Properties

Label 1682.2.a.r.1.4
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,2,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,8,6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{28})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} + 14x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.94986\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.44504 q^{3} +1.00000 q^{4} -0.613807 q^{5} -1.44504 q^{6} +2.87647 q^{7} -1.00000 q^{8} -0.911854 q^{9} +0.613807 q^{10} +4.34475 q^{11} +1.44504 q^{12} +0.478274 q^{13} -2.87647 q^{14} -0.886977 q^{15} +1.00000 q^{16} -0.259558 q^{17} +0.911854 q^{18} +8.42322 q^{19} -0.613807 q^{20} +4.15662 q^{21} -4.34475 q^{22} -0.142575 q^{23} -1.44504 q^{24} -4.62324 q^{25} -0.478274 q^{26} -5.65279 q^{27} +2.87647 q^{28} +0.886977 q^{30} -6.62704 q^{31} -1.00000 q^{32} +6.27835 q^{33} +0.259558 q^{34} -1.76560 q^{35} -0.911854 q^{36} +9.60431 q^{37} -8.42322 q^{38} +0.691125 q^{39} +0.613807 q^{40} +4.28236 q^{41} -4.15662 q^{42} +3.25912 q^{43} +4.34475 q^{44} +0.559702 q^{45} +0.142575 q^{46} -5.08365 q^{47} +1.44504 q^{48} +1.27409 q^{49} +4.62324 q^{50} -0.375073 q^{51} +0.478274 q^{52} +9.26256 q^{53} +5.65279 q^{54} -2.66684 q^{55} -2.87647 q^{56} +12.1719 q^{57} -10.2463 q^{59} -0.886977 q^{60} +9.93996 q^{61} +6.62704 q^{62} -2.62292 q^{63} +1.00000 q^{64} -0.293568 q^{65} -6.27835 q^{66} +1.86332 q^{67} -0.259558 q^{68} -0.206027 q^{69} +1.76560 q^{70} -9.58445 q^{71} +0.911854 q^{72} -2.98180 q^{73} -9.60431 q^{74} -6.68078 q^{75} +8.42322 q^{76} +12.4976 q^{77} -0.691125 q^{78} +13.5549 q^{79} -0.613807 q^{80} -5.43296 q^{81} -4.28236 q^{82} +1.05487 q^{83} +4.15662 q^{84} +0.159319 q^{85} -3.25912 q^{86} -4.34475 q^{88} -2.57596 q^{89} -0.559702 q^{90} +1.37574 q^{91} -0.142575 q^{92} -9.57635 q^{93} +5.08365 q^{94} -5.17023 q^{95} -1.44504 q^{96} +16.6449 q^{97} -1.27409 q^{98} -3.96178 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 8 q^{3} + 6 q^{4} - 6 q^{5} - 8 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9} + 6 q^{10} + 2 q^{11} + 8 q^{12} - 8 q^{13} - 2 q^{14} - 8 q^{15} + 6 q^{16} + 12 q^{17} - 2 q^{18} + 4 q^{19} - 6 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.44504 0.834295 0.417148 0.908839i \(-0.363030\pi\)
0.417148 + 0.908839i \(0.363030\pi\)
\(4\) 1.00000 0.500000
\(5\) −0.613807 −0.274503 −0.137251 0.990536i \(-0.543827\pi\)
−0.137251 + 0.990536i \(0.543827\pi\)
\(6\) −1.44504 −0.589936
\(7\) 2.87647 1.08720 0.543602 0.839343i \(-0.317060\pi\)
0.543602 + 0.839343i \(0.317060\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.911854 −0.303951
\(10\) 0.613807 0.194103
\(11\) 4.34475 1.30999 0.654996 0.755632i \(-0.272670\pi\)
0.654996 + 0.755632i \(0.272670\pi\)
\(12\) 1.44504 0.417148
\(13\) 0.478274 0.132649 0.0663246 0.997798i \(-0.478873\pi\)
0.0663246 + 0.997798i \(0.478873\pi\)
\(14\) −2.87647 −0.768770
\(15\) −0.886977 −0.229016
\(16\) 1.00000 0.250000
\(17\) −0.259558 −0.0629522 −0.0314761 0.999505i \(-0.510021\pi\)
−0.0314761 + 0.999505i \(0.510021\pi\)
\(18\) 0.911854 0.214926
\(19\) 8.42322 1.93242 0.966210 0.257756i \(-0.0829832\pi\)
0.966210 + 0.257756i \(0.0829832\pi\)
\(20\) −0.613807 −0.137251
\(21\) 4.15662 0.907049
\(22\) −4.34475 −0.926305
\(23\) −0.142575 −0.0297289 −0.0148645 0.999890i \(-0.504732\pi\)
−0.0148645 + 0.999890i \(0.504732\pi\)
\(24\) −1.44504 −0.294968
\(25\) −4.62324 −0.924648
\(26\) −0.478274 −0.0937972
\(27\) −5.65279 −1.08788
\(28\) 2.87647 0.543602
\(29\) 0 0
\(30\) 0.886977 0.161939
\(31\) −6.62704 −1.19025 −0.595126 0.803633i \(-0.702898\pi\)
−0.595126 + 0.803633i \(0.702898\pi\)
\(32\) −1.00000 −0.176777
\(33\) 6.27835 1.09292
\(34\) 0.259558 0.0445139
\(35\) −1.76560 −0.298441
\(36\) −0.911854 −0.151976
\(37\) 9.60431 1.57894 0.789470 0.613790i \(-0.210356\pi\)
0.789470 + 0.613790i \(0.210356\pi\)
\(38\) −8.42322 −1.36643
\(39\) 0.691125 0.110669
\(40\) 0.613807 0.0970514
\(41\) 4.28236 0.668792 0.334396 0.942433i \(-0.391468\pi\)
0.334396 + 0.942433i \(0.391468\pi\)
\(42\) −4.15662 −0.641381
\(43\) 3.25912 0.497011 0.248506 0.968630i \(-0.420061\pi\)
0.248506 + 0.968630i \(0.420061\pi\)
\(44\) 4.34475 0.654996
\(45\) 0.559702 0.0834355
\(46\) 0.142575 0.0210215
\(47\) −5.08365 −0.741527 −0.370763 0.928727i \(-0.620904\pi\)
−0.370763 + 0.928727i \(0.620904\pi\)
\(48\) 1.44504 0.208574
\(49\) 1.27409 0.182013
\(50\) 4.62324 0.653825
\(51\) −0.375073 −0.0525207
\(52\) 0.478274 0.0663246
\(53\) 9.26256 1.27231 0.636155 0.771561i \(-0.280524\pi\)
0.636155 + 0.771561i \(0.280524\pi\)
\(54\) 5.65279 0.769248
\(55\) −2.66684 −0.359597
\(56\) −2.87647 −0.384385
\(57\) 12.1719 1.61221
\(58\) 0 0
\(59\) −10.2463 −1.33395 −0.666977 0.745078i \(-0.732412\pi\)
−0.666977 + 0.745078i \(0.732412\pi\)
\(60\) −0.886977 −0.114508
\(61\) 9.93996 1.27268 0.636341 0.771408i \(-0.280447\pi\)
0.636341 + 0.771408i \(0.280447\pi\)
\(62\) 6.62704 0.841635
\(63\) −2.62292 −0.330457
\(64\) 1.00000 0.125000
\(65\) −0.293568 −0.0364126
\(66\) −6.27835 −0.772812
\(67\) 1.86332 0.227640 0.113820 0.993501i \(-0.463691\pi\)
0.113820 + 0.993501i \(0.463691\pi\)
\(68\) −0.259558 −0.0314761
\(69\) −0.206027 −0.0248027
\(70\) 1.76560 0.211029
\(71\) −9.58445 −1.13746 −0.568732 0.822523i \(-0.692566\pi\)
−0.568732 + 0.822523i \(0.692566\pi\)
\(72\) 0.911854 0.107463
\(73\) −2.98180 −0.348993 −0.174497 0.984658i \(-0.555830\pi\)
−0.174497 + 0.984658i \(0.555830\pi\)
\(74\) −9.60431 −1.11648
\(75\) −6.68078 −0.771430
\(76\) 8.42322 0.966210
\(77\) 12.4976 1.42423
\(78\) −0.691125 −0.0782545
\(79\) 13.5549 1.52505 0.762525 0.646959i \(-0.223959\pi\)
0.762525 + 0.646959i \(0.223959\pi\)
\(80\) −0.613807 −0.0686257
\(81\) −5.43296 −0.603662
\(82\) −4.28236 −0.472908
\(83\) 1.05487 0.115787 0.0578933 0.998323i \(-0.481562\pi\)
0.0578933 + 0.998323i \(0.481562\pi\)
\(84\) 4.15662 0.453525
\(85\) 0.159319 0.0172806
\(86\) −3.25912 −0.351440
\(87\) 0 0
\(88\) −4.34475 −0.463152
\(89\) −2.57596 −0.273051 −0.136526 0.990637i \(-0.543594\pi\)
−0.136526 + 0.990637i \(0.543594\pi\)
\(90\) −0.559702 −0.0589978
\(91\) 1.37574 0.144217
\(92\) −0.142575 −0.0148645
\(93\) −9.57635 −0.993021
\(94\) 5.08365 0.524338
\(95\) −5.17023 −0.530455
\(96\) −1.44504 −0.147484
\(97\) 16.6449 1.69003 0.845015 0.534742i \(-0.179591\pi\)
0.845015 + 0.534742i \(0.179591\pi\)
\(98\) −1.27409 −0.128703
\(99\) −3.96178 −0.398174
\(100\) −4.62324 −0.462324
\(101\) 16.8855 1.68017 0.840084 0.542456i \(-0.182506\pi\)
0.840084 + 0.542456i \(0.182506\pi\)
\(102\) 0.375073 0.0371377
\(103\) −2.65015 −0.261127 −0.130563 0.991440i \(-0.541679\pi\)
−0.130563 + 0.991440i \(0.541679\pi\)
\(104\) −0.478274 −0.0468986
\(105\) −2.55136 −0.248988
\(106\) −9.26256 −0.899659
\(107\) 15.7119 1.51893 0.759464 0.650549i \(-0.225461\pi\)
0.759464 + 0.650549i \(0.225461\pi\)
\(108\) −5.65279 −0.543940
\(109\) −10.1709 −0.974191 −0.487096 0.873349i \(-0.661944\pi\)
−0.487096 + 0.873349i \(0.661944\pi\)
\(110\) 2.66684 0.254273
\(111\) 13.8786 1.31730
\(112\) 2.87647 0.271801
\(113\) −17.0447 −1.60343 −0.801714 0.597708i \(-0.796078\pi\)
−0.801714 + 0.597708i \(0.796078\pi\)
\(114\) −12.1719 −1.14000
\(115\) 0.0875136 0.00816068
\(116\) 0 0
\(117\) −0.436116 −0.0403189
\(118\) 10.2463 0.943248
\(119\) −0.746613 −0.0684419
\(120\) 0.886977 0.0809696
\(121\) 7.87688 0.716080
\(122\) −9.93996 −0.899922
\(123\) 6.18819 0.557970
\(124\) −6.62704 −0.595126
\(125\) 5.90681 0.528321
\(126\) 2.62292 0.233669
\(127\) −3.42505 −0.303924 −0.151962 0.988386i \(-0.548559\pi\)
−0.151962 + 0.988386i \(0.548559\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.70957 0.414654
\(130\) 0.293568 0.0257476
\(131\) −2.93793 −0.256688 −0.128344 0.991730i \(-0.540966\pi\)
−0.128344 + 0.991730i \(0.540966\pi\)
\(132\) 6.27835 0.546460
\(133\) 24.2292 2.10094
\(134\) −1.86332 −0.160966
\(135\) 3.46972 0.298626
\(136\) 0.259558 0.0222570
\(137\) −16.9899 −1.45154 −0.725772 0.687935i \(-0.758517\pi\)
−0.725772 + 0.687935i \(0.758517\pi\)
\(138\) 0.206027 0.0175382
\(139\) −0.365574 −0.0310076 −0.0155038 0.999880i \(-0.504935\pi\)
−0.0155038 + 0.999880i \(0.504935\pi\)
\(140\) −1.76560 −0.149220
\(141\) −7.34609 −0.618652
\(142\) 9.58445 0.804309
\(143\) 2.07798 0.173770
\(144\) −0.911854 −0.0759878
\(145\) 0 0
\(146\) 2.98180 0.246776
\(147\) 1.84112 0.151853
\(148\) 9.60431 0.789470
\(149\) −5.32915 −0.436581 −0.218291 0.975884i \(-0.570048\pi\)
−0.218291 + 0.975884i \(0.570048\pi\)
\(150\) 6.68078 0.545483
\(151\) 6.73362 0.547974 0.273987 0.961733i \(-0.411657\pi\)
0.273987 + 0.961733i \(0.411657\pi\)
\(152\) −8.42322 −0.683214
\(153\) 0.236679 0.0191344
\(154\) −12.4976 −1.00708
\(155\) 4.06772 0.326727
\(156\) 0.691125 0.0553343
\(157\) 4.45167 0.355282 0.177641 0.984095i \(-0.443153\pi\)
0.177641 + 0.984095i \(0.443153\pi\)
\(158\) −13.5549 −1.07837
\(159\) 13.3848 1.06148
\(160\) 0.613807 0.0485257
\(161\) −0.410113 −0.0323214
\(162\) 5.43296 0.426854
\(163\) 8.12268 0.636218 0.318109 0.948054i \(-0.396952\pi\)
0.318109 + 0.948054i \(0.396952\pi\)
\(164\) 4.28236 0.334396
\(165\) −3.85370 −0.300010
\(166\) −1.05487 −0.0818734
\(167\) −0.399378 −0.0309048 −0.0154524 0.999881i \(-0.504919\pi\)
−0.0154524 + 0.999881i \(0.504919\pi\)
\(168\) −4.15662 −0.320690
\(169\) −12.7713 −0.982404
\(170\) −0.159319 −0.0122192
\(171\) −7.68075 −0.587362
\(172\) 3.25912 0.248506
\(173\) −4.70045 −0.357368 −0.178684 0.983906i \(-0.557184\pi\)
−0.178684 + 0.983906i \(0.557184\pi\)
\(174\) 0 0
\(175\) −13.2986 −1.00528
\(176\) 4.34475 0.327498
\(177\) −14.8063 −1.11291
\(178\) 2.57596 0.193076
\(179\) −4.66359 −0.348573 −0.174287 0.984695i \(-0.555762\pi\)
−0.174287 + 0.984695i \(0.555762\pi\)
\(180\) 0.559702 0.0417178
\(181\) 9.43759 0.701490 0.350745 0.936471i \(-0.385928\pi\)
0.350745 + 0.936471i \(0.385928\pi\)
\(182\) −1.37574 −0.101977
\(183\) 14.3637 1.06179
\(184\) 0.142575 0.0105108
\(185\) −5.89520 −0.433423
\(186\) 9.57635 0.702172
\(187\) −1.12772 −0.0824669
\(188\) −5.08365 −0.370763
\(189\) −16.2601 −1.18275
\(190\) 5.17023 0.375088
\(191\) −19.7596 −1.42975 −0.714877 0.699251i \(-0.753517\pi\)
−0.714877 + 0.699251i \(0.753517\pi\)
\(192\) 1.44504 0.104287
\(193\) −2.00731 −0.144489 −0.0722446 0.997387i \(-0.523016\pi\)
−0.0722446 + 0.997387i \(0.523016\pi\)
\(194\) −16.6449 −1.19503
\(195\) −0.424218 −0.0303789
\(196\) 1.27409 0.0910066
\(197\) 1.62857 0.116031 0.0580154 0.998316i \(-0.481523\pi\)
0.0580154 + 0.998316i \(0.481523\pi\)
\(198\) 3.96178 0.281552
\(199\) 9.36362 0.663770 0.331885 0.943320i \(-0.392315\pi\)
0.331885 + 0.943320i \(0.392315\pi\)
\(200\) 4.62324 0.326912
\(201\) 2.69257 0.189919
\(202\) −16.8855 −1.18806
\(203\) 0 0
\(204\) −0.375073 −0.0262604
\(205\) −2.62854 −0.183585
\(206\) 2.65015 0.184644
\(207\) 0.130008 0.00903615
\(208\) 0.478274 0.0331623
\(209\) 36.5968 2.53146
\(210\) 2.55136 0.176061
\(211\) 6.35245 0.437321 0.218660 0.975801i \(-0.429831\pi\)
0.218660 + 0.975801i \(0.429831\pi\)
\(212\) 9.26256 0.636155
\(213\) −13.8499 −0.948982
\(214\) −15.7119 −1.07404
\(215\) −2.00047 −0.136431
\(216\) 5.65279 0.384624
\(217\) −19.0625 −1.29405
\(218\) 10.1709 0.688857
\(219\) −4.30883 −0.291163
\(220\) −2.66684 −0.179798
\(221\) −0.124140 −0.00835056
\(222\) −13.8786 −0.931473
\(223\) 6.77523 0.453703 0.226852 0.973929i \(-0.427157\pi\)
0.226852 + 0.973929i \(0.427157\pi\)
\(224\) −2.87647 −0.192192
\(225\) 4.21572 0.281048
\(226\) 17.0447 1.13379
\(227\) 16.6240 1.10338 0.551688 0.834050i \(-0.313984\pi\)
0.551688 + 0.834050i \(0.313984\pi\)
\(228\) 12.1719 0.806104
\(229\) 6.48836 0.428763 0.214382 0.976750i \(-0.431226\pi\)
0.214382 + 0.976750i \(0.431226\pi\)
\(230\) −0.0875136 −0.00577047
\(231\) 18.0595 1.18823
\(232\) 0 0
\(233\) 19.9763 1.30869 0.654346 0.756195i \(-0.272944\pi\)
0.654346 + 0.756195i \(0.272944\pi\)
\(234\) 0.436116 0.0285098
\(235\) 3.12038 0.203551
\(236\) −10.2463 −0.666977
\(237\) 19.5875 1.27234
\(238\) 0.746613 0.0483957
\(239\) 1.85655 0.120090 0.0600452 0.998196i \(-0.480876\pi\)
0.0600452 + 0.998196i \(0.480876\pi\)
\(240\) −0.886977 −0.0572541
\(241\) −2.38694 −0.153757 −0.0768783 0.997040i \(-0.524495\pi\)
−0.0768783 + 0.997040i \(0.524495\pi\)
\(242\) −7.87688 −0.506345
\(243\) 9.10752 0.584248
\(244\) 9.93996 0.636341
\(245\) −0.782047 −0.0499632
\(246\) −6.18819 −0.394545
\(247\) 4.02861 0.256334
\(248\) 6.62704 0.420817
\(249\) 1.52432 0.0966002
\(250\) −5.90681 −0.373580
\(251\) −18.2524 −1.15208 −0.576040 0.817421i \(-0.695403\pi\)
−0.576040 + 0.817421i \(0.695403\pi\)
\(252\) −2.62292 −0.165229
\(253\) −0.619453 −0.0389447
\(254\) 3.42505 0.214907
\(255\) 0.230222 0.0144171
\(256\) 1.00000 0.0625000
\(257\) −12.7119 −0.792944 −0.396472 0.918047i \(-0.629766\pi\)
−0.396472 + 0.918047i \(0.629766\pi\)
\(258\) −4.70957 −0.293205
\(259\) 27.6265 1.71663
\(260\) −0.293568 −0.0182063
\(261\) 0 0
\(262\) 2.93793 0.181506
\(263\) −1.89993 −0.117155 −0.0585774 0.998283i \(-0.518656\pi\)
−0.0585774 + 0.998283i \(0.518656\pi\)
\(264\) −6.27835 −0.386406
\(265\) −5.68542 −0.349253
\(266\) −24.2292 −1.48559
\(267\) −3.72237 −0.227805
\(268\) 1.86332 0.113820
\(269\) 25.6366 1.56309 0.781545 0.623849i \(-0.214432\pi\)
0.781545 + 0.623849i \(0.214432\pi\)
\(270\) −3.46972 −0.211161
\(271\) −7.82313 −0.475221 −0.237611 0.971360i \(-0.576364\pi\)
−0.237611 + 0.971360i \(0.576364\pi\)
\(272\) −0.259558 −0.0157380
\(273\) 1.98800 0.120319
\(274\) 16.9899 1.02640
\(275\) −20.0868 −1.21128
\(276\) −0.206027 −0.0124014
\(277\) 12.7302 0.764886 0.382443 0.923979i \(-0.375083\pi\)
0.382443 + 0.923979i \(0.375083\pi\)
\(278\) 0.365574 0.0219257
\(279\) 6.04289 0.361778
\(280\) 1.76560 0.105515
\(281\) 5.74861 0.342933 0.171467 0.985190i \(-0.445149\pi\)
0.171467 + 0.985190i \(0.445149\pi\)
\(282\) 7.34609 0.437453
\(283\) 24.7442 1.47089 0.735445 0.677585i \(-0.236973\pi\)
0.735445 + 0.677585i \(0.236973\pi\)
\(284\) −9.58445 −0.568732
\(285\) −7.47121 −0.442556
\(286\) −2.07798 −0.122874
\(287\) 12.3181 0.727114
\(288\) 0.911854 0.0537315
\(289\) −16.9326 −0.996037
\(290\) 0 0
\(291\) 24.0525 1.40998
\(292\) −2.98180 −0.174497
\(293\) −25.1721 −1.47057 −0.735285 0.677758i \(-0.762952\pi\)
−0.735285 + 0.677758i \(0.762952\pi\)
\(294\) −1.84112 −0.107376
\(295\) 6.28925 0.366174
\(296\) −9.60431 −0.558239
\(297\) −24.5600 −1.42512
\(298\) 5.32915 0.308710
\(299\) −0.0681899 −0.00394352
\(300\) −6.68078 −0.385715
\(301\) 9.37477 0.540353
\(302\) −6.73362 −0.387476
\(303\) 24.4002 1.40176
\(304\) 8.42322 0.483105
\(305\) −6.10122 −0.349355
\(306\) −0.236679 −0.0135301
\(307\) −15.0768 −0.860480 −0.430240 0.902715i \(-0.641571\pi\)
−0.430240 + 0.902715i \(0.641571\pi\)
\(308\) 12.4976 0.712115
\(309\) −3.82957 −0.217857
\(310\) −4.06772 −0.231031
\(311\) −18.5916 −1.05423 −0.527117 0.849793i \(-0.676727\pi\)
−0.527117 + 0.849793i \(0.676727\pi\)
\(312\) −0.691125 −0.0391273
\(313\) −20.4199 −1.15420 −0.577101 0.816672i \(-0.695816\pi\)
−0.577101 + 0.816672i \(0.695816\pi\)
\(314\) −4.45167 −0.251222
\(315\) 1.60997 0.0907115
\(316\) 13.5549 0.762525
\(317\) −8.41935 −0.472878 −0.236439 0.971646i \(-0.575980\pi\)
−0.236439 + 0.971646i \(0.575980\pi\)
\(318\) −13.3848 −0.750581
\(319\) 0 0
\(320\) −0.613807 −0.0343129
\(321\) 22.7044 1.26723
\(322\) 0.410113 0.0228547
\(323\) −2.18632 −0.121650
\(324\) −5.43296 −0.301831
\(325\) −2.21117 −0.122654
\(326\) −8.12268 −0.449874
\(327\) −14.6973 −0.812763
\(328\) −4.28236 −0.236454
\(329\) −14.6230 −0.806191
\(330\) 3.85370 0.212139
\(331\) −31.5696 −1.73522 −0.867610 0.497246i \(-0.834345\pi\)
−0.867610 + 0.497246i \(0.834345\pi\)
\(332\) 1.05487 0.0578933
\(333\) −8.75773 −0.479921
\(334\) 0.399378 0.0218530
\(335\) −1.14372 −0.0624879
\(336\) 4.15662 0.226762
\(337\) −17.1433 −0.933856 −0.466928 0.884295i \(-0.654639\pi\)
−0.466928 + 0.884295i \(0.654639\pi\)
\(338\) 12.7713 0.694665
\(339\) −24.6303 −1.33773
\(340\) 0.159319 0.00864028
\(341\) −28.7929 −1.55922
\(342\) 7.68075 0.415327
\(343\) −16.4704 −0.889319
\(344\) −3.25912 −0.175720
\(345\) 0.126461 0.00680842
\(346\) 4.70045 0.252698
\(347\) −15.2643 −0.819433 −0.409717 0.912213i \(-0.634372\pi\)
−0.409717 + 0.912213i \(0.634372\pi\)
\(348\) 0 0
\(349\) −27.7100 −1.48328 −0.741641 0.670797i \(-0.765952\pi\)
−0.741641 + 0.670797i \(0.765952\pi\)
\(350\) 13.2986 0.710841
\(351\) −2.70358 −0.144307
\(352\) −4.34475 −0.231576
\(353\) −26.1989 −1.39443 −0.697214 0.716863i \(-0.745577\pi\)
−0.697214 + 0.716863i \(0.745577\pi\)
\(354\) 14.8063 0.786947
\(355\) 5.88300 0.312237
\(356\) −2.57596 −0.136526
\(357\) −1.07889 −0.0571007
\(358\) 4.66359 0.246479
\(359\) 11.8516 0.625503 0.312751 0.949835i \(-0.398749\pi\)
0.312751 + 0.949835i \(0.398749\pi\)
\(360\) −0.559702 −0.0294989
\(361\) 51.9507 2.73425
\(362\) −9.43759 −0.496029
\(363\) 11.3824 0.597422
\(364\) 1.37574 0.0721084
\(365\) 1.83025 0.0957997
\(366\) −14.3637 −0.750800
\(367\) −26.0651 −1.36059 −0.680293 0.732940i \(-0.738147\pi\)
−0.680293 + 0.732940i \(0.738147\pi\)
\(368\) −0.142575 −0.00743224
\(369\) −3.90489 −0.203280
\(370\) 5.89520 0.306477
\(371\) 26.6435 1.38326
\(372\) −9.57635 −0.496511
\(373\) −23.2397 −1.20331 −0.601653 0.798758i \(-0.705491\pi\)
−0.601653 + 0.798758i \(0.705491\pi\)
\(374\) 1.12772 0.0583129
\(375\) 8.53559 0.440776
\(376\) 5.08365 0.262169
\(377\) 0 0
\(378\) 16.2601 0.836329
\(379\) −30.9906 −1.59188 −0.795941 0.605374i \(-0.793024\pi\)
−0.795941 + 0.605374i \(0.793024\pi\)
\(380\) −5.17023 −0.265227
\(381\) −4.94935 −0.253563
\(382\) 19.7596 1.01099
\(383\) −23.7304 −1.21257 −0.606283 0.795249i \(-0.707340\pi\)
−0.606283 + 0.795249i \(0.707340\pi\)
\(384\) −1.44504 −0.0737420
\(385\) −7.67109 −0.390955
\(386\) 2.00731 0.102169
\(387\) −2.97184 −0.151067
\(388\) 16.6449 0.845015
\(389\) −1.08756 −0.0551416 −0.0275708 0.999620i \(-0.508777\pi\)
−0.0275708 + 0.999620i \(0.508777\pi\)
\(390\) 0.424218 0.0214811
\(391\) 0.0370065 0.00187150
\(392\) −1.27409 −0.0643514
\(393\) −4.24543 −0.214154
\(394\) −1.62857 −0.0820462
\(395\) −8.32012 −0.418631
\(396\) −3.96178 −0.199087
\(397\) 6.38613 0.320511 0.160255 0.987076i \(-0.448768\pi\)
0.160255 + 0.987076i \(0.448768\pi\)
\(398\) −9.36362 −0.469356
\(399\) 35.0122 1.75280
\(400\) −4.62324 −0.231162
\(401\) −30.1679 −1.50651 −0.753256 0.657728i \(-0.771518\pi\)
−0.753256 + 0.657728i \(0.771518\pi\)
\(402\) −2.69257 −0.134293
\(403\) −3.16954 −0.157886
\(404\) 16.8855 0.840084
\(405\) 3.33479 0.165707
\(406\) 0 0
\(407\) 41.7284 2.06840
\(408\) 0.375073 0.0185689
\(409\) 4.76753 0.235739 0.117870 0.993029i \(-0.462393\pi\)
0.117870 + 0.993029i \(0.462393\pi\)
\(410\) 2.62854 0.129815
\(411\) −24.5511 −1.21102
\(412\) −2.65015 −0.130563
\(413\) −29.4732 −1.45028
\(414\) −0.130008 −0.00638952
\(415\) −0.647484 −0.0317837
\(416\) −0.478274 −0.0234493
\(417\) −0.528269 −0.0258695
\(418\) −36.5968 −1.79001
\(419\) −27.2149 −1.32953 −0.664767 0.747051i \(-0.731469\pi\)
−0.664767 + 0.747051i \(0.731469\pi\)
\(420\) −2.55136 −0.124494
\(421\) 18.9520 0.923665 0.461833 0.886967i \(-0.347192\pi\)
0.461833 + 0.886967i \(0.347192\pi\)
\(422\) −6.35245 −0.309233
\(423\) 4.63555 0.225388
\(424\) −9.26256 −0.449829
\(425\) 1.20000 0.0582086
\(426\) 13.8499 0.671031
\(427\) 28.5920 1.38366
\(428\) 15.7119 0.759464
\(429\) 3.00277 0.144975
\(430\) 2.00047 0.0964713
\(431\) 20.6248 0.993461 0.496730 0.867905i \(-0.334534\pi\)
0.496730 + 0.867905i \(0.334534\pi\)
\(432\) −5.65279 −0.271970
\(433\) 4.85408 0.233272 0.116636 0.993175i \(-0.462789\pi\)
0.116636 + 0.993175i \(0.462789\pi\)
\(434\) 19.0625 0.915029
\(435\) 0 0
\(436\) −10.1709 −0.487096
\(437\) −1.20094 −0.0574488
\(438\) 4.30883 0.205884
\(439\) −27.2748 −1.30176 −0.650878 0.759183i \(-0.725599\pi\)
−0.650878 + 0.759183i \(0.725599\pi\)
\(440\) 2.66684 0.127137
\(441\) −1.16179 −0.0553232
\(442\) 0.124140 0.00590474
\(443\) −22.5925 −1.07340 −0.536700 0.843773i \(-0.680329\pi\)
−0.536700 + 0.843773i \(0.680329\pi\)
\(444\) 13.8786 0.658651
\(445\) 1.58114 0.0749534
\(446\) −6.77523 −0.320817
\(447\) −7.70085 −0.364238
\(448\) 2.87647 0.135901
\(449\) 6.15402 0.290426 0.145213 0.989400i \(-0.453613\pi\)
0.145213 + 0.989400i \(0.453613\pi\)
\(450\) −4.21572 −0.198731
\(451\) 18.6058 0.876113
\(452\) −17.0447 −0.801714
\(453\) 9.73036 0.457172
\(454\) −16.6240 −0.780205
\(455\) −0.844440 −0.0395879
\(456\) −12.1719 −0.570002
\(457\) 15.7924 0.738737 0.369369 0.929283i \(-0.379574\pi\)
0.369369 + 0.929283i \(0.379574\pi\)
\(458\) −6.48836 −0.303181
\(459\) 1.46723 0.0684844
\(460\) 0.0875136 0.00408034
\(461\) 8.27739 0.385516 0.192758 0.981246i \(-0.438257\pi\)
0.192758 + 0.981246i \(0.438257\pi\)
\(462\) −18.0595 −0.840204
\(463\) 9.93980 0.461942 0.230971 0.972961i \(-0.425810\pi\)
0.230971 + 0.972961i \(0.425810\pi\)
\(464\) 0 0
\(465\) 5.87803 0.272587
\(466\) −19.9763 −0.925385
\(467\) 17.6952 0.818837 0.409419 0.912347i \(-0.365732\pi\)
0.409419 + 0.912347i \(0.365732\pi\)
\(468\) −0.436116 −0.0201595
\(469\) 5.35978 0.247491
\(470\) −3.12038 −0.143932
\(471\) 6.43285 0.296410
\(472\) 10.2463 0.471624
\(473\) 14.1601 0.651081
\(474\) −19.5875 −0.899682
\(475\) −38.9426 −1.78681
\(476\) −0.746613 −0.0342209
\(477\) −8.44610 −0.386720
\(478\) −1.85655 −0.0849167
\(479\) 23.2355 1.06166 0.530828 0.847480i \(-0.321881\pi\)
0.530828 + 0.847480i \(0.321881\pi\)
\(480\) 0.886977 0.0404848
\(481\) 4.59349 0.209445
\(482\) 2.38694 0.108722
\(483\) −0.592631 −0.0269656
\(484\) 7.87688 0.358040
\(485\) −10.2167 −0.463918
\(486\) −9.10752 −0.413126
\(487\) −5.79395 −0.262549 −0.131274 0.991346i \(-0.541907\pi\)
−0.131274 + 0.991346i \(0.541907\pi\)
\(488\) −9.93996 −0.449961
\(489\) 11.7376 0.530793
\(490\) 0.782047 0.0353293
\(491\) 8.40728 0.379415 0.189708 0.981841i \(-0.439246\pi\)
0.189708 + 0.981841i \(0.439246\pi\)
\(492\) 6.18819 0.278985
\(493\) 0 0
\(494\) −4.02861 −0.181256
\(495\) 2.43177 0.109300
\(496\) −6.62704 −0.297563
\(497\) −27.5694 −1.23666
\(498\) −1.52432 −0.0683066
\(499\) 17.5998 0.787876 0.393938 0.919137i \(-0.371112\pi\)
0.393938 + 0.919137i \(0.371112\pi\)
\(500\) 5.90681 0.264161
\(501\) −0.577119 −0.0257838
\(502\) 18.2524 0.814644
\(503\) −21.5416 −0.960494 −0.480247 0.877133i \(-0.659453\pi\)
−0.480247 + 0.877133i \(0.659453\pi\)
\(504\) 2.62292 0.116834
\(505\) −10.3644 −0.461211
\(506\) 0.619453 0.0275381
\(507\) −18.4550 −0.819615
\(508\) −3.42505 −0.151962
\(509\) −25.7945 −1.14332 −0.571660 0.820491i \(-0.693700\pi\)
−0.571660 + 0.820491i \(0.693700\pi\)
\(510\) −0.230222 −0.0101944
\(511\) −8.57707 −0.379427
\(512\) −1.00000 −0.0441942
\(513\) −47.6147 −2.10224
\(514\) 12.7119 0.560696
\(515\) 1.62668 0.0716800
\(516\) 4.70957 0.207327
\(517\) −22.0872 −0.971394
\(518\) −27.6265 −1.21384
\(519\) −6.79234 −0.298151
\(520\) 0.293568 0.0128738
\(521\) −22.3082 −0.977341 −0.488670 0.872468i \(-0.662518\pi\)
−0.488670 + 0.872468i \(0.662518\pi\)
\(522\) 0 0
\(523\) −40.0895 −1.75299 −0.876496 0.481408i \(-0.840125\pi\)
−0.876496 + 0.481408i \(0.840125\pi\)
\(524\) −2.93793 −0.128344
\(525\) −19.2171 −0.838702
\(526\) 1.89993 0.0828410
\(527\) 1.72010 0.0749289
\(528\) 6.27835 0.273230
\(529\) −22.9797 −0.999116
\(530\) 5.68542 0.246959
\(531\) 9.34313 0.405457
\(532\) 24.2292 1.05047
\(533\) 2.04814 0.0887148
\(534\) 3.72237 0.161083
\(535\) −9.64408 −0.416950
\(536\) −1.86332 −0.0804830
\(537\) −6.73909 −0.290813
\(538\) −25.6366 −1.10527
\(539\) 5.53562 0.238436
\(540\) 3.46972 0.149313
\(541\) 6.98308 0.300226 0.150113 0.988669i \(-0.452036\pi\)
0.150113 + 0.988669i \(0.452036\pi\)
\(542\) 7.82313 0.336032
\(543\) 13.6377 0.585250
\(544\) 0.259558 0.0111285
\(545\) 6.24294 0.267418
\(546\) −1.98800 −0.0850787
\(547\) 6.38811 0.273136 0.136568 0.990631i \(-0.456393\pi\)
0.136568 + 0.990631i \(0.456393\pi\)
\(548\) −16.9899 −0.725772
\(549\) −9.06379 −0.386833
\(550\) 20.0868 0.856506
\(551\) 0 0
\(552\) 0.206027 0.00876908
\(553\) 38.9904 1.65804
\(554\) −12.7302 −0.540856
\(555\) −8.51880 −0.361603
\(556\) −0.365574 −0.0155038
\(557\) −10.1321 −0.429309 −0.214655 0.976690i \(-0.568863\pi\)
−0.214655 + 0.976690i \(0.568863\pi\)
\(558\) −6.04289 −0.255816
\(559\) 1.55875 0.0659282
\(560\) −1.76560 −0.0746102
\(561\) −1.62960 −0.0688017
\(562\) −5.74861 −0.242490
\(563\) 17.1419 0.722445 0.361222 0.932480i \(-0.382359\pi\)
0.361222 + 0.932480i \(0.382359\pi\)
\(564\) −7.34609 −0.309326
\(565\) 10.4621 0.440145
\(566\) −24.7442 −1.04008
\(567\) −15.6278 −0.656304
\(568\) 9.58445 0.402155
\(569\) −42.5607 −1.78424 −0.892118 0.451802i \(-0.850781\pi\)
−0.892118 + 0.451802i \(0.850781\pi\)
\(570\) 7.47121 0.312934
\(571\) 18.9512 0.793081 0.396540 0.918017i \(-0.370211\pi\)
0.396540 + 0.918017i \(0.370211\pi\)
\(572\) 2.07798 0.0868848
\(573\) −28.5534 −1.19284
\(574\) −12.3181 −0.514147
\(575\) 0.659159 0.0274888
\(576\) −0.911854 −0.0379939
\(577\) 40.9378 1.70426 0.852131 0.523329i \(-0.175310\pi\)
0.852131 + 0.523329i \(0.175310\pi\)
\(578\) 16.9326 0.704305
\(579\) −2.90064 −0.120547
\(580\) 0 0
\(581\) 3.03429 0.125884
\(582\) −24.0525 −0.997010
\(583\) 40.2435 1.66672
\(584\) 2.98180 0.123388
\(585\) 0.267691 0.0110677
\(586\) 25.1721 1.03985
\(587\) −7.34441 −0.303136 −0.151568 0.988447i \(-0.548432\pi\)
−0.151568 + 0.988447i \(0.548432\pi\)
\(588\) 1.84112 0.0759264
\(589\) −55.8210 −2.30007
\(590\) −6.28925 −0.258924
\(591\) 2.35335 0.0968039
\(592\) 9.60431 0.394735
\(593\) 4.59131 0.188543 0.0942713 0.995547i \(-0.469948\pi\)
0.0942713 + 0.995547i \(0.469948\pi\)
\(594\) 24.5600 1.00771
\(595\) 0.458276 0.0187875
\(596\) −5.32915 −0.218291
\(597\) 13.5308 0.553780
\(598\) 0.0681899 0.00278849
\(599\) −20.4115 −0.833990 −0.416995 0.908909i \(-0.636917\pi\)
−0.416995 + 0.908909i \(0.636917\pi\)
\(600\) 6.68078 0.272742
\(601\) −10.4206 −0.425067 −0.212533 0.977154i \(-0.568171\pi\)
−0.212533 + 0.977154i \(0.568171\pi\)
\(602\) −9.37477 −0.382087
\(603\) −1.69907 −0.0691915
\(604\) 6.73362 0.273987
\(605\) −4.83489 −0.196566
\(606\) −24.4002 −0.991191
\(607\) −18.7398 −0.760623 −0.380312 0.924858i \(-0.624183\pi\)
−0.380312 + 0.924858i \(0.624183\pi\)
\(608\) −8.42322 −0.341607
\(609\) 0 0
\(610\) 6.10122 0.247031
\(611\) −2.43138 −0.0983629
\(612\) 0.236679 0.00956720
\(613\) 37.8044 1.52690 0.763452 0.645864i \(-0.223503\pi\)
0.763452 + 0.645864i \(0.223503\pi\)
\(614\) 15.0768 0.608451
\(615\) −3.79836 −0.153164
\(616\) −12.4976 −0.503541
\(617\) 4.16490 0.167673 0.0838363 0.996480i \(-0.473283\pi\)
0.0838363 + 0.996480i \(0.473283\pi\)
\(618\) 3.82957 0.154048
\(619\) 11.9265 0.479366 0.239683 0.970851i \(-0.422956\pi\)
0.239683 + 0.970851i \(0.422956\pi\)
\(620\) 4.06772 0.163364
\(621\) 0.805947 0.0323415
\(622\) 18.5916 0.745456
\(623\) −7.40968 −0.296863
\(624\) 0.691125 0.0276672
\(625\) 19.4906 0.779622
\(626\) 20.4199 0.816145
\(627\) 52.8839 2.11198
\(628\) 4.45167 0.177641
\(629\) −2.49288 −0.0993976
\(630\) −1.60997 −0.0641427
\(631\) −4.56341 −0.181666 −0.0908332 0.995866i \(-0.528953\pi\)
−0.0908332 + 0.995866i \(0.528953\pi\)
\(632\) −13.5549 −0.539187
\(633\) 9.17956 0.364855
\(634\) 8.41935 0.334375
\(635\) 2.10232 0.0834281
\(636\) 13.3848 0.530741
\(637\) 0.609365 0.0241439
\(638\) 0 0
\(639\) 8.73962 0.345734
\(640\) 0.613807 0.0242629
\(641\) −6.57727 −0.259786 −0.129893 0.991528i \(-0.541463\pi\)
−0.129893 + 0.991528i \(0.541463\pi\)
\(642\) −22.7044 −0.896070
\(643\) −7.68578 −0.303098 −0.151549 0.988450i \(-0.548426\pi\)
−0.151549 + 0.988450i \(0.548426\pi\)
\(644\) −0.410113 −0.0161607
\(645\) −2.89077 −0.113824
\(646\) 2.18632 0.0860196
\(647\) 30.9479 1.21669 0.608343 0.793674i \(-0.291834\pi\)
0.608343 + 0.793674i \(0.291834\pi\)
\(648\) 5.43296 0.213427
\(649\) −44.5176 −1.74747
\(650\) 2.21117 0.0867294
\(651\) −27.5461 −1.07962
\(652\) 8.12268 0.318109
\(653\) −10.7195 −0.419487 −0.209743 0.977756i \(-0.567263\pi\)
−0.209743 + 0.977756i \(0.567263\pi\)
\(654\) 14.6973 0.574710
\(655\) 1.80332 0.0704617
\(656\) 4.28236 0.167198
\(657\) 2.71897 0.106077
\(658\) 14.6230 0.570063
\(659\) −29.9298 −1.16590 −0.582950 0.812508i \(-0.698102\pi\)
−0.582950 + 0.812508i \(0.698102\pi\)
\(660\) −3.85370 −0.150005
\(661\) −16.9946 −0.661012 −0.330506 0.943804i \(-0.607219\pi\)
−0.330506 + 0.943804i \(0.607219\pi\)
\(662\) 31.5696 1.22699
\(663\) −0.179387 −0.00696683
\(664\) −1.05487 −0.0409367
\(665\) −14.8720 −0.576713
\(666\) 8.75773 0.339355
\(667\) 0 0
\(668\) −0.399378 −0.0154524
\(669\) 9.79049 0.378522
\(670\) 1.14372 0.0441856
\(671\) 43.1867 1.66720
\(672\) −4.15662 −0.160345
\(673\) −35.6523 −1.37429 −0.687147 0.726518i \(-0.741137\pi\)
−0.687147 + 0.726518i \(0.741137\pi\)
\(674\) 17.1433 0.660336
\(675\) 26.1342 1.00591
\(676\) −12.7713 −0.491202
\(677\) 39.4582 1.51650 0.758250 0.651964i \(-0.226055\pi\)
0.758250 + 0.651964i \(0.226055\pi\)
\(678\) 24.6303 0.945919
\(679\) 47.8785 1.83741
\(680\) −0.159319 −0.00610960
\(681\) 24.0224 0.920542
\(682\) 28.7929 1.10254
\(683\) −3.49900 −0.133886 −0.0669428 0.997757i \(-0.521324\pi\)
−0.0669428 + 0.997757i \(0.521324\pi\)
\(684\) −7.68075 −0.293681
\(685\) 10.4285 0.398453
\(686\) 16.4704 0.628843
\(687\) 9.37596 0.357715
\(688\) 3.25912 0.124253
\(689\) 4.43004 0.168771
\(690\) −0.126461 −0.00481428
\(691\) −5.37007 −0.204287 −0.102143 0.994770i \(-0.532570\pi\)
−0.102143 + 0.994770i \(0.532570\pi\)
\(692\) −4.70045 −0.178684
\(693\) −11.3960 −0.432896
\(694\) 15.2643 0.579427
\(695\) 0.224392 0.00851166
\(696\) 0 0
\(697\) −1.11152 −0.0421019
\(698\) 27.7100 1.04884
\(699\) 28.8666 1.09184
\(700\) −13.2986 −0.502641
\(701\) 16.7002 0.630758 0.315379 0.948966i \(-0.397868\pi\)
0.315379 + 0.948966i \(0.397868\pi\)
\(702\) 2.70358 0.102040
\(703\) 80.8993 3.05117
\(704\) 4.34475 0.163749
\(705\) 4.50908 0.169822
\(706\) 26.1989 0.986009
\(707\) 48.5706 1.82669
\(708\) −14.8063 −0.556456
\(709\) −19.0888 −0.716893 −0.358447 0.933550i \(-0.616694\pi\)
−0.358447 + 0.933550i \(0.616694\pi\)
\(710\) −5.88300 −0.220785
\(711\) −12.3601 −0.463541
\(712\) 2.57596 0.0965382
\(713\) 0.944850 0.0353849
\(714\) 1.07889 0.0403763
\(715\) −1.27548 −0.0477002
\(716\) −4.66359 −0.174287
\(717\) 2.68280 0.100191
\(718\) −11.8516 −0.442297
\(719\) 25.3990 0.947224 0.473612 0.880734i \(-0.342950\pi\)
0.473612 + 0.880734i \(0.342950\pi\)
\(720\) 0.559702 0.0208589
\(721\) −7.62307 −0.283898
\(722\) −51.9507 −1.93340
\(723\) −3.44924 −0.128278
\(724\) 9.43759 0.350745
\(725\) 0 0
\(726\) −11.3824 −0.422441
\(727\) 14.6165 0.542097 0.271049 0.962566i \(-0.412630\pi\)
0.271049 + 0.962566i \(0.412630\pi\)
\(728\) −1.37574 −0.0509883
\(729\) 29.4596 1.09110
\(730\) −1.83025 −0.0677406
\(731\) −0.845933 −0.0312879
\(732\) 14.3637 0.530896
\(733\) −39.3020 −1.45165 −0.725827 0.687877i \(-0.758543\pi\)
−0.725827 + 0.687877i \(0.758543\pi\)
\(734\) 26.0651 0.962079
\(735\) −1.13009 −0.0416840
\(736\) 0.142575 0.00525538
\(737\) 8.09565 0.298207
\(738\) 3.90489 0.143741
\(739\) −34.2467 −1.25979 −0.629893 0.776682i \(-0.716901\pi\)
−0.629893 + 0.776682i \(0.716901\pi\)
\(740\) −5.89520 −0.216712
\(741\) 5.82150 0.213858
\(742\) −26.6435 −0.978113
\(743\) 35.0885 1.28727 0.643636 0.765332i \(-0.277425\pi\)
0.643636 + 0.765332i \(0.277425\pi\)
\(744\) 9.57635 0.351086
\(745\) 3.27107 0.119843
\(746\) 23.2397 0.850866
\(747\) −0.961883 −0.0351935
\(748\) −1.12772 −0.0412334
\(749\) 45.1949 1.65138
\(750\) −8.53559 −0.311676
\(751\) 48.2274 1.75984 0.879922 0.475118i \(-0.157595\pi\)
0.879922 + 0.475118i \(0.157595\pi\)
\(752\) −5.08365 −0.185382
\(753\) −26.3755 −0.961176
\(754\) 0 0
\(755\) −4.13314 −0.150420
\(756\) −16.2601 −0.591374
\(757\) −9.91374 −0.360321 −0.180161 0.983637i \(-0.557662\pi\)
−0.180161 + 0.983637i \(0.557662\pi\)
\(758\) 30.9906 1.12563
\(759\) −0.895136 −0.0324914
\(760\) 5.17023 0.187544
\(761\) −2.71944 −0.0985798 −0.0492899 0.998785i \(-0.515696\pi\)
−0.0492899 + 0.998785i \(0.515696\pi\)
\(762\) 4.94935 0.179296
\(763\) −29.2562 −1.05914
\(764\) −19.7596 −0.714877
\(765\) −0.145276 −0.00525245
\(766\) 23.7304 0.857414
\(767\) −4.90053 −0.176948
\(768\) 1.44504 0.0521435
\(769\) 5.75037 0.207364 0.103682 0.994611i \(-0.466938\pi\)
0.103682 + 0.994611i \(0.466938\pi\)
\(770\) 7.67109 0.276447
\(771\) −18.3692 −0.661550
\(772\) −2.00731 −0.0722446
\(773\) 37.6903 1.35563 0.677813 0.735235i \(-0.262928\pi\)
0.677813 + 0.735235i \(0.262928\pi\)
\(774\) 2.97184 0.106821
\(775\) 30.6384 1.10056
\(776\) −16.6449 −0.597516
\(777\) 39.9215 1.43218
\(778\) 1.08756 0.0389910
\(779\) 36.0713 1.29239
\(780\) −0.424218 −0.0151894
\(781\) −41.6421 −1.49007
\(782\) −0.0370065 −0.00132335
\(783\) 0 0
\(784\) 1.27409 0.0455033
\(785\) −2.73247 −0.0975260
\(786\) 4.24543 0.151430
\(787\) 2.22168 0.0791943 0.0395972 0.999216i \(-0.487393\pi\)
0.0395972 + 0.999216i \(0.487393\pi\)
\(788\) 1.62857 0.0580154
\(789\) −2.74548 −0.0977417
\(790\) 8.32012 0.296017
\(791\) −49.0285 −1.74325
\(792\) 3.96178 0.140776
\(793\) 4.75402 0.168820
\(794\) −6.38613 −0.226635
\(795\) −8.21567 −0.291380
\(796\) 9.36362 0.331885
\(797\) 37.9020 1.34256 0.671279 0.741205i \(-0.265745\pi\)
0.671279 + 0.741205i \(0.265745\pi\)
\(798\) −35.0122 −1.23942
\(799\) 1.31950 0.0466807
\(800\) 4.62324 0.163456
\(801\) 2.34890 0.0829943
\(802\) 30.1679 1.06526
\(803\) −12.9552 −0.457179
\(804\) 2.69257 0.0949596
\(805\) 0.251730 0.00887233
\(806\) 3.16954 0.111642
\(807\) 37.0459 1.30408
\(808\) −16.8855 −0.594029
\(809\) 2.24431 0.0789059 0.0394529 0.999221i \(-0.487438\pi\)
0.0394529 + 0.999221i \(0.487438\pi\)
\(810\) −3.33479 −0.117173
\(811\) −21.1074 −0.741180 −0.370590 0.928797i \(-0.620844\pi\)
−0.370590 + 0.928797i \(0.620844\pi\)
\(812\) 0 0
\(813\) −11.3048 −0.396475
\(814\) −41.7284 −1.46258
\(815\) −4.98576 −0.174644
\(816\) −0.375073 −0.0131302
\(817\) 27.4523 0.960435
\(818\) −4.76753 −0.166693
\(819\) −1.25447 −0.0438349
\(820\) −2.62854 −0.0917927
\(821\) −48.0167 −1.67580 −0.837898 0.545827i \(-0.816216\pi\)
−0.837898 + 0.545827i \(0.816216\pi\)
\(822\) 24.5511 0.856318
\(823\) −7.22912 −0.251991 −0.125996 0.992031i \(-0.540213\pi\)
−0.125996 + 0.992031i \(0.540213\pi\)
\(824\) 2.65015 0.0923222
\(825\) −29.0263 −1.01057
\(826\) 29.4732 1.02550
\(827\) 6.73227 0.234104 0.117052 0.993126i \(-0.462656\pi\)
0.117052 + 0.993126i \(0.462656\pi\)
\(828\) 0.130008 0.00451808
\(829\) 4.80413 0.166854 0.0834271 0.996514i \(-0.473413\pi\)
0.0834271 + 0.996514i \(0.473413\pi\)
\(830\) 0.647484 0.0224745
\(831\) 18.3957 0.638141
\(832\) 0.478274 0.0165812
\(833\) −0.330702 −0.0114581
\(834\) 0.528269 0.0182925
\(835\) 0.245141 0.00848347
\(836\) 36.5968 1.26573
\(837\) 37.4613 1.29485
\(838\) 27.2149 0.940122
\(839\) −16.9749 −0.586038 −0.293019 0.956107i \(-0.594660\pi\)
−0.293019 + 0.956107i \(0.594660\pi\)
\(840\) 2.55136 0.0880304
\(841\) 0 0
\(842\) −18.9520 −0.653130
\(843\) 8.30698 0.286108
\(844\) 6.35245 0.218660
\(845\) 7.83909 0.269673
\(846\) −4.63555 −0.159373
\(847\) 22.6576 0.778526
\(848\) 9.26256 0.318077
\(849\) 35.7564 1.22716
\(850\) −1.20000 −0.0411597
\(851\) −1.36933 −0.0469402
\(852\) −13.8499 −0.474491
\(853\) 28.3800 0.971713 0.485857 0.874039i \(-0.338508\pi\)
0.485857 + 0.874039i \(0.338508\pi\)
\(854\) −28.5920 −0.978399
\(855\) 4.71450 0.161232
\(856\) −15.7119 −0.537022
\(857\) 44.1365 1.50767 0.753836 0.657062i \(-0.228201\pi\)
0.753836 + 0.657062i \(0.228201\pi\)
\(858\) −3.00277 −0.102513
\(859\) 1.50569 0.0513733 0.0256867 0.999670i \(-0.491823\pi\)
0.0256867 + 0.999670i \(0.491823\pi\)
\(860\) −2.00047 −0.0682155
\(861\) 17.8002 0.606628
\(862\) −20.6248 −0.702483
\(863\) −39.5912 −1.34770 −0.673851 0.738868i \(-0.735361\pi\)
−0.673851 + 0.738868i \(0.735361\pi\)
\(864\) 5.65279 0.192312
\(865\) 2.88517 0.0980986
\(866\) −4.85408 −0.164948
\(867\) −24.4684 −0.830989
\(868\) −19.0625 −0.647023
\(869\) 58.8929 1.99780
\(870\) 0 0
\(871\) 0.891175 0.0301963
\(872\) 10.1709 0.344429
\(873\) −15.1777 −0.513687
\(874\) 1.20094 0.0406224
\(875\) 16.9908 0.574393
\(876\) −4.30883 −0.145582
\(877\) 41.2160 1.39177 0.695883 0.718155i \(-0.255013\pi\)
0.695883 + 0.718155i \(0.255013\pi\)
\(878\) 27.2748 0.920480
\(879\) −36.3747 −1.22689
\(880\) −2.66684 −0.0898992
\(881\) 35.6727 1.20184 0.600921 0.799308i \(-0.294801\pi\)
0.600921 + 0.799308i \(0.294801\pi\)
\(882\) 1.16179 0.0391194
\(883\) −24.4491 −0.822777 −0.411389 0.911460i \(-0.634956\pi\)
−0.411389 + 0.911460i \(0.634956\pi\)
\(884\) −0.124140 −0.00417528
\(885\) 9.08823 0.305498
\(886\) 22.5925 0.759008
\(887\) −3.56621 −0.119742 −0.0598708 0.998206i \(-0.519069\pi\)
−0.0598708 + 0.998206i \(0.519069\pi\)
\(888\) −13.8786 −0.465736
\(889\) −9.85208 −0.330428
\(890\) −1.58114 −0.0530000
\(891\) −23.6049 −0.790793
\(892\) 6.77523 0.226852
\(893\) −42.8207 −1.43294
\(894\) 7.70085 0.257555
\(895\) 2.86255 0.0956844
\(896\) −2.87647 −0.0960962
\(897\) −0.0985372 −0.00329006
\(898\) −6.15402 −0.205362
\(899\) 0 0
\(900\) 4.21572 0.140524
\(901\) −2.40417 −0.0800947
\(902\) −18.6058 −0.619506
\(903\) 13.5469 0.450814
\(904\) 17.0447 0.566897
\(905\) −5.79286 −0.192561
\(906\) −9.73036 −0.323269
\(907\) 9.34921 0.310436 0.155218 0.987880i \(-0.450392\pi\)
0.155218 + 0.987880i \(0.450392\pi\)
\(908\) 16.6240 0.551688
\(909\) −15.3971 −0.510689
\(910\) 0.844440 0.0279929
\(911\) 28.1951 0.934145 0.467073 0.884219i \(-0.345309\pi\)
0.467073 + 0.884219i \(0.345309\pi\)
\(912\) 12.1719 0.403052
\(913\) 4.58313 0.151679
\(914\) −15.7924 −0.522366
\(915\) −8.81651 −0.291465
\(916\) 6.48836 0.214382
\(917\) −8.45088 −0.279073
\(918\) −1.46723 −0.0484258
\(919\) −52.9307 −1.74602 −0.873011 0.487700i \(-0.837836\pi\)
−0.873011 + 0.487700i \(0.837836\pi\)
\(920\) −0.0875136 −0.00288524
\(921\) −21.7866 −0.717894
\(922\) −8.27739 −0.272601
\(923\) −4.58399 −0.150884
\(924\) 18.0595 0.594114
\(925\) −44.4030 −1.45996
\(926\) −9.93980 −0.326642
\(927\) 2.41655 0.0793698
\(928\) 0 0
\(929\) −19.2831 −0.632657 −0.316329 0.948650i \(-0.602450\pi\)
−0.316329 + 0.948650i \(0.602450\pi\)
\(930\) −5.87803 −0.192748
\(931\) 10.7320 0.351726
\(932\) 19.9763 0.654346
\(933\) −26.8657 −0.879543
\(934\) −17.6952 −0.579005
\(935\) 0.692201 0.0226374
\(936\) 0.436116 0.0142549
\(937\) −30.1635 −0.985397 −0.492699 0.870200i \(-0.663989\pi\)
−0.492699 + 0.870200i \(0.663989\pi\)
\(938\) −5.35978 −0.175003
\(939\) −29.5077 −0.962946
\(940\) 3.12038 0.101776
\(941\) 19.5496 0.637299 0.318649 0.947873i \(-0.396771\pi\)
0.318649 + 0.947873i \(0.396771\pi\)
\(942\) −6.43285 −0.209594
\(943\) −0.610558 −0.0198825
\(944\) −10.2463 −0.333489
\(945\) 9.98057 0.324668
\(946\) −14.1601 −0.460384
\(947\) 27.2788 0.886443 0.443222 0.896412i \(-0.353835\pi\)
0.443222 + 0.896412i \(0.353835\pi\)
\(948\) 19.5875 0.636171
\(949\) −1.42612 −0.0462937
\(950\) 38.9426 1.26346
\(951\) −12.1663 −0.394520
\(952\) 0.746613 0.0241979
\(953\) 24.9572 0.808444 0.404222 0.914661i \(-0.367542\pi\)
0.404222 + 0.914661i \(0.367542\pi\)
\(954\) 8.44610 0.273453
\(955\) 12.1286 0.392471
\(956\) 1.85655 0.0600452
\(957\) 0 0
\(958\) −23.2355 −0.750704
\(959\) −48.8709 −1.57812
\(960\) −0.886977 −0.0286271
\(961\) 12.9176 0.416698
\(962\) −4.59349 −0.148100
\(963\) −14.3270 −0.461680
\(964\) −2.38694 −0.0768783
\(965\) 1.23210 0.0396627
\(966\) 0.592631 0.0190676
\(967\) 14.6917 0.472452 0.236226 0.971698i \(-0.424089\pi\)
0.236226 + 0.971698i \(0.424089\pi\)
\(968\) −7.87688 −0.253173
\(969\) −3.15932 −0.101492
\(970\) 10.2167 0.328040
\(971\) 18.0880 0.580470 0.290235 0.956955i \(-0.406267\pi\)
0.290235 + 0.956955i \(0.406267\pi\)
\(972\) 9.10752 0.292124
\(973\) −1.05156 −0.0337115
\(974\) 5.79395 0.185650
\(975\) −3.19524 −0.102330
\(976\) 9.93996 0.318170
\(977\) 43.1498 1.38048 0.690242 0.723579i \(-0.257504\pi\)
0.690242 + 0.723579i \(0.257504\pi\)
\(978\) −11.7376 −0.375328
\(979\) −11.1919 −0.357695
\(980\) −0.782047 −0.0249816
\(981\) 9.27433 0.296107
\(982\) −8.40728 −0.268287
\(983\) 7.09060 0.226155 0.113077 0.993586i \(-0.463929\pi\)
0.113077 + 0.993586i \(0.463929\pi\)
\(984\) −6.18819 −0.197272
\(985\) −0.999628 −0.0318508
\(986\) 0 0
\(987\) −21.1308 −0.672601
\(988\) 4.02861 0.128167
\(989\) −0.464669 −0.0147756
\(990\) −2.43177 −0.0772867
\(991\) 30.8015 0.978443 0.489221 0.872160i \(-0.337281\pi\)
0.489221 + 0.872160i \(0.337281\pi\)
\(992\) 6.62704 0.210409
\(993\) −45.6193 −1.44769
\(994\) 27.5694 0.874448
\(995\) −5.74746 −0.182207
\(996\) 1.52432 0.0483001
\(997\) −29.2486 −0.926313 −0.463156 0.886277i \(-0.653283\pi\)
−0.463156 + 0.886277i \(0.653283\pi\)
\(998\) −17.5998 −0.557112
\(999\) −54.2912 −1.71770
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.r.1.4 6
29.12 odd 4 1682.2.b.j.1681.3 12
29.14 odd 28 58.2.e.a.51.2 yes 12
29.17 odd 4 1682.2.b.j.1681.9 12
29.27 odd 28 58.2.e.a.33.2 12
29.28 even 2 1682.2.a.s.1.4 6
87.14 even 28 522.2.n.a.109.1 12
87.56 even 28 522.2.n.a.91.1 12
116.27 even 28 464.2.y.c.33.2 12
116.43 even 28 464.2.y.c.225.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.e.a.33.2 12 29.27 odd 28
58.2.e.a.51.2 yes 12 29.14 odd 28
464.2.y.c.33.2 12 116.27 even 28
464.2.y.c.225.2 12 116.43 even 28
522.2.n.a.91.1 12 87.56 even 28
522.2.n.a.109.1 12 87.14 even 28
1682.2.a.r.1.4 6 1.1 even 1 trivial
1682.2.a.s.1.4 6 29.28 even 2
1682.2.b.j.1681.3 12 29.12 odd 4
1682.2.b.j.1681.9 12 29.17 odd 4