Properties

Label 1682.4.a.g
Level $1682$
Weight $4$
Character orbit 1682.a
Self dual yes
Analytic conductor $99.241$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,4,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.2412126297\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 100x^{2} - 135x + 1548 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - \beta_{2} - \beta_1 - 2) q^{5} + ( - 2 \beta_1 + 2) q^{6} + (\beta_{2} + 10) q^{7} - 8 q^{8} + (\beta_{3} + \beta_{2} + 24) q^{9} + (2 \beta_{2} + 2 \beta_1 + 4) q^{10}+ \cdots + (33 \beta_{3} - 44 \beta_{2} + \cdots + 1334) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} - 7 q^{5} + 8 q^{6} + 39 q^{7} - 32 q^{8} + 96 q^{9} + 14 q^{10} + 14 q^{11} - 16 q^{12} + 98 q^{13} - 78 q^{14} - 119 q^{15} + 64 q^{16} + 86 q^{17} - 192 q^{18} - 114 q^{19}+ \cdots + 5413 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 100x^{2} - 135x + 1548 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 6\nu^{2} - 58\nu + 198 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 9\nu^{2} + 52\nu - 348 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 2\beta _1 + 50 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{3} + 9\beta_{2} + 70\beta _1 + 102 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.05127
−6.34023
3.50085
9.89066
−2.00000 −8.05127 4.00000 19.0317 16.1025 −3.98045 −8.00000 37.8230 −38.0634
1.2 −2.00000 −7.34023 4.00000 −18.8845 14.6805 33.2247 −8.00000 26.8790 37.7690
1.3 −2.00000 2.50085 4.00000 6.39202 −5.00170 −1.89287 −8.00000 −20.7458 −12.7840
1.4 −2.00000 8.89066 4.00000 −13.5392 −17.7813 11.6486 −8.00000 52.0438 27.0785
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.4.a.g 4
29.b even 2 1 1682.4.a.j yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.4.a.g 4 1.a even 1 1 trivial
1682.4.a.j yes 4 29.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} - 94T_{3}^{2} - 331T_{3} + 1314 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1682))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 1314 \) Copy content Toggle raw display
$5$ \( T^{4} + 7 T^{3} + \cdots + 31104 \) Copy content Toggle raw display
$7$ \( T^{4} - 39 T^{3} + \cdots + 2916 \) Copy content Toggle raw display
$11$ \( T^{4} - 14 T^{3} + \cdots + 8827542 \) Copy content Toggle raw display
$13$ \( T^{4} - 98 T^{3} + \cdots - 1829088 \) Copy content Toggle raw display
$17$ \( T^{4} - 86 T^{3} + \cdots - 2685942 \) Copy content Toggle raw display
$19$ \( T^{4} + 114 T^{3} + \cdots - 4967384 \) Copy content Toggle raw display
$23$ \( T^{4} - 283 T^{3} + \cdots - 25030296 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 1161813984 \) Copy content Toggle raw display
$37$ \( T^{4} - 354 T^{3} + \cdots - 255228624 \) Copy content Toggle raw display
$41$ \( T^{4} + 506 T^{3} + \cdots - 90592182 \) Copy content Toggle raw display
$43$ \( T^{4} + 93 T^{3} + \cdots + 11676096 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 1883605644 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 5304263616 \) Copy content Toggle raw display
$59$ \( T^{4} - 1067 T^{3} + \cdots - 246032616 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 43523877984 \) Copy content Toggle raw display
$67$ \( T^{4} + 576 T^{3} + \cdots - 866678784 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 19289176992 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 4444444536 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 152742025204 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 17589089088 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 60143265909 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 4303874709 \) Copy content Toggle raw display
show more
show less