Properties

Label 169.10.a.a
Level $169$
Weight $10$
Character orbit 169.a
Self dual yes
Analytic conductor $87.041$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 8) q^{2} + ( - \beta_{3} + 2 \beta_1 - 41) q^{3} + (6 \beta_{3} + \beta_{2} + 15 \beta_1 + 352) q^{4} + ( - \beta_{3} + 9 \beta_{2} + \cdots - 113) q^{5}+ \cdots + (125 \beta_{3} - 33 \beta_{2} + \cdots - 7400) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 8) q^{2} + ( - \beta_{3} + 2 \beta_1 - 41) q^{3} + (6 \beta_{3} + \beta_{2} + 15 \beta_1 + 352) q^{4} + ( - \beta_{3} + 9 \beta_{2} + \cdots - 113) q^{5}+ \cdots + (3141970 \beta_{3} + 5516946 \beta_{2} + \cdots - 536706688) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} - 163 q^{3} + 1429 q^{4} - 471 q^{5} + 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 33 q^{2} - 163 q^{3} + 1429 q^{4} - 471 q^{5} + 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9} - 67831 q^{10} + 40140 q^{11} - 155479 q^{12} - 277653 q^{14} - 83307 q^{15} + 726609 q^{16} + 78717 q^{17} - 1691026 q^{18} - 209664 q^{19} - 870843 q^{20} - 1138431 q^{21} + 1364090 q^{22} - 4257444 q^{23} - 3561573 q^{24} - 2900157 q^{25} - 2077801 q^{27} - 4035181 q^{28} - 1647936 q^{29} - 744143 q^{30} + 11366002 q^{31} + 29458959 q^{32} + 14413222 q^{33} - 26257659 q^{34} - 13789797 q^{35} - 11587714 q^{36} - 4636891 q^{37} + 25172466 q^{38} + 22536791 q^{40} - 13859538 q^{41} + 75564923 q^{42} - 33368081 q^{43} - 66489222 q^{44} + 17423928 q^{45} - 71369332 q^{46} + 3943005 q^{47} - 620787 q^{48} + 23294923 q^{49} + 4217748 q^{50} - 19664471 q^{51} - 171019326 q^{53} + 64946915 q^{54} - 121160538 q^{55} - 281552967 q^{56} + 47829030 q^{57} - 79964734 q^{58} + 63389388 q^{59} - 37708135 q^{60} + 77050190 q^{61} - 95878740 q^{62} + 155695476 q^{63} + 768962465 q^{64} - 42396374 q^{66} + 41174072 q^{67} - 717615423 q^{68} + 546642556 q^{69} - 409056389 q^{70} - 252460989 q^{71} - 562579254 q^{72} - 594415068 q^{73} - 957058539 q^{74} + 533318748 q^{75} + 326897170 q^{76} + 561950454 q^{77} + 115998984 q^{79} + 509107233 q^{80} + 437803700 q^{81} - 875148240 q^{82} + 79577862 q^{83} - 108899441 q^{84} - 549463469 q^{85} + 589924887 q^{86} - 1087526510 q^{87} - 2327564370 q^{88} + 1152240276 q^{89} + 877550038 q^{90} - 4213481460 q^{92} - 1618266556 q^{93} + 1859909503 q^{94} - 1273705170 q^{95} - 3171454029 q^{96} - 1049098084 q^{97} - 420532254 q^{98} - 2132181050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{3} + 17\nu^{2} - 3586\nu - 12856 ) / 332 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 105\nu^{2} + 1306\nu - 84248 ) / 664 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 6\beta_{3} + \beta_{2} - \beta _1 + 800 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -34\beta_{3} + 105\beta_{2} + 1201\beta _1 - 248 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−36.8028
−15.3567
16.5360
36.6235
−28.8028 −204.594 317.603 258.914 5892.88 8862.28 5599.18 22175.6 −7457.46
1.2 −7.35673 42.6243 −457.879 1236.25 −313.575 −892.010 7135.13 −17866.2 −9094.74
1.3 24.5360 49.9972 90.0171 −1814.98 1226.73 8707.31 −10353.8 −17183.3 −44532.3
1.4 44.6235 −51.0278 1479.26 −151.187 −2277.04 −5436.58 43162.5 −17079.2 −6746.48
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.10.a.a 4
13.b even 2 1 13.10.a.a 4
39.d odd 2 1 117.10.a.c 4
52.b odd 2 1 208.10.a.g 4
65.d even 2 1 325.10.a.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.10.a.a 4 13.b even 2 1
117.10.a.c 4 39.d odd 2 1
169.10.a.a 4 1.a even 1 1 trivial
208.10.a.g 4 52.b odd 2 1
325.10.a.a 4 65.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 33T_{2}^{3} - 1194T_{2}^{2} + 24936T_{2} + 232000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 33 T^{3} + \cdots + 232000 \) Copy content Toggle raw display
$3$ \( T^{4} + 163 T^{3} + \cdots + 22248576 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 87830562190 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 374218195104754 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 27\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 25\!\cdots\!18 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 50\!\cdots\!08 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 17\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 37\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 58\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 61\!\cdots\!62 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 15\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 26\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10\!\cdots\!50 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 27\!\cdots\!48 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 26\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 60\!\cdots\!72 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 45\!\cdots\!54 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 47\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 25\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 12\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 34\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 21\!\cdots\!60 \) Copy content Toggle raw display
show more
show less