Properties

Label 1682.4.a.c
Level $1682$
Weight $4$
Character orbit 1682.a
Self dual yes
Analytic conductor $99.241$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,4,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.2412126297\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta + 1) q^{3} + 4 q^{4} + (6 \beta - 5) q^{5} + (2 \beta + 2) q^{6} + ( - 8 \beta - 8) q^{7} + 8 q^{8} + (2 \beta - 20) q^{9} + (12 \beta - 10) q^{10} + (3 \beta + 45) q^{11} + (4 \beta + 4) q^{12}+ \cdots + (30 \beta - 864) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 2 q^{3} + 8 q^{4} - 10 q^{5} + 4 q^{6} - 16 q^{7} + 16 q^{8} - 40 q^{9} - 20 q^{10} + 90 q^{11} + 8 q^{12} - 50 q^{13} - 32 q^{14} + 62 q^{15} + 32 q^{16} + 44 q^{17} - 80 q^{18} - 108 q^{19}+ \cdots - 1728 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
2.00000 −1.44949 4.00000 −19.6969 −2.89898 11.5959 8.00000 −24.8990 −39.3939
1.2 2.00000 3.44949 4.00000 9.69694 6.89898 −27.5959 8.00000 −15.1010 19.3939
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.4.a.c 2
29.b even 2 1 58.4.a.c 2
87.d odd 2 1 522.4.a.j 2
116.d odd 2 1 464.4.a.e 2
145.d even 2 1 1450.4.a.g 2
232.b odd 2 1 1856.4.a.i 2
232.g even 2 1 1856.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.4.a.c 2 29.b even 2 1
464.4.a.e 2 116.d odd 2 1
522.4.a.j 2 87.d odd 2 1
1450.4.a.g 2 145.d even 2 1
1682.4.a.c 2 1.a even 1 1 trivial
1856.4.a.i 2 232.b odd 2 1
1856.4.a.l 2 232.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} - 5 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1682))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 5 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T - 191 \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 320 \) Copy content Toggle raw display
$11$ \( T^{2} - 90T + 1971 \) Copy content Toggle raw display
$13$ \( T^{2} + 50T + 241 \) Copy content Toggle raw display
$17$ \( T^{2} - 44T - 1052 \) Copy content Toggle raw display
$19$ \( T^{2} + 108T + 2820 \) Copy content Toggle raw display
$23$ \( T^{2} + 28T - 36308 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 66T - 70197 \) Copy content Toggle raw display
$37$ \( T^{2} + 40T + 304 \) Copy content Toggle raw display
$41$ \( T^{2} + 304T - 15296 \) Copy content Toggle raw display
$43$ \( T^{2} - 130T - 12629 \) Copy content Toggle raw display
$47$ \( T^{2} - 514T + 7243 \) Copy content Toggle raw display
$53$ \( T^{2} + 958T + 213217 \) Copy content Toggle raw display
$59$ \( T^{2} + 180T - 366900 \) Copy content Toggle raw display
$61$ \( T^{2} + 1028 T + 263332 \) Copy content Toggle raw display
$67$ \( T^{2} + 912T + 205536 \) Copy content Toggle raw display
$71$ \( T^{2} - 796T + 151468 \) Copy content Toggle raw display
$73$ \( T^{2} - 856T - 2672 \) Copy content Toggle raw display
$79$ \( T^{2} - 318T - 756645 \) Copy content Toggle raw display
$83$ \( T^{2} + 1828 T + 826732 \) Copy content Toggle raw display
$89$ \( T^{2} - 944T + 191680 \) Copy content Toggle raw display
$97$ \( T^{2} + 368T - 26144 \) Copy content Toggle raw display
show more
show less