0.707330\pi\)
−0.606257 + 0.795268i \(0.707330\pi\)
\(114\) 1.34488e8 0.0745780
\(115\) 2.51829e9 1.34266
\(116\) 2.41027e9 1.23596
\(117\) 0 0
\(118\) −8.35741e8 −0.396828
\(119\) 3.09023e7 0.0141263
\(120\) 3.75980e8 0.165520
\(121\) −1.62083e9 −0.687392
\(122\) 2.77251e8 0.113306
\(123\) 2.09940e8 0.0827033
\(124\) −1.90436e9 −0.723356
\(125\) −2.93972e9 −1.07699
\(126\) −1.17243e8 −0.0414398
\(127\) −4.77696e9 −1.62943 −0.814713 0.579865i \(-0.803105\pi\)
−0.814713 + 0.579865i \(0.803105\pi\)
\(128\) 2.97090e9 0.978235
\(129\) 7.32636e8 0.232935
\(130\) 0 0
\(131\) −4.62884e9 −1.37326 −0.686628 0.727009i \(-0.740910\pi\)
−0.686628 + 0.727009i \(0.740910\pi\)
\(132\) −5.29877e8 −0.151912
\(133\) 3.82569e8 0.106018
\(134\) 1.39847e9 0.374697
\(135\) −1.97863e9 −0.512698
\(136\) −2.47186e8 −0.0619581
\(137\) −3.85972e9 −0.936080 −0.468040 0.883707i \(-0.655040\pi\)
−0.468040 + 0.883707i \(0.655040\pi\)
\(138\) −6.38765e8 −0.149929
\(139\) −8.38068e9 −1.90420 −0.952100 0.305786i \(-0.901081\pi\)
−0.952100 + 0.305786i \(0.901081\pi\)
\(140\) 5.04924e8 0.111084
\(141\) 1.25984e9 0.268429
\(142\) 5.05503e8 0.104334
\(143\) 0 0
\(144\) −3.25062e9 −0.629991
\(145\) −6.50761e9 −1.22255
\(146\) 2.65942e9 0.484394
\(147\) −1.68613e9 −0.297826
\(148\) −3.47463e9 −0.595293
\(149\) −3.96089e9 −0.658347 −0.329174 0.944269i \(-0.606770\pi\)
−0.329174 + 0.944269i \(0.606770\pi\)
\(150\) 1.33211e8 0.0214847
\(151\) −1.11419e10 −1.74407 −0.872036 0.489442i \(-0.837201\pi\)
−0.872036 + 0.489442i \(0.837201\pi\)
\(152\) −3.06015e9 −0.464993
\(153\) 6.18946e8 0.0913148
\(154\) 1.78165e8 0.0255257
\(155\) 5.14168e9 0.715504
\(156\) 0 0
\(157\) −7.39104e9 −0.970861 −0.485430 0.874275i \(-0.661337\pi\)
−0.485430 + 0.874275i \(0.661337\pi\)
\(158\) 1.04634e9 0.133572
\(159\) −1.16079e9 −0.144035
\(160\) −6.17097e9 −0.744412
\(161\) −1.81706e9 −0.213134
\(162\) −2.08519e9 −0.237863
\(163\) 7.32911e8 0.0813218 0.0406609 0.999173i \(-0.487054\pi\)
0.0406609 + 0.999173i \(0.487054\pi\)
\(164\) −2.25522e9 −0.243440
\(165\) 1.43064e9 0.150263
\(166\) −4.26867e8 −0.0436321
\(167\) 1.23516e10 1.22885 0.614427 0.788974i \(-0.289387\pi\)
0.614427 + 0.788974i \(0.289387\pi\)
\(168\) −2.71287e8 −0.0262747
\(169\) 0 0
\(170\) 3.15073e8 0.0289329
\(171\) 7.66252e9 0.685314
\(172\) −7.87012e9 −0.685651
\(173\) 1.12727e10 0.956794 0.478397 0.878144i \(-0.341218\pi\)
0.478397 + 0.878144i \(0.341218\pi\)
\(174\) 1.65066e9 0.136517
\(175\) 3.78938e8 0.0305420
\(176\) 4.93971e9 0.388056
\(177\) 4.84222e9 0.370822
\(178\) −6.32626e9 −0.472342
\(179\) −3.32764e9 −0.242269 −0.121134 0.992636i \(-0.538653\pi\)
−0.121134 + 0.992636i \(0.538653\pi\)
\(180\) 1.01132e10 0.718061
\(181\) 1.56098e10 1.08104 0.540521 0.841330i \(-0.318227\pi\)
0.540521 + 0.841330i \(0.318227\pi\)
\(182\) 0 0
\(183\) −1.60637e9 −0.105881
\(184\) 1.45345e10 0.934805
\(185\) 9.38133e9 0.588832
\(186\) −1.30419e9 −0.0798974
\(187\) −9.40564e8 −0.0562472
\(188\) −1.35334e10 −0.790129
\(189\) 1.42767e9 0.0813859
\(190\) 3.90060e9 0.217140
\(191\) 2.64757e10 1.43945 0.719725 0.694259i \(-0.244268\pi\)
0.719725 + 0.694259i \(0.244268\pi\)
\(192\) −2.40538e9 −0.127740
\(193\) 2.67204e9 0.138623 0.0693114 0.997595i \(-0.477920\pi\)
0.0693114 + 0.997595i \(0.477920\pi\)
\(194\) 1.08122e10 0.548031
\(195\) 0 0
\(196\) 1.81127e10 0.876661
\(197\) −1.38233e10 −0.653903 −0.326951 0.945041i \(-0.606021\pi\)
−0.326951 + 0.945041i \(0.606021\pi\)
\(198\) 3.56848e9 0.165002
\(199\) −1.21811e10 −0.550616 −0.275308 0.961356i \(-0.588780\pi\)
−0.275308 + 0.961356i \(0.588780\pi\)
\(200\) −3.03110e9 −0.133957
\(201\) −8.10261e9 −0.350141
\(202\) 3.05378e9 0.129049
\(203\) 4.69554e9 0.194068
\(204\) 6.76128e8 0.0273334
\(205\) 6.08897e9 0.240797
\(206\) −1.37112e10 −0.530486
\(207\) −3.63941e10 −1.37773
\(208\) 0 0
\(209\) −1.16441e10 −0.422133
\(210\) 3.45794e8 0.0122696
\(211\) −3.16880e9 −0.110058 −0.0550292 0.998485i \(-0.517525\pi\)
−0.0550292 + 0.998485i \(0.517525\pi\)
\(212\) 1.24695e10 0.423971
\(213\) −2.92885e9 −0.0974963
\(214\) 5.52326e9 0.180025
\(215\) 2.12489e10 0.678210
\(216\) −1.14198e10 −0.356959
\(217\) −3.70996e9 −0.113579
\(218\) 1.52292e10 0.456691
\(219\) −1.54085e10 −0.452648
\(220\) −1.53682e10 −0.442305
\(221\) 0 0
\(222\) −2.37958e9 −0.0657524
\(223\) 1.00184e10 0.271285 0.135642 0.990758i \(-0.456690\pi\)
0.135642 + 0.990758i \(0.456690\pi\)
\(224\) 4.45264e9 0.118168
\(225\) 7.58980e9 0.197428
\(226\) 1.54605e10 0.394218
\(227\) 5.23965e10 1.30974 0.654871 0.755741i \(-0.272723\pi\)
0.654871 + 0.755741i \(0.272723\pi\)
\(228\) 8.37044e9 0.205136
\(229\) 2.94853e10 0.708510 0.354255 0.935149i \(-0.384734\pi\)
0.354255 + 0.935149i \(0.384734\pi\)
\(230\) −1.85263e10 −0.436530
\(231\) −1.03227e9 −0.0238529
\(232\) −3.75593e10 −0.851180
\(233\) −6.67468e10 −1.48364 −0.741820 0.670599i \(-0.766037\pi\)
−0.741820 + 0.670599i \(0.766037\pi\)
\(234\) 0 0
\(235\) 3.65396e10 0.781553
\(236\) −5.20161e10 −1.09152
\(237\) −6.06241e9 −0.124818
\(238\) −2.27340e8 −0.00459281
\(239\) 7.42940e10 1.47286 0.736432 0.676511i \(-0.236509\pi\)
0.736432 + 0.676511i \(0.236509\pi\)
\(240\) 9.58733e9 0.186529
\(241\) −9.01496e10 −1.72142 −0.860711 0.509095i \(-0.829980\pi\)
−0.860711 + 0.509095i \(0.829980\pi\)
\(242\) 1.19240e10 0.223488
\(243\) 4.35842e10 0.801864
\(244\) 1.72560e10 0.311663
\(245\) −4.89034e10 −0.867146
\(246\) −1.54447e9 −0.0268889
\(247\) 0 0
\(248\) 2.96757e10 0.498160
\(249\) 2.47323e9 0.0407726
\(250\) 2.16267e10 0.350156
\(251\) 3.62007e10 0.575685 0.287843 0.957678i \(-0.407062\pi\)
0.287843 + 0.957678i \(0.407062\pi\)
\(252\) −7.29712e9 −0.113985
\(253\) 5.53053e10 0.848641
\(254\) 3.51428e10 0.529766
\(255\) −1.82551e9 −0.0270367
\(256\) 7.03715e9 0.102404
\(257\) −1.97638e10 −0.282600 −0.141300 0.989967i \(-0.545128\pi\)
−0.141300 + 0.989967i \(0.545128\pi\)
\(258\) −5.38980e9 −0.0757329
\(259\) −6.76905e9 −0.0934714
\(260\) 0 0
\(261\) 9.40474e10 1.25448
\(262\) 3.40531e10 0.446479
\(263\) −1.70457e10 −0.219692 −0.109846 0.993949i \(-0.535036\pi\)
−0.109846 + 0.993949i \(0.535036\pi\)
\(264\) 8.25708e9 0.104619
\(265\) −3.36669e10 −0.419369
\(266\) −2.81446e9 −0.0344689
\(267\) 3.66539e10 0.441386
\(268\) 8.70398e10 1.03065
\(269\) 6.56819e10 0.764822 0.382411 0.923992i \(-0.375094\pi\)
0.382411 + 0.923992i \(0.375094\pi\)
\(270\) 1.45562e10 0.166691
\(271\) −1.52442e11 −1.71689 −0.858447 0.512902i \(-0.828570\pi\)
−0.858447 + 0.512902i \(0.828570\pi\)
\(272\) −6.30312e9 −0.0698225
\(273\) 0 0
\(274\) 2.83949e10 0.304343
\(275\) −1.15336e10 −0.121610
\(276\) −3.97564e10 −0.412397
\(277\) −1.21612e11 −1.24113 −0.620566 0.784154i \(-0.713097\pi\)
−0.620566 + 0.784154i \(0.713097\pi\)
\(278\) 6.16544e10 0.619102
\(279\) −7.43071e10 −0.734195
\(280\) −7.86824e9 −0.0765008
\(281\) 2.03083e11 1.94310 0.971548 0.236842i \(-0.0761124\pi\)
0.971548 + 0.236842i \(0.0761124\pi\)
\(282\) −9.26829e9 −0.0872728
\(283\) 3.09567e10 0.286891 0.143445 0.989658i \(-0.454182\pi\)
0.143445 + 0.989658i \(0.454182\pi\)
\(284\) 3.14622e10 0.286984
\(285\) −2.25998e10 −0.202909
\(286\) 0 0
\(287\) −4.39347e9 −0.0382243
\(288\) 8.91824e10 0.763858
\(289\) −1.17388e11 −0.989880
\(290\) 4.78747e10 0.397480
\(291\) −6.26449e10 −0.512115
\(292\) 1.65521e11 1.33238
\(293\) 7.81733e10 0.619661 0.309831 0.950792i \(-0.399728\pi\)
0.309831 + 0.950792i \(0.399728\pi\)
\(294\) 1.24044e10 0.0968306
\(295\) 1.40441e11 1.07968
\(296\) 5.41452e10 0.409966
\(297\) −4.34535e10 −0.324057
\(298\) 2.91392e10 0.214045
\(299\) 0 0
\(300\) 8.29099e9 0.0590964
\(301\) −1.53321e10 −0.107659
\(302\) 8.19682e10 0.567040
\(303\) −1.76933e10 −0.120592
\(304\) −7.80324e10 −0.524015
\(305\) −4.65902e10 −0.308280
\(306\) −4.55341e9 −0.0296887
\(307\) −1.19962e11 −0.770766 −0.385383 0.922757i \(-0.625931\pi\)
−0.385383 + 0.922757i \(0.625931\pi\)
\(308\) 1.10889e10 0.0702116
\(309\) 7.94419e10 0.495720
\(310\) −3.78259e10 −0.232628
\(311\) 1.16227e11 0.704504 0.352252 0.935905i \(-0.385416\pi\)
0.352252 + 0.935905i \(0.385416\pi\)
\(312\) 0 0
\(313\) 9.92344e10 0.584403 0.292202 0.956357i \(-0.405612\pi\)
0.292202 + 0.956357i \(0.405612\pi\)
\(314\) 5.43738e10 0.315651
\(315\) 1.97018e10 0.112748
\(316\) 6.51236e10 0.367406
\(317\) 2.98194e11 1.65856 0.829281 0.558832i \(-0.188750\pi\)
0.829281 + 0.558832i \(0.188750\pi\)
\(318\) 8.53963e9 0.0468292
\(319\) −1.42917e11 −0.772725
\(320\) −6.97642e10 −0.371927
\(321\) −3.20014e10 −0.168227
\(322\) 1.33676e10 0.0692950
\(323\) 1.48580e10 0.0759539
\(324\) −1.29781e11 −0.654271
\(325\) 0 0
\(326\) −5.39183e9 −0.0264397
\(327\) −8.82367e10 −0.426761
\(328\) 3.51431e10 0.167652
\(329\) −2.63650e10 −0.124064
\(330\) −1.05248e10 −0.0488542
\(331\) −6.87707e10 −0.314904 −0.157452 0.987527i \(-0.550328\pi\)
−0.157452 + 0.987527i \(0.550328\pi\)
\(332\) −2.65680e10 −0.120015
\(333\) −1.35578e11 −0.604214
\(334\) −9.08675e10 −0.399530
\(335\) −2.35003e11 −1.01946
\(336\) −6.91769e9 −0.0296097
\(337\) −1.56091e11 −0.659239 −0.329619 0.944114i \(-0.606920\pi\)
−0.329619 + 0.944114i \(0.606920\pi\)
\(338\) 0 0
\(339\) −8.95772e10 −0.368382
\(340\) 1.96100e10 0.0795833
\(341\) 1.12919e11 0.452243
\(342\) −5.63711e10 −0.222812
\(343\) 7.12819e10 0.278071
\(344\) 1.22640e11 0.472194
\(345\) 1.07340e11 0.407921
\(346\) −8.29298e10 −0.311077
\(347\) −1.65467e11 −0.612673 −0.306337 0.951923i \(-0.599103\pi\)
−0.306337 + 0.951923i \(0.599103\pi\)
\(348\) 1.02736e11 0.375506
\(349\) 4.02009e11 1.45051 0.725257 0.688478i \(-0.241721\pi\)
0.725257 + 0.688478i \(0.241721\pi\)
\(350\) −2.78775e9 −0.00992995
\(351\) 0 0
\(352\) −1.35524e11 −0.470514
\(353\) −2.74001e11 −0.939217 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(354\) −3.56229e10 −0.120563
\(355\) −8.49464e10 −0.283869
\(356\) −3.93743e11 −1.29923
\(357\) 1.31719e9 0.00429182
\(358\) 2.44805e10 0.0787675
\(359\) −8.26405e10 −0.262584 −0.131292 0.991344i \(-0.541913\pi\)
−0.131292 + 0.991344i \(0.541913\pi\)
\(360\) −1.57594e11 −0.494513
\(361\) −1.38746e11 −0.429969
\(362\) −1.14837e11 −0.351473
\(363\) −6.90869e10 −0.208841
\(364\) 0 0
\(365\) −4.46898e11 −1.31792
\(366\) 1.18176e10 0.0344244
\(367\) 4.83059e10 0.138996 0.0694980 0.997582i \(-0.477860\pi\)
0.0694980 + 0.997582i \(0.477860\pi\)
\(368\) 3.70624e11 1.05346
\(369\) −8.79974e10 −0.247088
\(370\) −6.90158e10 −0.191444
\(371\) 2.42922e10 0.0665708
\(372\) −8.11721e10 −0.219768
\(373\) 8.53749e10 0.228371 0.114185 0.993459i \(-0.463574\pi\)
0.114185 + 0.993459i \(0.463574\pi\)
\(374\) 6.91947e9 0.0182873
\(375\) −1.25304e11 −0.327207
\(376\) 2.10892e11 0.544145
\(377\) 0 0
\(378\) −1.05030e10 −0.0264605
\(379\) 2.25085e11 0.560365 0.280182 0.959947i \(-0.409605\pi\)
0.280182 + 0.959947i \(0.409605\pi\)
\(380\) 2.42771e11 0.597270
\(381\) −2.03614e11 −0.495047
\(382\) −1.94774e11 −0.468001
\(383\) −6.84152e11 −1.62464 −0.812322 0.583210i \(-0.801797\pi\)
−0.812322 + 0.583210i \(0.801797\pi\)
\(384\) 1.26633e11 0.297204
\(385\) −2.99394e10 −0.0694495
\(386\) −1.96574e10 −0.0450696
\(387\) −3.07088e11 −0.695926
\(388\) 6.72944e11 1.50743
\(389\) 7.47317e11 1.65475 0.827374 0.561652i \(-0.189834\pi\)
0.827374 + 0.561652i \(0.189834\pi\)
\(390\) 0 0
\(391\) −7.05700e10 −0.152695
\(392\) −2.82251e11 −0.603738
\(393\) −1.97301e11 −0.417218
\(394\) 1.01694e11 0.212600
\(395\) −1.75830e11 −0.363419
\(396\) 2.22100e11 0.453859
\(397\) −1.63235e11 −0.329804 −0.164902 0.986310i \(-0.552731\pi\)
−0.164902 + 0.986310i \(0.552731\pi\)
\(398\) 8.96133e10 0.179019
\(399\) 1.63067e10 0.0322099
\(400\) −7.72918e10 −0.150961
\(401\) 7.33836e11 1.41726 0.708629 0.705581i \(-0.249314\pi\)
0.708629 + 0.705581i \(0.249314\pi\)
\(402\) 5.96087e10 0.113839
\(403\) 0 0
\(404\) 1.90065e11 0.354966
\(405\) 3.50401e11 0.647170
\(406\) −3.45438e10 −0.0630961
\(407\) 2.06028e11 0.372178
\(408\) −1.05361e10 −0.0188239
\(409\) −7.45800e11 −1.31785 −0.658927 0.752207i \(-0.728990\pi\)
−0.658927 + 0.752207i \(0.728990\pi\)
\(410\) −4.47949e10 −0.0782891
\(411\) −1.64518e11 −0.284397
\(412\) −8.53380e11 −1.45917
\(413\) −1.01334e11 −0.171388
\(414\) 2.67741e11 0.447934
\(415\) 7.17321e10 0.118713
\(416\) 0 0
\(417\) −3.57221e11 −0.578528
\(418\) 8.56628e10 0.137246
\(419\) −5.46254e11 −0.865828 −0.432914 0.901435i \(-0.642515\pi\)
−0.432914 + 0.901435i \(0.642515\pi\)
\(420\) 2.15220e10 0.0337490
\(421\) 2.95449e11 0.458366 0.229183 0.973383i \(-0.426394\pi\)
0.229183 + 0.973383i \(0.426394\pi\)
\(422\) 2.33120e10 0.0357827
\(423\) −5.28067e11 −0.801969
\(424\) −1.94312e11 −0.291980
\(425\) 1.47170e10 0.0218811
\(426\) 2.15467e10 0.0316984
\(427\) 3.36170e10 0.0489365
\(428\) 3.43765e11 0.495182
\(429\) 0 0
\(430\) −1.56323e11 −0.220502
\(431\) 5.49479e11 0.767014 0.383507 0.923538i \(-0.374716\pi\)
0.383507 + 0.923538i \(0.374716\pi\)
\(432\) −2.91201e11 −0.402268
\(433\) −7.54093e11 −1.03093 −0.515465 0.856910i \(-0.672381\pi\)
−0.515465 + 0.856910i \(0.672381\pi\)
\(434\) 2.72931e10 0.0369275
\(435\) −2.77382e11 −0.371430
\(436\) 9.47856e11 1.25618
\(437\) −8.73654e11 −1.14597
\(438\) 1.13356e11 0.147167
\(439\) 9.98220e10 0.128273 0.0641366 0.997941i \(-0.479571\pi\)
0.0641366 + 0.997941i \(0.479571\pi\)
\(440\) 2.39483e11 0.304606
\(441\) 7.06749e11 0.889798
\(442\) 0 0
\(443\) −1.08040e12 −1.33281 −0.666404 0.745591i \(-0.732168\pi\)
−0.666404 + 0.745591i \(0.732168\pi\)
\(444\) −1.48104e11 −0.180860
\(445\) 1.06309e12 1.28513
\(446\) −7.37024e10 −0.0882013
\(447\) −1.68830e11 −0.200017
\(448\) 5.03380e10 0.0590398
\(449\) −1.02947e12 −1.19538 −0.597688 0.801729i \(-0.703914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(450\) −5.58361e10 −0.0641887
\(451\) 1.33723e11 0.152199
\(452\) 9.62256e11 1.08435
\(453\) −4.74917e11 −0.529878
\(454\) −3.85466e11 −0.425829
\(455\) 0 0
\(456\) −1.30437e11 −0.141273
\(457\) −1.06106e12 −1.13793 −0.568966 0.822361i \(-0.692657\pi\)
−0.568966 + 0.822361i \(0.692657\pi\)
\(458\) −2.16915e11 −0.230354
\(459\) 5.54471e10 0.0583071
\(460\) −1.15307e12 −1.20073
\(461\) 7.20760e11 0.743253 0.371626 0.928382i \(-0.378800\pi\)
0.371626 + 0.928382i \(0.378800\pi\)
\(462\) 7.59414e9 0.00775514
\(463\) −1.41179e11 −0.142776 −0.0713880 0.997449i \(-0.522743\pi\)
−0.0713880 + 0.997449i \(0.522743\pi\)
\(464\) −9.57745e11 −0.959222
\(465\) 2.19161e11 0.217382
\(466\) 4.91038e11 0.482368
\(467\) −5.23104e11 −0.508935 −0.254467 0.967081i \(-0.581900\pi\)
−0.254467 + 0.967081i \(0.581900\pi\)
\(468\) 0 0
\(469\) 1.69565e11 0.161830
\(470\) −2.68812e11 −0.254102
\(471\) −3.15038e11 −0.294964
\(472\) 8.10568e11 0.751710
\(473\) 4.66658e11 0.428670
\(474\) 4.45995e10 0.0405814
\(475\) 1.82196e11 0.164217
\(476\) −1.41495e10 −0.0126331
\(477\) 4.86551e11 0.430324
\(478\) −5.46560e11 −0.478864
\(479\) −1.22387e12 −1.06224 −0.531122 0.847295i \(-0.678230\pi\)
−0.531122 + 0.847295i \(0.678230\pi\)
\(480\) −2.63033e11 −0.226165
\(481\) 0 0
\(482\) 6.63206e11 0.559676
\(483\) −7.74508e10 −0.0647536
\(484\) 7.42145e11 0.614730
\(485\) −1.81691e12 −1.49107
\(486\) −3.20637e11 −0.260706
\(487\) 3.77344e11 0.303988 0.151994 0.988381i \(-0.451431\pi\)
0.151994 + 0.988381i \(0.451431\pi\)
\(488\) −2.68900e11 −0.214636
\(489\) 3.12398e10 0.0247069
\(490\) 3.59769e11 0.281930
\(491\) −2.35736e12 −1.83046 −0.915229 0.402934i \(-0.867990\pi\)
−0.915229 + 0.402934i \(0.867990\pi\)
\(492\) −9.61271e10 −0.0739610
\(493\) 1.82363e11 0.139035
\(494\) 0 0
\(495\) −5.99659e11 −0.448933
\(496\) 7.56717e11 0.561392
\(497\) 6.12927e10 0.0450614
\(498\) −1.81949e10 −0.0132562
\(499\) 2.64345e12 1.90862 0.954309 0.298822i \(-0.0965938\pi\)
0.954309 + 0.298822i \(0.0965938\pi\)
\(500\) 1.34604e12 0.963145
\(501\) 5.26480e11 0.373346
\(502\) −2.66319e11 −0.187169
\(503\) 1.53328e11 0.106799 0.0533994 0.998573i \(-0.482994\pi\)
0.0533994 + 0.998573i \(0.482994\pi\)
\(504\) 1.13711e11 0.0784993
\(505\) −5.13167e11 −0.351113
\(506\) −4.06866e11 −0.275914
\(507\) 0 0
\(508\) 2.18727e12 1.45719
\(509\) 6.36840e11 0.420533 0.210267 0.977644i \(-0.432567\pi\)
0.210267 + 0.977644i \(0.432567\pi\)
\(510\) 1.34298e10 0.00879029
\(511\) 3.22457e11 0.209208
\(512\) −1.57287e12 −1.01153
\(513\) 6.86433e11 0.437593
\(514\) 1.45397e11 0.0918801
\(515\) 2.30408e12 1.44333
\(516\) −3.35458e11 −0.208312
\(517\) 8.02463e11 0.493989
\(518\) 4.97981e10 0.0303899
\(519\) 4.80489e11 0.290690
\(520\) 0 0
\(521\) 1.84033e12 1.09427 0.547137 0.837043i \(-0.315718\pi\)
0.547137 + 0.837043i \(0.315718\pi\)
\(522\) −6.91881e11 −0.407863
\(523\) −1.13176e10 −0.00661447 −0.00330724 0.999995i \(-0.501053\pi\)
−0.00330724 + 0.999995i \(0.501053\pi\)
\(524\) 2.11945e12 1.22809
\(525\) 1.61520e10 0.00927917
\(526\) 1.25401e11 0.0714272
\(527\) −1.44085e11 −0.0813715
\(528\) 2.10552e11 0.117898
\(529\) 2.34837e12 1.30382
\(530\) 2.47678e11 0.136347
\(531\) −2.02964e12 −1.10788
\(532\) −1.75170e11 −0.0948108
\(533\) 0 0
\(534\) −2.69652e11 −0.143506
\(535\) −9.28148e11 −0.489807
\(536\) −1.35634e12 −0.709787
\(537\) −1.41838e11 −0.0736053
\(538\) −4.83203e11 −0.248662
\(539\) −1.07399e12 −0.548089
\(540\) 9.05970e11 0.458503
\(541\) 2.25189e12 1.13021 0.565107 0.825018i \(-0.308835\pi\)
0.565107 + 0.825018i \(0.308835\pi\)
\(542\) 1.12148e12 0.558204
\(543\) 6.65356e11 0.328439
\(544\) 1.72929e11 0.0846591
\(545\) −2.55916e12 −1.24255
\(546\) 0 0
\(547\) 1.92777e11 0.0920686 0.0460343 0.998940i \(-0.485342\pi\)
0.0460343 + 0.998940i \(0.485342\pi\)
\(548\) 1.76728e12 0.837131
\(549\) 6.73318e11 0.316333
\(550\) 8.48498e10 0.0395384
\(551\) 2.25765e12 1.04346
\(552\) 6.19524e11 0.284009
\(553\) 1.26870e11 0.0576892
\(554\) 8.94667e11 0.403522
\(555\) 3.99873e11 0.178897
\(556\) 3.83733e12 1.70292
\(557\) −3.00574e12 −1.32313 −0.661566 0.749887i \(-0.730108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(558\) 5.46657e11 0.238705
\(559\) 0 0
\(560\) −2.00636e11 −0.0862112
\(561\) −4.00909e10 −0.0170888
\(562\) −1.49402e12 −0.631748
\(563\) −1.64962e11 −0.0691984 −0.0345992 0.999401i \(-0.511015\pi\)
−0.0345992 + 0.999401i \(0.511015\pi\)
\(564\) −5.76854e11 −0.240054
\(565\) −2.59804e12 −1.07258
\(566\) −2.27740e11 −0.0932751
\(567\) −2.52831e11 −0.102732
\(568\) −4.90277e11 −0.197639
\(569\) −2.35127e11 −0.0940368 −0.0470184 0.998894i \(-0.514972\pi\)
−0.0470184 + 0.998894i \(0.514972\pi\)
\(570\) 1.66260e11 0.0659707
\(571\) −2.71697e12 −1.06960 −0.534801 0.844978i \(-0.679613\pi\)
−0.534801 + 0.844978i \(0.679613\pi\)
\(572\) 0 0
\(573\) 1.12851e12 0.437329
\(574\) 3.23216e10 0.0124276
\(575\) −8.65362e11 −0.330136
\(576\) 1.00823e12 0.381643
\(577\) 3.01507e12 1.13242 0.566209 0.824262i \(-0.308410\pi\)
0.566209 + 0.824262i \(0.308410\pi\)
\(578\) 8.63589e11 0.321834
\(579\) 1.13894e11 0.0421159
\(580\) 2.97969e12 1.09332
\(581\) −5.17580e10 −0.0188445
\(582\) 4.60862e11 0.166501
\(583\) −7.39374e11 −0.265067
\(584\) −2.57931e12 −0.917585
\(585\) 0 0
\(586\) −5.75100e11 −0.201467
\(587\) 9.84708e11 0.342323 0.171161 0.985243i \(-0.445248\pi\)
0.171161 + 0.985243i \(0.445248\pi\)
\(588\) 7.72042e11 0.266344
\(589\) −1.78377e12 −0.610690
\(590\) −1.03318e12 −0.351030
\(591\) −5.89208e11 −0.198667
\(592\) 1.38068e12 0.462003
\(593\) −1.01065e12 −0.335625 −0.167812 0.985819i \(-0.553670\pi\)
−0.167812 + 0.985819i \(0.553670\pi\)
\(594\) 3.19676e11 0.105359
\(595\) 3.82029e10 0.0124960
\(596\) 1.81361e12 0.588756
\(597\) −5.19213e11 −0.167286
\(598\) 0 0
\(599\) 5.47507e12 1.73768 0.868839 0.495095i \(-0.164867\pi\)
0.868839 + 0.495095i \(0.164867\pi\)
\(600\) −1.29199e11 −0.0406984
\(601\) 9.94557e11 0.310953 0.155476 0.987840i \(-0.450309\pi\)
0.155476 + 0.987840i \(0.450309\pi\)
\(602\) 1.12794e11 0.0350027
\(603\) 3.39624e12 1.04609
\(604\) 5.10165e12 1.55971
\(605\) −2.00375e12 −0.608058
\(606\) 1.30165e11 0.0392074
\(607\) 4.57629e12 1.36825 0.684124 0.729366i \(-0.260185\pi\)
0.684124 + 0.729366i \(0.260185\pi\)
\(608\) 2.14086e12 0.635363
\(609\) 2.00144e11 0.0589610
\(610\) 3.42752e11 0.100229
\(611\) 0 0
\(612\) −2.83402e11 −0.0816623
\(613\) −2.27107e12 −0.649617 −0.324809 0.945780i \(-0.605300\pi\)
−0.324809 + 0.945780i \(0.605300\pi\)
\(614\) 8.82531e11 0.250595
\(615\) 2.59538e11 0.0731583
\(616\) −1.72798e11 −0.0483532
\(617\) −3.53862e12 −0.982994 −0.491497 0.870879i \(-0.663550\pi\)
−0.491497 + 0.870879i \(0.663550\pi\)
\(618\) −5.84432e11 −0.161171
\(619\) −1.97957e12 −0.541956 −0.270978 0.962586i \(-0.587347\pi\)
−0.270978 + 0.962586i \(0.587347\pi\)
\(620\) −2.35426e12 −0.639871
\(621\) −3.26029e12 −0.879720
\(622\) −8.55047e11 −0.229052
\(623\) −7.67065e11 −0.204003
\(624\) 0 0
\(625\) −2.80452e12 −0.735187
\(626\) −7.30040e11 −0.190004
\(627\) −4.96324e11 −0.128251
\(628\) 3.38420e12 0.868235
\(629\) −2.62893e11 −0.0669656
\(630\) −1.44941e11 −0.0366572
\(631\) −3.71649e11 −0.0933256 −0.0466628 0.998911i \(-0.514859\pi\)
−0.0466628 + 0.998911i \(0.514859\pi\)
\(632\) −1.01482e12 −0.253025
\(633\) −1.35068e11 −0.0334376
\(634\) −2.19373e12 −0.539239
\(635\) −5.90551e12 −1.44137
\(636\) 5.31502e11 0.128809
\(637\) 0 0
\(638\) 1.05140e12 0.251232
\(639\) 1.22764e12 0.291284
\(640\) 3.67277e12 0.865335
\(641\) 1.07772e12 0.252143 0.126071 0.992021i \(-0.459763\pi\)
0.126071 + 0.992021i \(0.459763\pi\)
\(642\) 2.35425e11 0.0546947
\(643\) 6.69209e12 1.54388 0.771938 0.635698i \(-0.219288\pi\)
0.771938 + 0.635698i \(0.219288\pi\)
\(644\) 8.31992e11 0.190604
\(645\) 9.05721e11 0.206051
\(646\) −1.09307e11 −0.0246945
\(647\) 1.58975e12 0.356664 0.178332 0.983970i \(-0.442930\pi\)
0.178332 + 0.983970i \(0.442930\pi\)
\(648\) 2.02238e12 0.450583
\(649\) 3.08429e12 0.682423
\(650\) 0 0
\(651\) −1.58134e11 −0.0345073
\(652\) −3.35584e11 −0.0727256
\(653\) −1.96565e12 −0.423055 −0.211527 0.977372i \(-0.567844\pi\)
−0.211527 + 0.977372i \(0.567844\pi\)
\(654\) 6.49133e11 0.138750
\(655\) −5.72240e12 −1.21476
\(656\) 8.96134e11 0.188932
\(657\) 6.45853e12 1.35235
\(658\) 1.93960e11 0.0403362
\(659\) 1.09426e11 0.0226014 0.0113007 0.999936i \(-0.496403\pi\)
0.0113007 + 0.999936i \(0.496403\pi\)
\(660\) −6.55060e11 −0.134380
\(661\) 2.69590e12 0.549285 0.274643 0.961546i \(-0.411440\pi\)
0.274643 + 0.961546i \(0.411440\pi\)
\(662\) 5.05927e11 0.102383
\(663\) 0 0
\(664\) 4.14009e11 0.0826520
\(665\) 4.72951e11 0.0937818
\(666\) 9.97411e11 0.196445
\(667\) −1.07230e13 −2.09772
\(668\) −5.65555e12 −1.09896
\(669\) 4.27026e11 0.0824208
\(670\) 1.72885e12 0.331452
\(671\) −1.02319e12 −0.194852
\(672\) 1.89790e11 0.0359015
\(673\) −6.37187e12 −1.19729 −0.598644 0.801015i \(-0.704294\pi\)
−0.598644 + 0.801015i \(0.704294\pi\)
\(674\) 1.14832e12 0.214335
\(675\) 6.79918e11 0.126064
\(676\) 0 0
\(677\) −6.61270e12 −1.20985 −0.604923 0.796284i \(-0.706796\pi\)
−0.604923 + 0.796284i \(0.706796\pi\)
\(678\) 6.58995e11 0.119770
\(679\) 1.31099e12 0.236692
\(680\) −3.05583e11 −0.0548073
\(681\) 2.23336e12 0.397921
\(682\) −8.30713e11 −0.147035
\(683\) −3.52480e12 −0.619785 −0.309893 0.950772i \(-0.600293\pi\)
−0.309893 + 0.950772i \(0.600293\pi\)
\(684\) −3.50851e12 −0.612872
\(685\) −4.77157e12 −0.828045
\(686\) −5.24401e11 −0.0904076
\(687\) 1.25679e12 0.215257
\(688\) 3.12727e12 0.532130
\(689\) 0 0
\(690\) −7.89672e11 −0.132625
\(691\) −1.21020e12 −0.201932 −0.100966 0.994890i \(-0.532193\pi\)
−0.100966 + 0.994890i \(0.532193\pi\)
\(692\) −5.16151e12 −0.855656
\(693\) 4.32681e11 0.0712638
\(694\) 1.21730e12 0.199195
\(695\) −1.03606e13 −1.68443
\(696\) −1.60094e12 −0.258603
\(697\) −1.70632e11 −0.0273849
\(698\) −2.95747e12 −0.471597
\(699\) −2.84503e12 −0.450755
\(700\) −1.73508e11 −0.0273135
\(701\) 3.34752e12 0.523591 0.261796 0.965123i \(-0.415685\pi\)
0.261796 + 0.965123i \(0.415685\pi\)
\(702\) 0 0
\(703\) −3.25461e12 −0.502574
\(704\) −1.53212e12 −0.235081
\(705\) 1.55748e12 0.237449
\(706\) 2.01575e12 0.305362
\(707\) 3.70273e11 0.0557359
\(708\) −2.21715e12 −0.331624
\(709\) −1.09345e13 −1.62514 −0.812568 0.582866i \(-0.801931\pi\)
−0.812568 + 0.582866i \(0.801931\pi\)
\(710\) 6.24928e11 0.0922926
\(711\) 2.54109e12 0.372912
\(712\) 6.13570e12 0.894755
\(713\) 8.47224e12 1.22771
\(714\) −9.69020e9 −0.00139537
\(715\) 0 0
\(716\) 1.52365e12 0.216660
\(717\) 3.16673e12 0.447481
\(718\) 6.07964e11 0.0853724
\(719\) 4.73071e12 0.660156 0.330078 0.943954i \(-0.392925\pi\)
0.330078 + 0.943954i \(0.392925\pi\)
\(720\) −4.01857e12 −0.557283
\(721\) −1.66250e12 −0.229115
\(722\) 1.02071e12 0.139793
\(723\) −3.84256e12 −0.522997
\(724\) −7.14738e12 −0.966770
\(725\) 2.23622e12 0.300603
\(726\) 5.08254e11 0.0678994
\(727\) 1.40402e13 1.86410 0.932049 0.362333i \(-0.118020\pi\)
0.932049 + 0.362333i \(0.118020\pi\)
\(728\) 0 0
\(729\) −3.72119e12 −0.487987
\(730\) 3.28770e12 0.428489
\(731\) −5.95459e11 −0.0771301
\(732\) 7.35524e11 0.0946884
\(733\) 1.78493e12 0.228377 0.114188 0.993459i \(-0.463573\pi\)
0.114188 + 0.993459i \(0.463573\pi\)
\(734\) −3.55373e11 −0.0451910
\(735\) −2.08448e12 −0.263453
\(736\) −1.01683e13 −1.27731
\(737\) −5.16101e12 −0.644364
\(738\) 6.47373e11 0.0803342
\(739\) 1.24956e13 1.54119 0.770595 0.637325i \(-0.219959\pi\)
0.770595 + 0.637325i \(0.219959\pi\)
\(740\) −4.29551e12 −0.526589
\(741\) 0 0
\(742\) −1.78711e11 −0.0216438
\(743\) −4.21591e12 −0.507506 −0.253753 0.967269i \(-0.581665\pi\)
−0.253753 + 0.967269i \(0.581665\pi\)
\(744\) 1.26491e12 0.151349
\(745\) −4.89665e12 −0.582366
\(746\) −6.28080e11 −0.0742489
\(747\) −1.03667e12 −0.121814
\(748\) 4.30664e11 0.0503016
\(749\) 6.69701e11 0.0777522
\(750\) 9.21825e11 0.106383
\(751\) 9.94988e12 1.14140 0.570701 0.821158i \(-0.306672\pi\)
0.570701 + 0.821158i \(0.306672\pi\)
\(752\) 5.37765e12 0.613214
\(753\) 1.54303e12 0.174903
\(754\) 0 0
\(755\) −1.37742e13 −1.54278
\(756\) −6.53699e11 −0.0727829
\(757\) −1.61992e13 −1.79293 −0.896465 0.443115i \(-0.853873\pi\)
−0.896465 + 0.443115i \(0.853873\pi\)
\(758\) −1.65589e12 −0.182188
\(759\) 2.35735e12 0.257831
\(760\) −3.78310e12 −0.411327
\(761\) −4.79250e12 −0.518001 −0.259001 0.965877i \(-0.583393\pi\)
−0.259001 + 0.965877i \(0.583393\pi\)
\(762\) 1.49794e12 0.160952
\(763\) 1.84655e12 0.197243
\(764\) −1.21226e13 −1.28729
\(765\) 7.65171e11 0.0807759
\(766\) 5.03312e12 0.528211
\(767\) 0 0
\(768\) 2.99954e11 0.0311121
\(769\) 8.41625e11 0.0867861 0.0433930 0.999058i \(-0.486183\pi\)
0.0433930 + 0.999058i \(0.486183\pi\)
\(770\) 2.20256e11 0.0225797
\(771\) −8.42419e11 −0.0858585
\(772\) −1.22347e12 −0.123970
\(773\) −3.90333e12 −0.393213 −0.196607 0.980482i \(-0.562992\pi\)
−0.196607 + 0.980482i \(0.562992\pi\)
\(774\) 2.25916e12 0.226263
\(775\) −1.76684e12 −0.175930
\(776\) −1.04865e13 −1.03813
\(777\) −2.88526e11 −0.0283982
\(778\) −5.49781e12 −0.537999
\(779\) −2.11241e12 −0.205523
\(780\) 0 0
\(781\) −1.86555e12 −0.179422
\(782\) 5.19164e11 0.0496449
\(783\) 8.42507e12 0.801024
\(784\) −7.19727e12 −0.680371
\(785\) −9.13716e12 −0.858812
\(786\) 1.45149e12 0.135648
\(787\) 1.42677e13 1.32577 0.662884 0.748723i \(-0.269332\pi\)
0.662884 + 0.748723i \(0.269332\pi\)
\(788\) 6.32939e12 0.584782
\(789\) −7.26562e11 −0.0667461
\(790\) 1.29354e12 0.118156
\(791\) 1.87460e12 0.170261
\(792\) −3.46099e12 −0.312563
\(793\) 0 0
\(794\) 1.20087e12 0.107227
\(795\) −1.43503e12 −0.127411
\(796\) 5.57748e12 0.492413
\(797\) 1.77300e13 1.55649 0.778245 0.627960i \(-0.216110\pi\)
0.778245 + 0.627960i \(0.216110\pi\)
\(798\) −1.19964e11 −0.0104722
\(799\) −1.02395e12 −0.0888829
\(800\) 2.12054e12 0.183038
\(801\) −1.53636e13 −1.31870
\(802\) −5.39863e12 −0.460785
\(803\) −9.81453e12 −0.833009
\(804\) 3.71001e12 0.313129
\(805\) −2.24634e12 −0.188535
\(806\) 0 0
\(807\) 2.79964e12 0.232366
\(808\) −2.96179e12 −0.244458
\(809\) 6.57374e12 0.539565 0.269783 0.962921i \(-0.413048\pi\)
0.269783 + 0.962921i \(0.413048\pi\)
\(810\) −2.57781e12 −0.210411
\(811\) −1.30848e13 −1.06212 −0.531060 0.847334i \(-0.678206\pi\)
−0.531060 + 0.847334i \(0.678206\pi\)
\(812\) −2.14999e12 −0.173553
\(813\) −6.49774e12 −0.521621
\(814\) −1.51569e12 −0.121004
\(815\) 9.06060e11 0.0719363
\(816\) −2.68666e11 −0.0212132
\(817\) −7.37177e12 −0.578858
\(818\) 5.48665e12 0.428467
\(819\) 0 0
\(820\) −2.78801e12 −0.215344
\(821\) −4.25638e12 −0.326961 −0.163480 0.986547i \(-0.552272\pi\)
−0.163480 + 0.986547i \(0.552272\pi\)
\(822\) 1.21031e12 0.0924644
\(823\) −4.41691e12 −0.335598 −0.167799 0.985821i \(-0.553666\pi\)
−0.167799 + 0.985821i \(0.553666\pi\)
\(824\) 1.32982e13 1.00490
\(825\) −4.91613e11 −0.0369471
\(826\) 7.45489e11 0.0557226
\(827\) 1.65971e13 1.23384 0.616919 0.787026i \(-0.288380\pi\)
0.616919 + 0.787026i \(0.288380\pi\)
\(828\) 1.66641e13 1.23210
\(829\) −1.79742e13 −1.32176 −0.660882 0.750490i \(-0.729817\pi\)
−0.660882 + 0.750490i \(0.729817\pi\)
\(830\) −5.27714e11 −0.0385964
\(831\) −5.18363e12 −0.377077
\(832\) 0 0
\(833\) 1.37042e12 0.0986171
\(834\) 2.62798e12 0.188094
\(835\) 1.52697e13 1.08703
\(836\) 5.33161e12 0.377511
\(837\) −6.65667e12 −0.468805
\(838\) 4.01864e12 0.281502
\(839\) −3.10688e12 −0.216469 −0.108234 0.994125i \(-0.534520\pi\)
−0.108234 + 0.994125i \(0.534520\pi\)
\(840\) −3.35378e11 −0.0232422
\(841\) 1.32025e13 0.910070
\(842\) −2.17354e12 −0.149026
\(843\) 8.65626e12 0.590345
\(844\) 1.45092e12 0.0984246
\(845\) 0 0
\(846\) 3.88485e12 0.260740
\(847\) 1.44580e12 0.0965234
\(848\) −4.95486e12 −0.329041
\(849\) 1.31951e12 0.0871622
\(850\) −1.08269e11 −0.00711409
\(851\) 1.54581e13 1.01036
\(852\) 1.34106e12 0.0871904
\(853\) −1.20700e13 −0.780613 −0.390306 0.920685i \(-0.627631\pi\)
−0.390306 + 0.920685i \(0.627631\pi\)
\(854\) −2.47311e11 −0.0159105
\(855\) 9.47279e12 0.606220
\(856\) −5.35690e12 −0.341021
\(857\) −6.31368e12 −0.399824 −0.199912 0.979814i \(-0.564066\pi\)
−0.199912 + 0.979814i \(0.564066\pi\)
\(858\) 0 0
\(859\) 1.86663e13 1.16974 0.584870 0.811127i \(-0.301146\pi\)
0.584870 + 0.811127i \(0.301146\pi\)
\(860\) −9.72943e12 −0.606519
\(861\) −1.87269e11 −0.0116132
\(862\) −4.04237e12 −0.249375
\(863\) 1.78712e13 1.09675 0.548373 0.836234i \(-0.315247\pi\)
0.548373 + 0.836234i \(0.315247\pi\)
\(864\) 7.98924e12 0.487746
\(865\) 1.39358e13 0.846368
\(866\) 5.54766e12 0.335181
\(867\) −5.00357e12 −0.300742
\(868\) 1.69871e12 0.101573
\(869\) −3.86149e12 −0.229703
\(870\) 2.04063e12 0.120761
\(871\) 0 0
\(872\) −1.47705e13 −0.865107
\(873\) 2.62579e13 1.53002
\(874\) 6.42723e12 0.372583
\(875\) 2.62226e12 0.151231
\(876\) 7.05521e12 0.404801
\(877\) 3.76100e12 0.214687 0.107343 0.994222i \(-0.465766\pi\)
0.107343 + 0.994222i \(0.465766\pi\)
\(878\) −7.34363e11 −0.0417047
\(879\) 3.33208e12 0.188263
\(880\) 6.10671e12 0.343270
\(881\) 2.05824e13 1.15108 0.575539 0.817775i \(-0.304792\pi\)
0.575539 + 0.817775i \(0.304792\pi\)
\(882\) −5.19936e12 −0.289295
\(883\) −3.01536e13 −1.66923 −0.834616 0.550833i \(-0.814310\pi\)
−0.834616 + 0.550833i \(0.814310\pi\)
\(884\) 0 0
\(885\) 5.98619e12 0.328024
\(886\) 7.94821e12 0.433329
\(887\) −3.34317e13 −1.81343 −0.906717 0.421739i \(-0.861420\pi\)
−0.906717 + 0.421739i \(0.861420\pi\)
\(888\) 2.30790e12 0.124554
\(889\) 4.26109e12 0.228804
\(890\) −7.82083e12 −0.417828
\(891\) 7.69533e12 0.409051
\(892\) −4.58720e12 −0.242608
\(893\) −1.26765e13 −0.667063
\(894\) 1.24204e12 0.0650304
\(895\) −4.11379e12 −0.214308
\(896\) −2.65007e12 −0.137364
\(897\) 0 0
\(898\) 7.57351e12 0.388646
\(899\) −2.18935e13 −1.11788
\(900\) −3.47521e12 −0.176559
\(901\) 9.43448e11 0.0476932
\(902\) −9.83762e11 −0.0494835
\(903\) −6.53519e11 −0.0327087
\(904\) −1.49948e13 −0.746765
\(905\) 1.92976e13 0.956277
\(906\) 3.49384e12 0.172276
\(907\) 2.03004e13 0.996030 0.498015 0.867169i \(-0.334063\pi\)
0.498015 + 0.867169i \(0.334063\pi\)
\(908\) −2.39912e13 −1.17129
\(909\) 7.41625e12 0.360285
\(910\) 0 0
\(911\) 1.74407e13 0.838940 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(912\) −3.32608e12 −0.159205
\(913\) 1.57534e12 0.0750337
\(914\) 7.80592e12 0.369970
\(915\) −1.98588e12 −0.0936607
\(916\) −1.35007e13 −0.633617
\(917\) 4.12897e12 0.192832
\(918\) −4.07909e11 −0.0189571
\(919\) 1.69619e13 0.784430 0.392215 0.919874i \(-0.371709\pi\)
0.392215 + 0.919874i \(0.371709\pi\)
\(920\) 1.79683e13 0.826917
\(921\) −5.11332e12 −0.234172
\(922\) −5.30243e12 −0.241650
\(923\) 0 0
\(924\) 4.72655e11 0.0213315
\(925\) −3.22372e12 −0.144784
\(926\) 1.03861e12 0.0464200
\(927\) −3.32984e13 −1.48103
\(928\) 2.62762e13 1.16305
\(929\) −4.90922e12 −0.216243 −0.108121 0.994138i \(-0.534484\pi\)
−0.108121 + 0.994138i \(0.534484\pi\)
\(930\) −1.61230e12 −0.0706763
\(931\) 1.69658e13 0.740117
\(932\) 3.05619e13 1.32681
\(933\) 4.95408e12 0.214040
\(934\) 3.84833e12 0.165467
\(935\) −1.16277e12 −0.0497556
\(936\) 0 0
\(937\) 1.13139e13 0.479497 0.239749 0.970835i \(-0.422935\pi\)
0.239749 + 0.970835i \(0.422935\pi\)
\(938\) −1.24745e12 −0.0526149
\(939\) 4.22980e12 0.177552
\(940\) −1.67307e13 −0.698938
\(941\) −7.23052e11 −0.0300619 −0.0150310 0.999887i \(-0.504785\pi\)
−0.0150310 + 0.999887i \(0.504785\pi\)
\(942\) 2.31765e12 0.0958999
\(943\) 1.00332e13 0.413176
\(944\) 2.06691e13 0.847126
\(945\) 1.76495e12 0.0719930
\(946\) −3.43307e12 −0.139371
\(947\) −4.04364e13 −1.63380 −0.816898 0.576782i \(-0.804308\pi\)
−0.816898 + 0.576782i \(0.804308\pi\)
\(948\) 2.77585e12 0.111624
\(949\) 0 0
\(950\) −1.34037e12 −0.0533910
\(951\) 1.27103e13 0.503899
\(952\) 2.20492e11 0.00870014
\(953\) 4.03093e13 1.58302 0.791511 0.611155i \(-0.209295\pi\)
0.791511 + 0.611155i \(0.209295\pi\)
\(954\) −3.57942e12 −0.139909
\(955\) 3.27305e13 1.27332
\(956\) −3.40176e13 −1.31717
\(957\) −6.09172e12 −0.234767
\(958\) 9.00366e12 0.345362
\(959\) 3.44291e12 0.131444
\(960\) −2.97365e12 −0.112998
\(961\) −9.14153e12 −0.345751
\(962\) 0 0
\(963\) 1.34135e13 0.502602
\(964\) 4.12776e13 1.53946
\(965\) 3.30330e12 0.122624
\(966\) 5.69784e11 0.0210530
\(967\) −1.74415e13 −0.641451 −0.320726 0.947172i \(-0.603927\pi\)
−0.320726 + 0.947172i \(0.603927\pi\)
\(968\) −1.15649e13 −0.423352
\(969\) 6.33314e11 0.0230761
\(970\) 1.33665e13 0.484782
\(971\) −5.09597e13 −1.83967 −0.919836 0.392303i \(-0.871678\pi\)
−0.919836 + 0.392303i \(0.871678\pi\)
\(972\) −1.99563e13 −0.717102
\(973\) 7.47565e12 0.267388
\(974\) −2.77601e12 −0.0988340
\(975\) 0 0
\(976\) −6.85683e12 −0.241880
\(977\) −3.19652e13 −1.12241 −0.561205 0.827677i \(-0.689662\pi\)
−0.561205 + 0.827677i \(0.689662\pi\)
\(978\) −2.29823e11 −0.00803283
\(979\) 2.33469e13 0.812283
\(980\) 2.23918e13 0.775483
\(981\) 3.69848e13 1.27501
\(982\) 1.73425e13 0.595127
\(983\) 5.12376e13 1.75024 0.875121 0.483904i \(-0.160782\pi\)
0.875121 + 0.483904i \(0.160782\pi\)
\(984\) 1.49795e12 0.0509354
\(985\) −1.70890e13 −0.578434
\(986\) −1.34159e12 −0.0452038
\(987\) −1.12379e12 −0.0376927
\(988\) 0 0
\(989\) 3.50131e13 1.16372
\(990\) 4.41153e12 0.145959
\(991\) −1.90444e13 −0.627243 −0.313622 0.949548i \(-0.601542\pi\)
−0.313622 + 0.949548i \(0.601542\pi\)
\(992\) −2.07609e13 −0.680682
\(993\) −2.93130e12 −0.0956730
\(994\) −4.50914e11 −0.0146506
\(995\) −1.50589e13 −0.487068
\(996\) −1.13244e12 −0.0364627
\(997\) 4.27709e13 1.37095 0.685473 0.728098i \(-0.259595\pi\)
0.685473 + 0.728098i \(0.259595\pi\)
\(998\) −1.94471e13 −0.620538
\(999\) −1.21455e13 −0.385808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.a.1.2 4
13.12 even 2 13.10.a.a.1.3 4
39.38 odd 2 117.10.a.c.1.2 4
52.51 odd 2 208.10.a.g.1.2 4
65.64 even 2 325.10.a.a.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.a.1.3 4 13.12 even 2
117.10.a.c.1.2 4 39.38 odd 2
169.10.a.a.1.2 4 1.1 even 1 trivial
208.10.a.g.1.2 4 52.51 odd 2
325.10.a.a.1.2 4 65.64 even 2