Properties

Label 1682.2.h
Level $1682$
Weight $2$
Character orbit 1682.h
Rep. character $\chi_{1682}(57,\cdot)$
Character field $\Q(\zeta_{58})$
Dimension $2016$
Sturm bound $435$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.h (of order \(58\) and degree \(28\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 841 \)
Character field: \(\Q(\zeta_{58})\)
Sturm bound: \(435\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1682, [\chi])\).

Total New Old
Modular forms 6160 2016 4144
Cusp forms 6048 2016 4032
Eisenstein series 112 0 112

Trace form

\( 2016 q + 72 q^{4} - 2 q^{5} + 2 q^{6} - 54 q^{7} + 66 q^{9} - 116 q^{11} + 2 q^{13} - 72 q^{16} + 174 q^{17} + 2 q^{20} - 10 q^{22} + 12 q^{23} - 2 q^{24} - 62 q^{25} - 58 q^{26} + 54 q^{28} - 10 q^{29}+ \cdots + 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1682, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1682, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1682, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(841, [\chi])\)\(^{\oplus 2}\)