Properties

Label 1682.2.a.q.1.4
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,2,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-2,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.13716913.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 13x^{4} + 17x^{3} + 52x^{2} - 32x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.41744\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.17047 q^{3} +1.00000 q^{4} -2.97240 q^{5} -1.17047 q^{6} +0.520906 q^{7} -1.00000 q^{8} -1.63001 q^{9} +2.97240 q^{10} +0.649559 q^{11} +1.17047 q^{12} +0.493598 q^{13} -0.520906 q^{14} -3.47909 q^{15} +1.00000 q^{16} +7.42032 q^{17} +1.63001 q^{18} -6.63001 q^{19} -2.97240 q^{20} +0.609702 q^{21} -0.649559 q^{22} +7.61793 q^{23} -1.17047 q^{24} +3.83518 q^{25} -0.493598 q^{26} -5.41927 q^{27} +0.520906 q^{28} +3.47909 q^{30} -5.98045 q^{31} -1.00000 q^{32} +0.760286 q^{33} -7.42032 q^{34} -1.54834 q^{35} -1.63001 q^{36} +2.48233 q^{37} +6.63001 q^{38} +0.577740 q^{39} +2.97240 q^{40} -7.82245 q^{41} -0.609702 q^{42} -0.649559 q^{43} +0.649559 q^{44} +4.84505 q^{45} -7.61793 q^{46} -8.79595 q^{47} +1.17047 q^{48} -6.72866 q^{49} -3.83518 q^{50} +8.68522 q^{51} +0.493598 q^{52} -1.15121 q^{53} +5.41927 q^{54} -1.93075 q^{55} -0.520906 q^{56} -7.76020 q^{57} -5.31686 q^{59} -3.47909 q^{60} -9.69702 q^{61} +5.98045 q^{62} -0.849083 q^{63} +1.00000 q^{64} -1.46717 q^{65} -0.760286 q^{66} +4.52091 q^{67} +7.42032 q^{68} +8.91652 q^{69} +1.54834 q^{70} -14.1448 q^{71} +1.63001 q^{72} -8.74045 q^{73} -2.48233 q^{74} +4.48894 q^{75} -6.63001 q^{76} +0.338359 q^{77} -0.577740 q^{78} -4.12847 q^{79} -2.97240 q^{80} -1.45303 q^{81} +7.82245 q^{82} +4.28153 q^{83} +0.609702 q^{84} -22.0562 q^{85} +0.649559 q^{86} -0.649559 q^{88} +1.19266 q^{89} -4.84505 q^{90} +0.257118 q^{91} +7.61793 q^{92} -6.99991 q^{93} +8.79595 q^{94} +19.7071 q^{95} -1.17047 q^{96} -11.7329 q^{97} +6.72866 q^{98} -1.05879 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 2 q^{6} - 3 q^{7} - 6 q^{8} + 12 q^{9} + q^{11} - 2 q^{12} - 3 q^{13} + 3 q^{14} - 27 q^{15} + 6 q^{16} + 6 q^{17} - 12 q^{18} - 18 q^{19} + 10 q^{21} - q^{22} - 14 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.17047 0.675768 0.337884 0.941188i \(-0.390289\pi\)
0.337884 + 0.941188i \(0.390289\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.97240 −1.32930 −0.664649 0.747155i \(-0.731419\pi\)
−0.664649 + 0.747155i \(0.731419\pi\)
\(6\) −1.17047 −0.477840
\(7\) 0.520906 0.196884 0.0984420 0.995143i \(-0.468614\pi\)
0.0984420 + 0.995143i \(0.468614\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.63001 −0.543337
\(10\) 2.97240 0.939956
\(11\) 0.649559 0.195849 0.0979247 0.995194i \(-0.468780\pi\)
0.0979247 + 0.995194i \(0.468780\pi\)
\(12\) 1.17047 0.337884
\(13\) 0.493598 0.136900 0.0684498 0.997655i \(-0.478195\pi\)
0.0684498 + 0.997655i \(0.478195\pi\)
\(14\) −0.520906 −0.139218
\(15\) −3.47909 −0.898298
\(16\) 1.00000 0.250000
\(17\) 7.42032 1.79969 0.899846 0.436208i \(-0.143679\pi\)
0.899846 + 0.436208i \(0.143679\pi\)
\(18\) 1.63001 0.384197
\(19\) −6.63001 −1.52103 −0.760514 0.649321i \(-0.775053\pi\)
−0.760514 + 0.649321i \(0.775053\pi\)
\(20\) −2.97240 −0.664649
\(21\) 0.609702 0.133048
\(22\) −0.649559 −0.138486
\(23\) 7.61793 1.58845 0.794224 0.607625i \(-0.207878\pi\)
0.794224 + 0.607625i \(0.207878\pi\)
\(24\) −1.17047 −0.238920
\(25\) 3.83518 0.767036
\(26\) −0.493598 −0.0968026
\(27\) −5.41927 −1.04294
\(28\) 0.520906 0.0984420
\(29\) 0 0
\(30\) 3.47909 0.635193
\(31\) −5.98045 −1.07412 −0.537060 0.843544i \(-0.680465\pi\)
−0.537060 + 0.843544i \(0.680465\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.760286 0.132349
\(34\) −7.42032 −1.27257
\(35\) −1.54834 −0.261718
\(36\) −1.63001 −0.271669
\(37\) 2.48233 0.408092 0.204046 0.978961i \(-0.434591\pi\)
0.204046 + 0.978961i \(0.434591\pi\)
\(38\) 6.63001 1.07553
\(39\) 0.577740 0.0925124
\(40\) 2.97240 0.469978
\(41\) −7.82245 −1.22166 −0.610830 0.791761i \(-0.709164\pi\)
−0.610830 + 0.791761i \(0.709164\pi\)
\(42\) −0.609702 −0.0940791
\(43\) −0.649559 −0.0990568 −0.0495284 0.998773i \(-0.515772\pi\)
−0.0495284 + 0.998773i \(0.515772\pi\)
\(44\) 0.649559 0.0979247
\(45\) 4.84505 0.722257
\(46\) −7.61793 −1.12320
\(47\) −8.79595 −1.28302 −0.641511 0.767114i \(-0.721692\pi\)
−0.641511 + 0.767114i \(0.721692\pi\)
\(48\) 1.17047 0.168942
\(49\) −6.72866 −0.961237
\(50\) −3.83518 −0.542376
\(51\) 8.68522 1.21617
\(52\) 0.493598 0.0684498
\(53\) −1.15121 −0.158130 −0.0790652 0.996869i \(-0.525194\pi\)
−0.0790652 + 0.996869i \(0.525194\pi\)
\(54\) 5.41927 0.737469
\(55\) −1.93075 −0.260342
\(56\) −0.520906 −0.0696090
\(57\) −7.76020 −1.02786
\(58\) 0 0
\(59\) −5.31686 −0.692196 −0.346098 0.938198i \(-0.612493\pi\)
−0.346098 + 0.938198i \(0.612493\pi\)
\(60\) −3.47909 −0.449149
\(61\) −9.69702 −1.24158 −0.620788 0.783979i \(-0.713187\pi\)
−0.620788 + 0.783979i \(0.713187\pi\)
\(62\) 5.98045 0.759518
\(63\) −0.849083 −0.106974
\(64\) 1.00000 0.125000
\(65\) −1.46717 −0.181980
\(66\) −0.760286 −0.0935848
\(67\) 4.52091 0.552317 0.276158 0.961112i \(-0.410939\pi\)
0.276158 + 0.961112i \(0.410939\pi\)
\(68\) 7.42032 0.899846
\(69\) 8.91652 1.07342
\(70\) 1.54834 0.185062
\(71\) −14.1448 −1.67868 −0.839338 0.543610i \(-0.817057\pi\)
−0.839338 + 0.543610i \(0.817057\pi\)
\(72\) 1.63001 0.192099
\(73\) −8.74045 −1.02299 −0.511496 0.859286i \(-0.670909\pi\)
−0.511496 + 0.859286i \(0.670909\pi\)
\(74\) −2.48233 −0.288565
\(75\) 4.48894 0.518339
\(76\) −6.63001 −0.760514
\(77\) 0.338359 0.0385596
\(78\) −0.577740 −0.0654161
\(79\) −4.12847 −0.464489 −0.232244 0.972657i \(-0.574607\pi\)
−0.232244 + 0.972657i \(0.574607\pi\)
\(80\) −2.97240 −0.332325
\(81\) −1.45303 −0.161448
\(82\) 7.82245 0.863845
\(83\) 4.28153 0.469958 0.234979 0.972000i \(-0.424498\pi\)
0.234979 + 0.972000i \(0.424498\pi\)
\(84\) 0.609702 0.0665240
\(85\) −22.0562 −2.39233
\(86\) 0.649559 0.0700438
\(87\) 0 0
\(88\) −0.649559 −0.0692432
\(89\) 1.19266 0.126421 0.0632107 0.998000i \(-0.479866\pi\)
0.0632107 + 0.998000i \(0.479866\pi\)
\(90\) −4.84505 −0.510713
\(91\) 0.257118 0.0269533
\(92\) 7.61793 0.794224
\(93\) −6.99991 −0.725857
\(94\) 8.79595 0.907233
\(95\) 19.7071 2.02190
\(96\) −1.17047 −0.119460
\(97\) −11.7329 −1.19129 −0.595647 0.803246i \(-0.703104\pi\)
−0.595647 + 0.803246i \(0.703104\pi\)
\(98\) 6.72866 0.679697
\(99\) −1.05879 −0.106412
\(100\) 3.83518 0.383518
\(101\) −9.58417 −0.953660 −0.476830 0.878995i \(-0.658214\pi\)
−0.476830 + 0.878995i \(0.658214\pi\)
\(102\) −8.68522 −0.859965
\(103\) 6.47977 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(104\) −0.493598 −0.0484013
\(105\) −1.81228 −0.176861
\(106\) 1.15121 0.111815
\(107\) 9.78051 0.945517 0.472759 0.881192i \(-0.343258\pi\)
0.472759 + 0.881192i \(0.343258\pi\)
\(108\) −5.41927 −0.521469
\(109\) 0.0280295 0.00268474 0.00134237 0.999999i \(-0.499573\pi\)
0.00134237 + 0.999999i \(0.499573\pi\)
\(110\) 1.93075 0.184090
\(111\) 2.90548 0.275776
\(112\) 0.520906 0.0492210
\(113\) 4.12883 0.388408 0.194204 0.980961i \(-0.437788\pi\)
0.194204 + 0.980961i \(0.437788\pi\)
\(114\) 7.76020 0.726809
\(115\) −22.6436 −2.11152
\(116\) 0 0
\(117\) −0.804571 −0.0743826
\(118\) 5.31686 0.489456
\(119\) 3.86529 0.354330
\(120\) 3.47909 0.317596
\(121\) −10.5781 −0.961643
\(122\) 9.69702 0.877927
\(123\) −9.15590 −0.825560
\(124\) −5.98045 −0.537060
\(125\) 3.46232 0.309679
\(126\) 0.849083 0.0756423
\(127\) −15.9153 −1.41226 −0.706128 0.708084i \(-0.749560\pi\)
−0.706128 + 0.708084i \(0.749560\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.760286 −0.0669395
\(130\) 1.46717 0.128680
\(131\) 7.27202 0.635359 0.317679 0.948198i \(-0.397096\pi\)
0.317679 + 0.948198i \(0.397096\pi\)
\(132\) 0.760286 0.0661744
\(133\) −3.45361 −0.299466
\(134\) −4.52091 −0.390547
\(135\) 16.1082 1.38638
\(136\) −7.42032 −0.636287
\(137\) 16.6994 1.42673 0.713365 0.700793i \(-0.247170\pi\)
0.713365 + 0.700793i \(0.247170\pi\)
\(138\) −8.91652 −0.759025
\(139\) 16.9493 1.43763 0.718813 0.695204i \(-0.244686\pi\)
0.718813 + 0.695204i \(0.244686\pi\)
\(140\) −1.54834 −0.130859
\(141\) −10.2954 −0.867025
\(142\) 14.1448 1.18700
\(143\) 0.320621 0.0268117
\(144\) −1.63001 −0.135834
\(145\) 0 0
\(146\) 8.74045 0.723365
\(147\) −7.87566 −0.649573
\(148\) 2.48233 0.204046
\(149\) 16.5622 1.35683 0.678415 0.734679i \(-0.262667\pi\)
0.678415 + 0.734679i \(0.262667\pi\)
\(150\) −4.48894 −0.366521
\(151\) −7.51045 −0.611191 −0.305596 0.952161i \(-0.598856\pi\)
−0.305596 + 0.952161i \(0.598856\pi\)
\(152\) 6.63001 0.537765
\(153\) −12.0952 −0.977839
\(154\) −0.338359 −0.0272658
\(155\) 17.7763 1.42783
\(156\) 0.577740 0.0462562
\(157\) 1.40194 0.111887 0.0559436 0.998434i \(-0.482183\pi\)
0.0559436 + 0.998434i \(0.482183\pi\)
\(158\) 4.12847 0.328443
\(159\) −1.34745 −0.106860
\(160\) 2.97240 0.234989
\(161\) 3.96823 0.312740
\(162\) 1.45303 0.114161
\(163\) 7.81821 0.612370 0.306185 0.951972i \(-0.400947\pi\)
0.306185 + 0.951972i \(0.400947\pi\)
\(164\) −7.82245 −0.610830
\(165\) −2.25988 −0.175931
\(166\) −4.28153 −0.332311
\(167\) −13.5098 −1.04542 −0.522709 0.852511i \(-0.675079\pi\)
−0.522709 + 0.852511i \(0.675079\pi\)
\(168\) −0.609702 −0.0470396
\(169\) −12.7564 −0.981259
\(170\) 22.0562 1.69163
\(171\) 10.8070 0.826431
\(172\) −0.649559 −0.0495284
\(173\) 0.251083 0.0190895 0.00954476 0.999954i \(-0.496962\pi\)
0.00954476 + 0.999954i \(0.496962\pi\)
\(174\) 0 0
\(175\) 1.99777 0.151017
\(176\) 0.649559 0.0489624
\(177\) −6.22319 −0.467764
\(178\) −1.19266 −0.0893935
\(179\) 12.7421 0.952386 0.476193 0.879341i \(-0.342016\pi\)
0.476193 + 0.879341i \(0.342016\pi\)
\(180\) 4.84505 0.361129
\(181\) −6.89398 −0.512425 −0.256213 0.966620i \(-0.582475\pi\)
−0.256213 + 0.966620i \(0.582475\pi\)
\(182\) −0.257118 −0.0190589
\(183\) −11.3500 −0.839018
\(184\) −7.61793 −0.561601
\(185\) −7.37848 −0.542476
\(186\) 6.99991 0.513258
\(187\) 4.81994 0.352469
\(188\) −8.79595 −0.641511
\(189\) −2.82293 −0.205338
\(190\) −19.7071 −1.42970
\(191\) 6.02931 0.436265 0.218133 0.975919i \(-0.430003\pi\)
0.218133 + 0.975919i \(0.430003\pi\)
\(192\) 1.17047 0.0844710
\(193\) −8.90307 −0.640857 −0.320428 0.947273i \(-0.603827\pi\)
−0.320428 + 0.947273i \(0.603827\pi\)
\(194\) 11.7329 0.842372
\(195\) −1.71727 −0.122977
\(196\) −6.72866 −0.480618
\(197\) 4.71110 0.335652 0.167826 0.985817i \(-0.446325\pi\)
0.167826 + 0.985817i \(0.446325\pi\)
\(198\) 1.05879 0.0752448
\(199\) −19.9563 −1.41466 −0.707332 0.706882i \(-0.750101\pi\)
−0.707332 + 0.706882i \(0.750101\pi\)
\(200\) −3.83518 −0.271188
\(201\) 5.29156 0.373238
\(202\) 9.58417 0.674340
\(203\) 0 0
\(204\) 8.68522 0.608087
\(205\) 23.2515 1.62395
\(206\) −6.47977 −0.451467
\(207\) −12.4173 −0.863063
\(208\) 0.493598 0.0342249
\(209\) −4.30658 −0.297893
\(210\) 1.81228 0.125059
\(211\) 4.19086 0.288511 0.144255 0.989540i \(-0.453921\pi\)
0.144255 + 0.989540i \(0.453921\pi\)
\(212\) −1.15121 −0.0790652
\(213\) −16.5560 −1.13440
\(214\) −9.78051 −0.668582
\(215\) 1.93075 0.131676
\(216\) 5.41927 0.368734
\(217\) −3.11525 −0.211477
\(218\) −0.0280295 −0.00189840
\(219\) −10.2304 −0.691306
\(220\) −1.93075 −0.130171
\(221\) 3.66266 0.246377
\(222\) −2.90548 −0.195003
\(223\) 6.29535 0.421568 0.210784 0.977533i \(-0.432398\pi\)
0.210784 + 0.977533i \(0.432398\pi\)
\(224\) −0.520906 −0.0348045
\(225\) −6.25139 −0.416759
\(226\) −4.12883 −0.274646
\(227\) −12.7672 −0.847390 −0.423695 0.905805i \(-0.639267\pi\)
−0.423695 + 0.905805i \(0.639267\pi\)
\(228\) −7.76020 −0.513932
\(229\) −11.9434 −0.789244 −0.394622 0.918843i \(-0.629125\pi\)
−0.394622 + 0.918843i \(0.629125\pi\)
\(230\) 22.6436 1.49307
\(231\) 0.396038 0.0260574
\(232\) 0 0
\(233\) −11.7030 −0.766690 −0.383345 0.923605i \(-0.625228\pi\)
−0.383345 + 0.923605i \(0.625228\pi\)
\(234\) 0.804571 0.0525964
\(235\) 26.1451 1.70552
\(236\) −5.31686 −0.346098
\(237\) −4.83222 −0.313887
\(238\) −3.86529 −0.250549
\(239\) −16.7302 −1.08219 −0.541093 0.840963i \(-0.681989\pi\)
−0.541093 + 0.840963i \(0.681989\pi\)
\(240\) −3.47909 −0.224575
\(241\) −7.65233 −0.492930 −0.246465 0.969152i \(-0.579269\pi\)
−0.246465 + 0.969152i \(0.579269\pi\)
\(242\) 10.5781 0.679984
\(243\) 14.5571 0.933837
\(244\) −9.69702 −0.620788
\(245\) 20.0003 1.27777
\(246\) 9.15590 0.583759
\(247\) −3.27256 −0.208228
\(248\) 5.98045 0.379759
\(249\) 5.01138 0.317583
\(250\) −3.46232 −0.218976
\(251\) −1.58064 −0.0997694 −0.0498847 0.998755i \(-0.515885\pi\)
−0.0498847 + 0.998755i \(0.515885\pi\)
\(252\) −0.849083 −0.0534872
\(253\) 4.94830 0.311097
\(254\) 15.9153 0.998616
\(255\) −25.8160 −1.61666
\(256\) 1.00000 0.0625000
\(257\) −15.0284 −0.937446 −0.468723 0.883345i \(-0.655286\pi\)
−0.468723 + 0.883345i \(0.655286\pi\)
\(258\) 0.760286 0.0473334
\(259\) 1.29306 0.0803468
\(260\) −1.46717 −0.0909902
\(261\) 0 0
\(262\) −7.27202 −0.449267
\(263\) −5.17364 −0.319020 −0.159510 0.987196i \(-0.550991\pi\)
−0.159510 + 0.987196i \(0.550991\pi\)
\(264\) −0.760286 −0.0467924
\(265\) 3.42185 0.210203
\(266\) 3.45361 0.211755
\(267\) 1.39596 0.0854316
\(268\) 4.52091 0.276158
\(269\) 5.75602 0.350951 0.175475 0.984484i \(-0.443854\pi\)
0.175475 + 0.984484i \(0.443854\pi\)
\(270\) −16.1082 −0.980317
\(271\) −10.9361 −0.664319 −0.332159 0.943223i \(-0.607777\pi\)
−0.332159 + 0.943223i \(0.607777\pi\)
\(272\) 7.42032 0.449923
\(273\) 0.300948 0.0182142
\(274\) −16.6994 −1.00885
\(275\) 2.49118 0.150224
\(276\) 8.91652 0.536712
\(277\) −2.14237 −0.128722 −0.0643612 0.997927i \(-0.520501\pi\)
−0.0643612 + 0.997927i \(0.520501\pi\)
\(278\) −16.9493 −1.01655
\(279\) 9.74820 0.583610
\(280\) 1.54834 0.0925312
\(281\) 9.52397 0.568153 0.284076 0.958802i \(-0.408313\pi\)
0.284076 + 0.958802i \(0.408313\pi\)
\(282\) 10.2954 0.613079
\(283\) 30.6436 1.82157 0.910785 0.412881i \(-0.135477\pi\)
0.910785 + 0.412881i \(0.135477\pi\)
\(284\) −14.1448 −0.839338
\(285\) 23.0664 1.36634
\(286\) −0.320621 −0.0189587
\(287\) −4.07476 −0.240525
\(288\) 1.63001 0.0960493
\(289\) 38.0611 2.23889
\(290\) 0 0
\(291\) −13.7329 −0.805039
\(292\) −8.74045 −0.511496
\(293\) −5.43961 −0.317785 −0.158893 0.987296i \(-0.550792\pi\)
−0.158893 + 0.987296i \(0.550792\pi\)
\(294\) 7.87566 0.459318
\(295\) 15.8038 0.920135
\(296\) −2.48233 −0.144282
\(297\) −3.52013 −0.204259
\(298\) −16.5622 −0.959423
\(299\) 3.76020 0.217458
\(300\) 4.48894 0.259169
\(301\) −0.338359 −0.0195027
\(302\) 7.51045 0.432178
\(303\) −11.2179 −0.644453
\(304\) −6.63001 −0.380257
\(305\) 28.8234 1.65043
\(306\) 12.0952 0.691437
\(307\) −32.7348 −1.86828 −0.934138 0.356912i \(-0.883830\pi\)
−0.934138 + 0.356912i \(0.883830\pi\)
\(308\) 0.338359 0.0192798
\(309\) 7.58434 0.431458
\(310\) −17.7763 −1.00963
\(311\) −21.6580 −1.22811 −0.614057 0.789262i \(-0.710464\pi\)
−0.614057 + 0.789262i \(0.710464\pi\)
\(312\) −0.577740 −0.0327081
\(313\) −10.3916 −0.587370 −0.293685 0.955902i \(-0.594882\pi\)
−0.293685 + 0.955902i \(0.594882\pi\)
\(314\) −1.40194 −0.0791161
\(315\) 2.52382 0.142201
\(316\) −4.12847 −0.232244
\(317\) 25.0536 1.40715 0.703575 0.710621i \(-0.251586\pi\)
0.703575 + 0.710621i \(0.251586\pi\)
\(318\) 1.34745 0.0755611
\(319\) 0 0
\(320\) −2.97240 −0.166162
\(321\) 11.4477 0.638951
\(322\) −3.96823 −0.221141
\(323\) −49.1968 −2.73738
\(324\) −1.45303 −0.0807238
\(325\) 1.89304 0.105007
\(326\) −7.81821 −0.433011
\(327\) 0.0328075 0.00181426
\(328\) 7.82245 0.431922
\(329\) −4.58186 −0.252606
\(330\) 2.25988 0.124402
\(331\) 7.76962 0.427057 0.213528 0.976937i \(-0.431504\pi\)
0.213528 + 0.976937i \(0.431504\pi\)
\(332\) 4.28153 0.234979
\(333\) −4.04622 −0.221732
\(334\) 13.5098 0.739222
\(335\) −13.4380 −0.734194
\(336\) 0.609702 0.0332620
\(337\) 20.0182 1.09046 0.545229 0.838287i \(-0.316443\pi\)
0.545229 + 0.838287i \(0.316443\pi\)
\(338\) 12.7564 0.693855
\(339\) 4.83265 0.262474
\(340\) −22.0562 −1.19616
\(341\) −3.88466 −0.210366
\(342\) −10.8070 −0.584375
\(343\) −7.15134 −0.386136
\(344\) 0.649559 0.0350219
\(345\) −26.5035 −1.42690
\(346\) −0.251083 −0.0134983
\(347\) 18.9324 1.01634 0.508172 0.861255i \(-0.330321\pi\)
0.508172 + 0.861255i \(0.330321\pi\)
\(348\) 0 0
\(349\) −7.41998 −0.397182 −0.198591 0.980082i \(-0.563637\pi\)
−0.198591 + 0.980082i \(0.563637\pi\)
\(350\) −1.99777 −0.106785
\(351\) −2.67494 −0.142778
\(352\) −0.649559 −0.0346216
\(353\) 19.6708 1.04697 0.523484 0.852035i \(-0.324632\pi\)
0.523484 + 0.852035i \(0.324632\pi\)
\(354\) 6.22319 0.330759
\(355\) 42.0440 2.23146
\(356\) 1.19266 0.0632107
\(357\) 4.52418 0.239445
\(358\) −12.7421 −0.673439
\(359\) −19.6856 −1.03896 −0.519482 0.854481i \(-0.673875\pi\)
−0.519482 + 0.854481i \(0.673875\pi\)
\(360\) −4.84505 −0.255357
\(361\) 24.9571 1.31353
\(362\) 6.89398 0.362339
\(363\) −12.3813 −0.649848
\(364\) 0.257118 0.0134767
\(365\) 25.9801 1.35986
\(366\) 11.3500 0.593275
\(367\) −22.0074 −1.14878 −0.574388 0.818583i \(-0.694760\pi\)
−0.574388 + 0.818583i \(0.694760\pi\)
\(368\) 7.61793 0.397112
\(369\) 12.7507 0.663774
\(370\) 7.37848 0.383589
\(371\) −0.599670 −0.0311333
\(372\) −6.99991 −0.362928
\(373\) 23.8590 1.23537 0.617686 0.786425i \(-0.288070\pi\)
0.617686 + 0.786425i \(0.288070\pi\)
\(374\) −4.81994 −0.249233
\(375\) 4.05252 0.209271
\(376\) 8.79595 0.453616
\(377\) 0 0
\(378\) 2.82293 0.145196
\(379\) 31.8334 1.63517 0.817586 0.575807i \(-0.195312\pi\)
0.817586 + 0.575807i \(0.195312\pi\)
\(380\) 19.7071 1.01095
\(381\) −18.6283 −0.954359
\(382\) −6.02931 −0.308486
\(383\) 21.2412 1.08537 0.542687 0.839935i \(-0.317407\pi\)
0.542687 + 0.839935i \(0.317407\pi\)
\(384\) −1.17047 −0.0597300
\(385\) −1.00574 −0.0512573
\(386\) 8.90307 0.453154
\(387\) 1.05879 0.0538213
\(388\) −11.7329 −0.595647
\(389\) −11.0403 −0.559764 −0.279882 0.960034i \(-0.590295\pi\)
−0.279882 + 0.960034i \(0.590295\pi\)
\(390\) 1.71727 0.0869576
\(391\) 56.5275 2.85872
\(392\) 6.72866 0.339848
\(393\) 8.51164 0.429355
\(394\) −4.71110 −0.237342
\(395\) 12.2715 0.617444
\(396\) −1.05879 −0.0532061
\(397\) −21.7506 −1.09163 −0.545815 0.837906i \(-0.683780\pi\)
−0.545815 + 0.837906i \(0.683780\pi\)
\(398\) 19.9563 1.00032
\(399\) −4.04233 −0.202370
\(400\) 3.83518 0.191759
\(401\) 35.6407 1.77981 0.889905 0.456146i \(-0.150771\pi\)
0.889905 + 0.456146i \(0.150771\pi\)
\(402\) −5.29156 −0.263919
\(403\) −2.95194 −0.147047
\(404\) −9.58417 −0.476830
\(405\) 4.31899 0.214612
\(406\) 0 0
\(407\) 1.61242 0.0799246
\(408\) −8.68522 −0.429983
\(409\) 15.5639 0.769584 0.384792 0.923003i \(-0.374273\pi\)
0.384792 + 0.923003i \(0.374273\pi\)
\(410\) −23.2515 −1.14831
\(411\) 19.5461 0.964139
\(412\) 6.47977 0.319235
\(413\) −2.76958 −0.136282
\(414\) 12.4173 0.610278
\(415\) −12.7264 −0.624715
\(416\) −0.493598 −0.0242006
\(417\) 19.8386 0.971502
\(418\) 4.30658 0.210642
\(419\) −17.4900 −0.854442 −0.427221 0.904147i \(-0.640507\pi\)
−0.427221 + 0.904147i \(0.640507\pi\)
\(420\) −1.81228 −0.0884303
\(421\) 4.66179 0.227202 0.113601 0.993526i \(-0.463762\pi\)
0.113601 + 0.993526i \(0.463762\pi\)
\(422\) −4.19086 −0.204008
\(423\) 14.3375 0.697113
\(424\) 1.15121 0.0559075
\(425\) 28.4582 1.38043
\(426\) 16.5560 0.802139
\(427\) −5.05123 −0.244446
\(428\) 9.78051 0.472759
\(429\) 0.375276 0.0181185
\(430\) −1.93075 −0.0931091
\(431\) −23.8990 −1.15118 −0.575588 0.817740i \(-0.695227\pi\)
−0.575588 + 0.817740i \(0.695227\pi\)
\(432\) −5.41927 −0.260735
\(433\) 3.10772 0.149348 0.0746738 0.997208i \(-0.476208\pi\)
0.0746738 + 0.997208i \(0.476208\pi\)
\(434\) 3.11525 0.149537
\(435\) 0 0
\(436\) 0.0280295 0.00134237
\(437\) −50.5070 −2.41608
\(438\) 10.2304 0.488827
\(439\) 32.9166 1.57102 0.785511 0.618848i \(-0.212400\pi\)
0.785511 + 0.618848i \(0.212400\pi\)
\(440\) 1.93075 0.0920450
\(441\) 10.9678 0.522276
\(442\) −3.66266 −0.174215
\(443\) −31.9332 −1.51719 −0.758596 0.651562i \(-0.774114\pi\)
−0.758596 + 0.651562i \(0.774114\pi\)
\(444\) 2.90548 0.137888
\(445\) −3.54506 −0.168052
\(446\) −6.29535 −0.298094
\(447\) 19.3855 0.916902
\(448\) 0.520906 0.0246105
\(449\) 14.0188 0.661588 0.330794 0.943703i \(-0.392684\pi\)
0.330794 + 0.943703i \(0.392684\pi\)
\(450\) 6.25139 0.294693
\(451\) −5.08114 −0.239262
\(452\) 4.12883 0.194204
\(453\) −8.79072 −0.413024
\(454\) 12.7672 0.599196
\(455\) −0.764259 −0.0358290
\(456\) 7.76020 0.363405
\(457\) 1.20159 0.0562081 0.0281041 0.999605i \(-0.491053\pi\)
0.0281041 + 0.999605i \(0.491053\pi\)
\(458\) 11.9434 0.558080
\(459\) −40.2127 −1.87697
\(460\) −22.6436 −1.05576
\(461\) 3.83255 0.178500 0.0892498 0.996009i \(-0.471553\pi\)
0.0892498 + 0.996009i \(0.471553\pi\)
\(462\) −0.396038 −0.0184253
\(463\) −5.53194 −0.257091 −0.128546 0.991704i \(-0.541031\pi\)
−0.128546 + 0.991704i \(0.541031\pi\)
\(464\) 0 0
\(465\) 20.8066 0.964881
\(466\) 11.7030 0.542132
\(467\) 17.2416 0.797846 0.398923 0.916984i \(-0.369384\pi\)
0.398923 + 0.916984i \(0.369384\pi\)
\(468\) −0.804571 −0.0371913
\(469\) 2.35497 0.108742
\(470\) −26.1451 −1.20598
\(471\) 1.64092 0.0756098
\(472\) 5.31686 0.244728
\(473\) −0.421927 −0.0194002
\(474\) 4.83222 0.221951
\(475\) −25.4273 −1.16668
\(476\) 3.86529 0.177165
\(477\) 1.87648 0.0859181
\(478\) 16.7302 0.765221
\(479\) 11.4349 0.522472 0.261236 0.965275i \(-0.415870\pi\)
0.261236 + 0.965275i \(0.415870\pi\)
\(480\) 3.47909 0.158798
\(481\) 1.22527 0.0558676
\(482\) 7.65233 0.348554
\(483\) 4.64467 0.211340
\(484\) −10.5781 −0.480821
\(485\) 34.8749 1.58359
\(486\) −14.5571 −0.660323
\(487\) −29.3313 −1.32913 −0.664563 0.747232i \(-0.731382\pi\)
−0.664563 + 0.747232i \(0.731382\pi\)
\(488\) 9.69702 0.438963
\(489\) 9.15095 0.413820
\(490\) −20.0003 −0.903521
\(491\) 0.558505 0.0252050 0.0126025 0.999921i \(-0.495988\pi\)
0.0126025 + 0.999921i \(0.495988\pi\)
\(492\) −9.15590 −0.412780
\(493\) 0 0
\(494\) 3.27256 0.147240
\(495\) 3.14715 0.141454
\(496\) −5.98045 −0.268530
\(497\) −7.36810 −0.330504
\(498\) −5.01138 −0.224565
\(499\) 16.2520 0.727541 0.363771 0.931489i \(-0.381489\pi\)
0.363771 + 0.931489i \(0.381489\pi\)
\(500\) 3.46232 0.154840
\(501\) −15.8127 −0.706460
\(502\) 1.58064 0.0705476
\(503\) 18.0975 0.806927 0.403463 0.914996i \(-0.367806\pi\)
0.403463 + 0.914996i \(0.367806\pi\)
\(504\) 0.849083 0.0378211
\(505\) 28.4880 1.26770
\(506\) −4.94830 −0.219979
\(507\) −14.9309 −0.663103
\(508\) −15.9153 −0.706128
\(509\) 18.0875 0.801715 0.400857 0.916140i \(-0.368712\pi\)
0.400857 + 0.916140i \(0.368712\pi\)
\(510\) 25.8160 1.14315
\(511\) −4.55295 −0.201411
\(512\) −1.00000 −0.0441942
\(513\) 35.9298 1.58634
\(514\) 15.0284 0.662874
\(515\) −19.2605 −0.848718
\(516\) −0.760286 −0.0334697
\(517\) −5.71349 −0.251279
\(518\) −1.29306 −0.0568138
\(519\) 0.293884 0.0129001
\(520\) 1.46717 0.0643398
\(521\) 34.3541 1.50508 0.752541 0.658545i \(-0.228828\pi\)
0.752541 + 0.658545i \(0.228828\pi\)
\(522\) 0 0
\(523\) 44.4195 1.94233 0.971164 0.238412i \(-0.0766268\pi\)
0.971164 + 0.238412i \(0.0766268\pi\)
\(524\) 7.27202 0.317679
\(525\) 2.33832 0.102053
\(526\) 5.17364 0.225581
\(527\) −44.3769 −1.93309
\(528\) 0.760286 0.0330872
\(529\) 35.0329 1.52317
\(530\) −3.42185 −0.148636
\(531\) 8.66654 0.376096
\(532\) −3.45361 −0.149733
\(533\) −3.86115 −0.167245
\(534\) −1.39596 −0.0604093
\(535\) −29.0716 −1.25688
\(536\) −4.52091 −0.195273
\(537\) 14.9141 0.643592
\(538\) −5.75602 −0.248160
\(539\) −4.37066 −0.188258
\(540\) 16.1082 0.693188
\(541\) −19.9191 −0.856391 −0.428195 0.903686i \(-0.640850\pi\)
−0.428195 + 0.903686i \(0.640850\pi\)
\(542\) 10.9361 0.469744
\(543\) −8.06916 −0.346281
\(544\) −7.42032 −0.318143
\(545\) −0.0833149 −0.00356882
\(546\) −0.300948 −0.0128794
\(547\) −2.94284 −0.125827 −0.0629134 0.998019i \(-0.520039\pi\)
−0.0629134 + 0.998019i \(0.520039\pi\)
\(548\) 16.6994 0.713365
\(549\) 15.8062 0.674594
\(550\) −2.49118 −0.106224
\(551\) 0 0
\(552\) −8.91652 −0.379512
\(553\) −2.15054 −0.0914504
\(554\) 2.14237 0.0910205
\(555\) −8.63625 −0.366588
\(556\) 16.9493 0.718813
\(557\) −8.79820 −0.372792 −0.186396 0.982475i \(-0.559681\pi\)
−0.186396 + 0.982475i \(0.559681\pi\)
\(558\) −9.74820 −0.412674
\(559\) −0.320621 −0.0135608
\(560\) −1.54834 −0.0654294
\(561\) 5.64157 0.238187
\(562\) −9.52397 −0.401745
\(563\) −9.54620 −0.402325 −0.201162 0.979558i \(-0.564472\pi\)
−0.201162 + 0.979558i \(0.564472\pi\)
\(564\) −10.2954 −0.433513
\(565\) −12.2726 −0.516310
\(566\) −30.6436 −1.28804
\(567\) −0.756892 −0.0317865
\(568\) 14.1448 0.593501
\(569\) −14.4069 −0.603968 −0.301984 0.953313i \(-0.597649\pi\)
−0.301984 + 0.953313i \(0.597649\pi\)
\(570\) −23.0664 −0.966147
\(571\) −27.5591 −1.15331 −0.576656 0.816987i \(-0.695643\pi\)
−0.576656 + 0.816987i \(0.695643\pi\)
\(572\) 0.320621 0.0134058
\(573\) 7.05709 0.294814
\(574\) 4.07476 0.170077
\(575\) 29.2161 1.21840
\(576\) −1.63001 −0.0679171
\(577\) −0.178697 −0.00743926 −0.00371963 0.999993i \(-0.501184\pi\)
−0.00371963 + 0.999993i \(0.501184\pi\)
\(578\) −38.0611 −1.58313
\(579\) −10.4207 −0.433071
\(580\) 0 0
\(581\) 2.23027 0.0925273
\(582\) 13.7329 0.569249
\(583\) −0.747777 −0.0309698
\(584\) 8.74045 0.361682
\(585\) 2.39151 0.0988767
\(586\) 5.43961 0.224708
\(587\) −14.5550 −0.600750 −0.300375 0.953821i \(-0.597112\pi\)
−0.300375 + 0.953821i \(0.597112\pi\)
\(588\) −7.87566 −0.324787
\(589\) 39.6505 1.63377
\(590\) −15.8038 −0.650634
\(591\) 5.51418 0.226823
\(592\) 2.48233 0.102023
\(593\) 36.7765 1.51023 0.755114 0.655594i \(-0.227582\pi\)
0.755114 + 0.655594i \(0.227582\pi\)
\(594\) 3.52013 0.144433
\(595\) −11.4892 −0.471011
\(596\) 16.5622 0.678415
\(597\) −23.3581 −0.955985
\(598\) −3.76020 −0.153766
\(599\) 0.416973 0.0170371 0.00851853 0.999964i \(-0.497288\pi\)
0.00851853 + 0.999964i \(0.497288\pi\)
\(600\) −4.48894 −0.183260
\(601\) 9.06620 0.369818 0.184909 0.982756i \(-0.440801\pi\)
0.184909 + 0.982756i \(0.440801\pi\)
\(602\) 0.338359 0.0137905
\(603\) −7.36913 −0.300094
\(604\) −7.51045 −0.305596
\(605\) 31.4423 1.27831
\(606\) 11.2179 0.455697
\(607\) −3.90564 −0.158525 −0.0792625 0.996854i \(-0.525257\pi\)
−0.0792625 + 0.996854i \(0.525257\pi\)
\(608\) 6.63001 0.268882
\(609\) 0 0
\(610\) −28.8234 −1.16703
\(611\) −4.34167 −0.175645
\(612\) −12.0952 −0.488920
\(613\) 45.2712 1.82849 0.914244 0.405164i \(-0.132786\pi\)
0.914244 + 0.405164i \(0.132786\pi\)
\(614\) 32.7348 1.32107
\(615\) 27.2150 1.09742
\(616\) −0.338359 −0.0136329
\(617\) 10.0310 0.403833 0.201917 0.979403i \(-0.435283\pi\)
0.201917 + 0.979403i \(0.435283\pi\)
\(618\) −7.58434 −0.305087
\(619\) 6.63200 0.266563 0.133281 0.991078i \(-0.457449\pi\)
0.133281 + 0.991078i \(0.457449\pi\)
\(620\) 17.7763 0.713914
\(621\) −41.2836 −1.65665
\(622\) 21.6580 0.868408
\(623\) 0.621263 0.0248904
\(624\) 0.577740 0.0231281
\(625\) −29.4673 −1.17869
\(626\) 10.3916 0.415333
\(627\) −5.04071 −0.201306
\(628\) 1.40194 0.0559436
\(629\) 18.4197 0.734440
\(630\) −2.52382 −0.100551
\(631\) 11.8983 0.473663 0.236831 0.971551i \(-0.423891\pi\)
0.236831 + 0.971551i \(0.423891\pi\)
\(632\) 4.12847 0.164222
\(633\) 4.90526 0.194967
\(634\) −25.0536 −0.995006
\(635\) 47.3068 1.87731
\(636\) −1.34745 −0.0534298
\(637\) −3.32125 −0.131593
\(638\) 0 0
\(639\) 23.0561 0.912087
\(640\) 2.97240 0.117495
\(641\) −42.8604 −1.69288 −0.846442 0.532482i \(-0.821260\pi\)
−0.846442 + 0.532482i \(0.821260\pi\)
\(642\) −11.4477 −0.451806
\(643\) 5.02778 0.198276 0.0991381 0.995074i \(-0.468391\pi\)
0.0991381 + 0.995074i \(0.468391\pi\)
\(644\) 3.96823 0.156370
\(645\) 2.25988 0.0889826
\(646\) 49.1968 1.93562
\(647\) −38.1546 −1.50001 −0.750007 0.661430i \(-0.769950\pi\)
−0.750007 + 0.661430i \(0.769950\pi\)
\(648\) 1.45303 0.0570804
\(649\) −3.45361 −0.135566
\(650\) −1.89304 −0.0742511
\(651\) −3.64630 −0.142910
\(652\) 7.81821 0.306185
\(653\) −13.4657 −0.526954 −0.263477 0.964666i \(-0.584869\pi\)
−0.263477 + 0.964666i \(0.584869\pi\)
\(654\) −0.0328075 −0.00128288
\(655\) −21.6154 −0.844582
\(656\) −7.82245 −0.305415
\(657\) 14.2470 0.555830
\(658\) 4.58186 0.178620
\(659\) −26.0874 −1.01622 −0.508111 0.861292i \(-0.669656\pi\)
−0.508111 + 0.861292i \(0.669656\pi\)
\(660\) −2.25988 −0.0879656
\(661\) 26.2718 1.02186 0.510928 0.859624i \(-0.329302\pi\)
0.510928 + 0.859624i \(0.329302\pi\)
\(662\) −7.76962 −0.301975
\(663\) 4.28701 0.166494
\(664\) −4.28153 −0.166155
\(665\) 10.2655 0.398080
\(666\) 4.04622 0.156788
\(667\) 0 0
\(668\) −13.5098 −0.522709
\(669\) 7.36849 0.284882
\(670\) 13.4380 0.519153
\(671\) −6.29879 −0.243162
\(672\) −0.609702 −0.0235198
\(673\) −43.0043 −1.65770 −0.828848 0.559474i \(-0.811003\pi\)
−0.828848 + 0.559474i \(0.811003\pi\)
\(674\) −20.0182 −0.771071
\(675\) −20.7839 −0.799971
\(676\) −12.7564 −0.490629
\(677\) 2.26895 0.0872028 0.0436014 0.999049i \(-0.486117\pi\)
0.0436014 + 0.999049i \(0.486117\pi\)
\(678\) −4.83265 −0.185597
\(679\) −6.11173 −0.234547
\(680\) 22.0562 0.845816
\(681\) −14.9436 −0.572640
\(682\) 3.88466 0.148751
\(683\) 31.5204 1.20610 0.603048 0.797705i \(-0.293953\pi\)
0.603048 + 0.797705i \(0.293953\pi\)
\(684\) 10.8070 0.413216
\(685\) −49.6375 −1.89655
\(686\) 7.15134 0.273039
\(687\) −13.9794 −0.533346
\(688\) −0.649559 −0.0247642
\(689\) −0.568234 −0.0216480
\(690\) 26.5035 1.00897
\(691\) −12.7666 −0.485664 −0.242832 0.970068i \(-0.578076\pi\)
−0.242832 + 0.970068i \(0.578076\pi\)
\(692\) 0.251083 0.00954476
\(693\) −0.551529 −0.0209509
\(694\) −18.9324 −0.718664
\(695\) −50.3803 −1.91103
\(696\) 0 0
\(697\) −58.0450 −2.19861
\(698\) 7.41998 0.280850
\(699\) −13.6980 −0.518105
\(700\) 1.99777 0.0755085
\(701\) −41.1901 −1.55573 −0.777865 0.628432i \(-0.783697\pi\)
−0.777865 + 0.628432i \(0.783697\pi\)
\(702\) 2.67494 0.100959
\(703\) −16.4579 −0.620720
\(704\) 0.649559 0.0244812
\(705\) 30.6019 1.15254
\(706\) −19.6708 −0.740319
\(707\) −4.99245 −0.187760
\(708\) −6.22319 −0.233882
\(709\) −30.2095 −1.13454 −0.567271 0.823531i \(-0.692001\pi\)
−0.567271 + 0.823531i \(0.692001\pi\)
\(710\) −42.0440 −1.57788
\(711\) 6.72944 0.252374
\(712\) −1.19266 −0.0446967
\(713\) −45.5587 −1.70619
\(714\) −4.52418 −0.169313
\(715\) −0.953016 −0.0356408
\(716\) 12.7421 0.476193
\(717\) −19.5821 −0.731307
\(718\) 19.6856 0.734658
\(719\) −34.0336 −1.26924 −0.634620 0.772824i \(-0.718843\pi\)
−0.634620 + 0.772824i \(0.718843\pi\)
\(720\) 4.84505 0.180564
\(721\) 3.37535 0.125705
\(722\) −24.9571 −0.928805
\(723\) −8.95679 −0.333106
\(724\) −6.89398 −0.256213
\(725\) 0 0
\(726\) 12.3813 0.459512
\(727\) −19.1878 −0.711634 −0.355817 0.934556i \(-0.615797\pi\)
−0.355817 + 0.934556i \(0.615797\pi\)
\(728\) −0.257118 −0.00952944
\(729\) 21.3976 0.792505
\(730\) −25.9801 −0.961568
\(731\) −4.81994 −0.178272
\(732\) −11.3500 −0.419509
\(733\) −3.94792 −0.145820 −0.0729098 0.997339i \(-0.523229\pi\)
−0.0729098 + 0.997339i \(0.523229\pi\)
\(734\) 22.0074 0.812307
\(735\) 23.4096 0.863477
\(736\) −7.61793 −0.280801
\(737\) 2.93660 0.108171
\(738\) −12.7507 −0.469359
\(739\) −45.9525 −1.69039 −0.845195 0.534457i \(-0.820516\pi\)
−0.845195 + 0.534457i \(0.820516\pi\)
\(740\) −7.37848 −0.271238
\(741\) −3.83042 −0.140714
\(742\) 0.599670 0.0220146
\(743\) 21.3552 0.783446 0.391723 0.920083i \(-0.371879\pi\)
0.391723 + 0.920083i \(0.371879\pi\)
\(744\) 6.99991 0.256629
\(745\) −49.2296 −1.80363
\(746\) −23.8590 −0.873540
\(747\) −6.97894 −0.255346
\(748\) 4.81994 0.176234
\(749\) 5.09472 0.186157
\(750\) −4.05252 −0.147977
\(751\) 14.5350 0.530390 0.265195 0.964195i \(-0.414564\pi\)
0.265195 + 0.964195i \(0.414564\pi\)
\(752\) −8.79595 −0.320755
\(753\) −1.85009 −0.0674210
\(754\) 0 0
\(755\) 22.3241 0.812456
\(756\) −2.82293 −0.102669
\(757\) −37.9668 −1.37993 −0.689963 0.723844i \(-0.742373\pi\)
−0.689963 + 0.723844i \(0.742373\pi\)
\(758\) −31.8334 −1.15624
\(759\) 5.79181 0.210229
\(760\) −19.7071 −0.714850
\(761\) −20.5739 −0.745804 −0.372902 0.927871i \(-0.621637\pi\)
−0.372902 + 0.927871i \(0.621637\pi\)
\(762\) 18.6283 0.674833
\(763\) 0.0146007 0.000528582 0
\(764\) 6.02931 0.218133
\(765\) 35.9518 1.29984
\(766\) −21.2412 −0.767475
\(767\) −2.62439 −0.0947613
\(768\) 1.17047 0.0422355
\(769\) 6.26299 0.225849 0.112925 0.993604i \(-0.463978\pi\)
0.112925 + 0.993604i \(0.463978\pi\)
\(770\) 1.00574 0.0362444
\(771\) −17.5902 −0.633496
\(772\) −8.90307 −0.320428
\(773\) 2.65347 0.0954385 0.0477193 0.998861i \(-0.484805\pi\)
0.0477193 + 0.998861i \(0.484805\pi\)
\(774\) −1.05879 −0.0380574
\(775\) −22.9361 −0.823889
\(776\) 11.7329 0.421186
\(777\) 1.51348 0.0542958
\(778\) 11.0403 0.395813
\(779\) 51.8629 1.85818
\(780\) −1.71727 −0.0614883
\(781\) −9.18786 −0.328768
\(782\) −56.5275 −2.02142
\(783\) 0 0
\(784\) −6.72866 −0.240309
\(785\) −4.16714 −0.148731
\(786\) −8.51164 −0.303600
\(787\) 3.79800 0.135384 0.0676920 0.997706i \(-0.478436\pi\)
0.0676920 + 0.997706i \(0.478436\pi\)
\(788\) 4.71110 0.167826
\(789\) −6.05556 −0.215584
\(790\) −12.2715 −0.436599
\(791\) 2.15073 0.0764713
\(792\) 1.05879 0.0376224
\(793\) −4.78643 −0.169971
\(794\) 21.7506 0.771899
\(795\) 4.00516 0.142048
\(796\) −19.9563 −0.707332
\(797\) 2.13424 0.0755988 0.0377994 0.999285i \(-0.487965\pi\)
0.0377994 + 0.999285i \(0.487965\pi\)
\(798\) 4.04233 0.143097
\(799\) −65.2687 −2.30904
\(800\) −3.83518 −0.135594
\(801\) −1.94405 −0.0686895
\(802\) −35.6407 −1.25852
\(803\) −5.67744 −0.200352
\(804\) 5.29156 0.186619
\(805\) −11.7952 −0.415725
\(806\) 2.95194 0.103978
\(807\) 6.73722 0.237161
\(808\) 9.58417 0.337170
\(809\) −28.4708 −1.00098 −0.500491 0.865742i \(-0.666847\pi\)
−0.500491 + 0.865742i \(0.666847\pi\)
\(810\) −4.31899 −0.151754
\(811\) −22.8054 −0.800804 −0.400402 0.916340i \(-0.631130\pi\)
−0.400402 + 0.916340i \(0.631130\pi\)
\(812\) 0 0
\(813\) −12.8003 −0.448926
\(814\) −1.61242 −0.0565152
\(815\) −23.2389 −0.814023
\(816\) 8.68522 0.304044
\(817\) 4.30658 0.150668
\(818\) −15.5639 −0.544178
\(819\) −0.419106 −0.0146447
\(820\) 23.2515 0.811976
\(821\) −52.3625 −1.82746 −0.913731 0.406319i \(-0.866812\pi\)
−0.913731 + 0.406319i \(0.866812\pi\)
\(822\) −19.5461 −0.681749
\(823\) 43.0940 1.50216 0.751081 0.660211i \(-0.229533\pi\)
0.751081 + 0.660211i \(0.229533\pi\)
\(824\) −6.47977 −0.225733
\(825\) 2.91583 0.101516
\(826\) 2.76958 0.0963661
\(827\) −31.4897 −1.09500 −0.547501 0.836805i \(-0.684421\pi\)
−0.547501 + 0.836805i \(0.684421\pi\)
\(828\) −12.4173 −0.431531
\(829\) 26.6287 0.924853 0.462427 0.886658i \(-0.346979\pi\)
0.462427 + 0.886658i \(0.346979\pi\)
\(830\) 12.7264 0.441740
\(831\) −2.50757 −0.0869866
\(832\) 0.493598 0.0171124
\(833\) −49.9288 −1.72993
\(834\) −19.8386 −0.686955
\(835\) 40.1565 1.38967
\(836\) −4.30658 −0.148946
\(837\) 32.4097 1.12024
\(838\) 17.4900 0.604181
\(839\) 35.7731 1.23502 0.617512 0.786562i \(-0.288141\pi\)
0.617512 + 0.786562i \(0.288141\pi\)
\(840\) 1.81228 0.0625296
\(841\) 0 0
\(842\) −4.66179 −0.160656
\(843\) 11.1475 0.383940
\(844\) 4.19086 0.144255
\(845\) 37.9170 1.30439
\(846\) −14.3375 −0.492933
\(847\) −5.51018 −0.189332
\(848\) −1.15121 −0.0395326
\(849\) 35.8672 1.23096
\(850\) −28.4582 −0.976110
\(851\) 18.9102 0.648233
\(852\) −16.5560 −0.567198
\(853\) 40.5771 1.38933 0.694666 0.719332i \(-0.255552\pi\)
0.694666 + 0.719332i \(0.255552\pi\)
\(854\) 5.05123 0.172850
\(855\) −32.1227 −1.09857
\(856\) −9.78051 −0.334291
\(857\) 9.07270 0.309918 0.154959 0.987921i \(-0.450476\pi\)
0.154959 + 0.987921i \(0.450476\pi\)
\(858\) −0.375276 −0.0128117
\(859\) −46.9839 −1.60307 −0.801536 0.597947i \(-0.795983\pi\)
−0.801536 + 0.597947i \(0.795983\pi\)
\(860\) 1.93075 0.0658381
\(861\) −4.76936 −0.162539
\(862\) 23.8990 0.814004
\(863\) −3.77534 −0.128514 −0.0642570 0.997933i \(-0.520468\pi\)
−0.0642570 + 0.997933i \(0.520468\pi\)
\(864\) 5.41927 0.184367
\(865\) −0.746321 −0.0253757
\(866\) −3.10772 −0.105605
\(867\) 44.5492 1.51297
\(868\) −3.11525 −0.105739
\(869\) −2.68168 −0.0909698
\(870\) 0 0
\(871\) 2.23151 0.0756119
\(872\) −0.0280295 −0.000949198 0
\(873\) 19.1247 0.647274
\(874\) 50.5070 1.70842
\(875\) 1.80354 0.0609708
\(876\) −10.2304 −0.345653
\(877\) 46.6597 1.57559 0.787793 0.615941i \(-0.211224\pi\)
0.787793 + 0.615941i \(0.211224\pi\)
\(878\) −32.9166 −1.11088
\(879\) −6.36687 −0.214749
\(880\) −1.93075 −0.0650856
\(881\) 30.7060 1.03451 0.517255 0.855831i \(-0.326954\pi\)
0.517255 + 0.855831i \(0.326954\pi\)
\(882\) −10.9678 −0.369305
\(883\) 45.3506 1.52617 0.763084 0.646299i \(-0.223684\pi\)
0.763084 + 0.646299i \(0.223684\pi\)
\(884\) 3.66266 0.123188
\(885\) 18.4978 0.621798
\(886\) 31.9332 1.07282
\(887\) 27.2539 0.915096 0.457548 0.889185i \(-0.348728\pi\)
0.457548 + 0.889185i \(0.348728\pi\)
\(888\) −2.90548 −0.0975015
\(889\) −8.29039 −0.278051
\(890\) 3.54506 0.118831
\(891\) −0.943828 −0.0316194
\(892\) 6.29535 0.210784
\(893\) 58.3172 1.95151
\(894\) −19.3855 −0.648348
\(895\) −37.8745 −1.26601
\(896\) −0.520906 −0.0174022
\(897\) 4.40118 0.146951
\(898\) −14.0188 −0.467813
\(899\) 0 0
\(900\) −6.25139 −0.208380
\(901\) −8.54232 −0.284586
\(902\) 5.08114 0.169184
\(903\) −0.396038 −0.0131793
\(904\) −4.12883 −0.137323
\(905\) 20.4917 0.681166
\(906\) 8.79072 0.292052
\(907\) 6.49496 0.215662 0.107831 0.994169i \(-0.465610\pi\)
0.107831 + 0.994169i \(0.465610\pi\)
\(908\) −12.7672 −0.423695
\(909\) 15.6223 0.518159
\(910\) 0.764259 0.0253349
\(911\) 9.49135 0.314462 0.157231 0.987562i \(-0.449743\pi\)
0.157231 + 0.987562i \(0.449743\pi\)
\(912\) −7.76020 −0.256966
\(913\) 2.78110 0.0920411
\(914\) −1.20159 −0.0397452
\(915\) 33.7368 1.11531
\(916\) −11.9434 −0.394622
\(917\) 3.78804 0.125092
\(918\) 40.2127 1.32722
\(919\) 6.19520 0.204361 0.102180 0.994766i \(-0.467418\pi\)
0.102180 + 0.994766i \(0.467418\pi\)
\(920\) 22.6436 0.746536
\(921\) −38.3150 −1.26252
\(922\) −3.83255 −0.126218
\(923\) −6.98183 −0.229810
\(924\) 0.396038 0.0130287
\(925\) 9.52017 0.313021
\(926\) 5.53194 0.181791
\(927\) −10.5621 −0.346905
\(928\) 0 0
\(929\) 17.9637 0.589369 0.294684 0.955595i \(-0.404785\pi\)
0.294684 + 0.955595i \(0.404785\pi\)
\(930\) −20.8066 −0.682274
\(931\) 44.6111 1.46207
\(932\) −11.7030 −0.383345
\(933\) −25.3500 −0.829921
\(934\) −17.2416 −0.564163
\(935\) −14.3268 −0.468536
\(936\) 0.804571 0.0262982
\(937\) 17.3905 0.568122 0.284061 0.958806i \(-0.408318\pi\)
0.284061 + 0.958806i \(0.408318\pi\)
\(938\) −2.35497 −0.0768924
\(939\) −12.1630 −0.396926
\(940\) 26.1451 0.852759
\(941\) −4.23399 −0.138024 −0.0690120 0.997616i \(-0.521985\pi\)
−0.0690120 + 0.997616i \(0.521985\pi\)
\(942\) −1.64092 −0.0534642
\(943\) −59.5909 −1.94055
\(944\) −5.31686 −0.173049
\(945\) 8.39088 0.272955
\(946\) 0.421927 0.0137180
\(947\) −40.9467 −1.33059 −0.665294 0.746582i \(-0.731694\pi\)
−0.665294 + 0.746582i \(0.731694\pi\)
\(948\) −4.83222 −0.156943
\(949\) −4.31427 −0.140047
\(950\) 25.4273 0.824970
\(951\) 29.3244 0.950908
\(952\) −3.86529 −0.125275
\(953\) 14.7024 0.476256 0.238128 0.971234i \(-0.423466\pi\)
0.238128 + 0.971234i \(0.423466\pi\)
\(954\) −1.87648 −0.0607533
\(955\) −17.9215 −0.579927
\(956\) −16.7302 −0.541093
\(957\) 0 0
\(958\) −11.4349 −0.369443
\(959\) 8.69884 0.280900
\(960\) −3.47909 −0.112287
\(961\) 4.76581 0.153736
\(962\) −1.22527 −0.0395044
\(963\) −15.9423 −0.513735
\(964\) −7.65233 −0.246465
\(965\) 26.4635 0.851890
\(966\) −4.64467 −0.149440
\(967\) 5.99979 0.192940 0.0964701 0.995336i \(-0.469245\pi\)
0.0964701 + 0.995336i \(0.469245\pi\)
\(968\) 10.5781 0.339992
\(969\) −57.5831 −1.84984
\(970\) −34.8749 −1.11976
\(971\) 22.7421 0.729829 0.364915 0.931041i \(-0.381098\pi\)
0.364915 + 0.931041i \(0.381098\pi\)
\(972\) 14.5571 0.466919
\(973\) 8.82902 0.283045
\(974\) 29.3313 0.939834
\(975\) 2.21573 0.0709603
\(976\) −9.69702 −0.310394
\(977\) 0.625854 0.0200228 0.0100114 0.999950i \(-0.496813\pi\)
0.0100114 + 0.999950i \(0.496813\pi\)
\(978\) −9.15095 −0.292615
\(979\) 0.774702 0.0247596
\(980\) 20.0003 0.638885
\(981\) −0.0456884 −0.00145872
\(982\) −0.558505 −0.0178226
\(983\) −13.0976 −0.417749 −0.208875 0.977942i \(-0.566980\pi\)
−0.208875 + 0.977942i \(0.566980\pi\)
\(984\) 9.15590 0.291879
\(985\) −14.0033 −0.446182
\(986\) 0 0
\(987\) −5.36291 −0.170703
\(988\) −3.27256 −0.104114
\(989\) −4.94830 −0.157347
\(990\) −3.14715 −0.100023
\(991\) −51.4636 −1.63480 −0.817398 0.576074i \(-0.804584\pi\)
−0.817398 + 0.576074i \(0.804584\pi\)
\(992\) 5.98045 0.189880
\(993\) 9.09407 0.288592
\(994\) 7.36810 0.233702
\(995\) 59.3181 1.88051
\(996\) 5.01138 0.158792
\(997\) 10.5977 0.335634 0.167817 0.985818i \(-0.446328\pi\)
0.167817 + 0.985818i \(0.446328\pi\)
\(998\) −16.2520 −0.514449
\(999\) −13.4524 −0.425615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.q.1.4 6
29.9 even 14 58.2.d.b.23.2 12
29.12 odd 4 1682.2.b.i.1681.4 12
29.13 even 14 58.2.d.b.53.2 yes 12
29.17 odd 4 1682.2.b.i.1681.9 12
29.28 even 2 1682.2.a.t.1.3 6
87.38 odd 14 522.2.k.h.487.2 12
87.71 odd 14 522.2.k.h.343.2 12
116.67 odd 14 464.2.u.h.81.1 12
116.71 odd 14 464.2.u.h.401.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.23.2 12 29.9 even 14
58.2.d.b.53.2 yes 12 29.13 even 14
464.2.u.h.81.1 12 116.67 odd 14
464.2.u.h.401.1 12 116.71 odd 14
522.2.k.h.343.2 12 87.71 odd 14
522.2.k.h.487.2 12 87.38 odd 14
1682.2.a.q.1.4 6 1.1 even 1 trivial
1682.2.a.t.1.3 6 29.28 even 2
1682.2.b.i.1681.4 12 29.12 odd 4
1682.2.b.i.1681.9 12 29.17 odd 4