Newspace parameters
Level: | \( N \) | \(=\) | \( 1682 = 2 \cdot 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1682.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(99.2412126297\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{6}) \) |
Defining polynomial: |
\( x^{2} - 6 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 58) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
2.00000 | −1.44949 | 4.00000 | −19.6969 | −2.89898 | 11.5959 | 8.00000 | −24.8990 | −39.3939 | ||||||||||||||||||||||||
1.2 | 2.00000 | 3.44949 | 4.00000 | 9.69694 | 6.89898 | −27.5959 | 8.00000 | −15.1010 | 19.3939 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(29\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1682.4.a.c | 2 | |
29.b | even | 2 | 1 | 58.4.a.c | ✓ | 2 | |
87.d | odd | 2 | 1 | 522.4.a.j | 2 | ||
116.d | odd | 2 | 1 | 464.4.a.e | 2 | ||
145.d | even | 2 | 1 | 1450.4.a.g | 2 | ||
232.b | odd | 2 | 1 | 1856.4.a.i | 2 | ||
232.g | even | 2 | 1 | 1856.4.a.l | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
58.4.a.c | ✓ | 2 | 29.b | even | 2 | 1 | |
464.4.a.e | 2 | 116.d | odd | 2 | 1 | ||
522.4.a.j | 2 | 87.d | odd | 2 | 1 | ||
1450.4.a.g | 2 | 145.d | even | 2 | 1 | ||
1682.4.a.c | 2 | 1.a | even | 1 | 1 | trivial | |
1856.4.a.i | 2 | 232.b | odd | 2 | 1 | ||
1856.4.a.l | 2 | 232.g | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 2T_{3} - 5 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1682))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 2)^{2} \)
$3$
\( T^{2} - 2T - 5 \)
$5$
\( T^{2} + 10T - 191 \)
$7$
\( T^{2} + 16T - 320 \)
$11$
\( T^{2} - 90T + 1971 \)
$13$
\( T^{2} + 50T + 241 \)
$17$
\( T^{2} - 44T - 1052 \)
$19$
\( T^{2} + 108T + 2820 \)
$23$
\( T^{2} + 28T - 36308 \)
$29$
\( T^{2} \)
$31$
\( T^{2} + 66T - 70197 \)
$37$
\( T^{2} + 40T + 304 \)
$41$
\( T^{2} + 304T - 15296 \)
$43$
\( T^{2} - 130T - 12629 \)
$47$
\( T^{2} - 514T + 7243 \)
$53$
\( T^{2} + 958T + 213217 \)
$59$
\( T^{2} + 180T - 366900 \)
$61$
\( T^{2} + 1028 T + 263332 \)
$67$
\( T^{2} + 912T + 205536 \)
$71$
\( T^{2} - 796T + 151468 \)
$73$
\( T^{2} - 856T - 2672 \)
$79$
\( T^{2} - 318T - 756645 \)
$83$
\( T^{2} + 1828 T + 826732 \)
$89$
\( T^{2} - 944T + 191680 \)
$97$
\( T^{2} + 368T - 26144 \)
show more
show less