Properties

Label 1680.4.a.y.1.2
Level $1680$
Weight $4$
Character 1680.1
Self dual yes
Analytic conductor $99.123$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 1680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} -24.5969 q^{11} -35.0156 q^{13} +15.0000 q^{15} -18.4187 q^{17} +67.4031 q^{19} +21.0000 q^{21} +145.675 q^{23} +25.0000 q^{25} -27.0000 q^{27} +214.419 q^{29} +88.6594 q^{31} +73.7906 q^{33} +35.0000 q^{35} +162.125 q^{37} +105.047 q^{39} -337.769 q^{41} -122.156 q^{43} -45.0000 q^{45} -354.219 q^{47} +49.0000 q^{49} +55.2562 q^{51} +676.691 q^{53} +122.984 q^{55} -202.209 q^{57} -501.319 q^{59} -708.931 q^{61} -63.0000 q^{63} +175.078 q^{65} +907.956 q^{67} -437.025 q^{69} -430.334 q^{71} +41.3406 q^{73} -75.0000 q^{75} +172.178 q^{77} -890.388 q^{79} +81.0000 q^{81} +1057.15 q^{83} +92.0937 q^{85} -643.256 q^{87} +1473.72 q^{89} +245.109 q^{91} -265.978 q^{93} -337.016 q^{95} +555.034 q^{97} -221.372 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 10 q^{5} - 14 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} - 10 q^{5} - 14 q^{7} + 18 q^{9} - 62 q^{11} - 6 q^{13} + 30 q^{15} + 40 q^{17} + 122 q^{19} + 42 q^{21} - 16 q^{23} + 50 q^{25} - 54 q^{27} + 352 q^{29} - 66 q^{31} + 186 q^{33} + 70 q^{35} - 188 q^{37} + 18 q^{39} + 16 q^{41} + 396 q^{43} - 90 q^{45} + 188 q^{47} + 98 q^{49} - 120 q^{51} + 982 q^{53} + 310 q^{55} - 366 q^{57} - 516 q^{59} - 880 q^{61} - 126 q^{63} + 30 q^{65} + 356 q^{67} + 48 q^{69} - 310 q^{71} + 326 q^{73} - 150 q^{75} + 434 q^{77} - 1832 q^{79} + 162 q^{81} + 680 q^{83} - 200 q^{85} - 1056 q^{87} + 796 q^{89} + 42 q^{91} + 198 q^{93} - 610 q^{95} - 670 q^{97} - 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −24.5969 −0.674203 −0.337102 0.941468i \(-0.609447\pi\)
−0.337102 + 0.941468i \(0.609447\pi\)
\(12\) 0 0
\(13\) −35.0156 −0.747045 −0.373523 0.927621i \(-0.621850\pi\)
−0.373523 + 0.927621i \(0.621850\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −18.4187 −0.262777 −0.131388 0.991331i \(-0.541943\pi\)
−0.131388 + 0.991331i \(0.541943\pi\)
\(18\) 0 0
\(19\) 67.4031 0.813860 0.406930 0.913459i \(-0.366599\pi\)
0.406930 + 0.913459i \(0.366599\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 145.675 1.32067 0.660333 0.750973i \(-0.270415\pi\)
0.660333 + 0.750973i \(0.270415\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 214.419 1.37298 0.686492 0.727137i \(-0.259149\pi\)
0.686492 + 0.727137i \(0.259149\pi\)
\(30\) 0 0
\(31\) 88.6594 0.513667 0.256834 0.966456i \(-0.417321\pi\)
0.256834 + 0.966456i \(0.417321\pi\)
\(32\) 0 0
\(33\) 73.7906 0.389251
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 162.125 0.720356 0.360178 0.932884i \(-0.382716\pi\)
0.360178 + 0.932884i \(0.382716\pi\)
\(38\) 0 0
\(39\) 105.047 0.431307
\(40\) 0 0
\(41\) −337.769 −1.28660 −0.643300 0.765614i \(-0.722435\pi\)
−0.643300 + 0.765614i \(0.722435\pi\)
\(42\) 0 0
\(43\) −122.156 −0.433224 −0.216612 0.976258i \(-0.569501\pi\)
−0.216612 + 0.976258i \(0.569501\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) −354.219 −1.09932 −0.549661 0.835388i \(-0.685243\pi\)
−0.549661 + 0.835388i \(0.685243\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 55.2562 0.151714
\(52\) 0 0
\(53\) 676.691 1.75378 0.876892 0.480687i \(-0.159613\pi\)
0.876892 + 0.480687i \(0.159613\pi\)
\(54\) 0 0
\(55\) 122.984 0.301513
\(56\) 0 0
\(57\) −202.209 −0.469882
\(58\) 0 0
\(59\) −501.319 −1.10621 −0.553103 0.833113i \(-0.686556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(60\) 0 0
\(61\) −708.931 −1.48802 −0.744011 0.668167i \(-0.767079\pi\)
−0.744011 + 0.668167i \(0.767079\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 175.078 0.334089
\(66\) 0 0
\(67\) 907.956 1.65559 0.827795 0.561031i \(-0.189595\pi\)
0.827795 + 0.561031i \(0.189595\pi\)
\(68\) 0 0
\(69\) −437.025 −0.762487
\(70\) 0 0
\(71\) −430.334 −0.719314 −0.359657 0.933085i \(-0.617106\pi\)
−0.359657 + 0.933085i \(0.617106\pi\)
\(72\) 0 0
\(73\) 41.3406 0.0662816 0.0331408 0.999451i \(-0.489449\pi\)
0.0331408 + 0.999451i \(0.489449\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 172.178 0.254825
\(78\) 0 0
\(79\) −890.388 −1.26806 −0.634028 0.773310i \(-0.718600\pi\)
−0.634028 + 0.773310i \(0.718600\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1057.15 1.39804 0.699020 0.715102i \(-0.253620\pi\)
0.699020 + 0.715102i \(0.253620\pi\)
\(84\) 0 0
\(85\) 92.0937 0.117517
\(86\) 0 0
\(87\) −643.256 −0.792693
\(88\) 0 0
\(89\) 1473.72 1.75522 0.877610 0.479376i \(-0.159137\pi\)
0.877610 + 0.479376i \(0.159137\pi\)
\(90\) 0 0
\(91\) 245.109 0.282356
\(92\) 0 0
\(93\) −265.978 −0.296566
\(94\) 0 0
\(95\) −337.016 −0.363969
\(96\) 0 0
\(97\) 555.034 0.580981 0.290491 0.956878i \(-0.406181\pi\)
0.290491 + 0.956878i \(0.406181\pi\)
\(98\) 0 0
\(99\) −221.372 −0.224734
\(100\) 0 0
\(101\) 1890.14 1.86214 0.931071 0.364838i \(-0.118876\pi\)
0.931071 + 0.364838i \(0.118876\pi\)
\(102\) 0 0
\(103\) −662.700 −0.633959 −0.316979 0.948432i \(-0.602669\pi\)
−0.316979 + 0.948432i \(0.602669\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −1614.53 −1.45872 −0.729358 0.684132i \(-0.760181\pi\)
−0.729358 + 0.684132i \(0.760181\pi\)
\(108\) 0 0
\(109\) 217.206 0.190868 0.0954339 0.995436i \(-0.469576\pi\)
0.0954339 + 0.995436i \(0.469576\pi\)
\(110\) 0 0
\(111\) −486.375 −0.415898
\(112\) 0 0
\(113\) −1658.20 −1.38044 −0.690221 0.723598i \(-0.742487\pi\)
−0.690221 + 0.723598i \(0.742487\pi\)
\(114\) 0 0
\(115\) −728.375 −0.590620
\(116\) 0 0
\(117\) −315.141 −0.249015
\(118\) 0 0
\(119\) 128.931 0.0993202
\(120\) 0 0
\(121\) −725.994 −0.545450
\(122\) 0 0
\(123\) 1013.31 0.742819
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1108.81 0.774734 0.387367 0.921926i \(-0.373385\pi\)
0.387367 + 0.921926i \(0.373385\pi\)
\(128\) 0 0
\(129\) 366.469 0.250122
\(130\) 0 0
\(131\) −185.488 −0.123711 −0.0618554 0.998085i \(-0.519702\pi\)
−0.0618554 + 0.998085i \(0.519702\pi\)
\(132\) 0 0
\(133\) −471.822 −0.307610
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −37.9907 −0.0236917 −0.0118458 0.999930i \(-0.503771\pi\)
−0.0118458 + 0.999930i \(0.503771\pi\)
\(138\) 0 0
\(139\) −183.609 −0.112040 −0.0560199 0.998430i \(-0.517841\pi\)
−0.0560199 + 0.998430i \(0.517841\pi\)
\(140\) 0 0
\(141\) 1062.66 0.634694
\(142\) 0 0
\(143\) 861.275 0.503660
\(144\) 0 0
\(145\) −1072.09 −0.614018
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −1383.34 −0.760587 −0.380293 0.924866i \(-0.624177\pi\)
−0.380293 + 0.924866i \(0.624177\pi\)
\(150\) 0 0
\(151\) −765.256 −0.412422 −0.206211 0.978508i \(-0.566113\pi\)
−0.206211 + 0.978508i \(0.566113\pi\)
\(152\) 0 0
\(153\) −165.769 −0.0875922
\(154\) 0 0
\(155\) −443.297 −0.229719
\(156\) 0 0
\(157\) −2366.76 −1.20311 −0.601554 0.798832i \(-0.705452\pi\)
−0.601554 + 0.798832i \(0.705452\pi\)
\(158\) 0 0
\(159\) −2030.07 −1.01255
\(160\) 0 0
\(161\) −1019.72 −0.499165
\(162\) 0 0
\(163\) 3137.69 1.50775 0.753875 0.657018i \(-0.228183\pi\)
0.753875 + 0.657018i \(0.228183\pi\)
\(164\) 0 0
\(165\) −368.953 −0.174079
\(166\) 0 0
\(167\) −146.469 −0.0678688 −0.0339344 0.999424i \(-0.510804\pi\)
−0.0339344 + 0.999424i \(0.510804\pi\)
\(168\) 0 0
\(169\) −970.906 −0.441924
\(170\) 0 0
\(171\) 606.628 0.271287
\(172\) 0 0
\(173\) −1424.12 −0.625860 −0.312930 0.949776i \(-0.601311\pi\)
−0.312930 + 0.949776i \(0.601311\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 1503.96 0.638668
\(178\) 0 0
\(179\) −1244.70 −0.519737 −0.259869 0.965644i \(-0.583679\pi\)
−0.259869 + 0.965644i \(0.583679\pi\)
\(180\) 0 0
\(181\) −3879.09 −1.59299 −0.796493 0.604648i \(-0.793314\pi\)
−0.796493 + 0.604648i \(0.793314\pi\)
\(182\) 0 0
\(183\) 2126.79 0.859110
\(184\) 0 0
\(185\) −810.625 −0.322153
\(186\) 0 0
\(187\) 453.044 0.177165
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −1574.90 −0.596628 −0.298314 0.954468i \(-0.596424\pi\)
−0.298314 + 0.954468i \(0.596424\pi\)
\(192\) 0 0
\(193\) −4775.67 −1.78114 −0.890572 0.454843i \(-0.849695\pi\)
−0.890572 + 0.454843i \(0.849695\pi\)
\(194\) 0 0
\(195\) −525.234 −0.192886
\(196\) 0 0
\(197\) −2803.58 −1.01394 −0.506971 0.861963i \(-0.669235\pi\)
−0.506971 + 0.861963i \(0.669235\pi\)
\(198\) 0 0
\(199\) −4102.92 −1.46155 −0.730774 0.682620i \(-0.760841\pi\)
−0.730774 + 0.682620i \(0.760841\pi\)
\(200\) 0 0
\(201\) −2723.87 −0.955855
\(202\) 0 0
\(203\) −1500.93 −0.518940
\(204\) 0 0
\(205\) 1688.84 0.575385
\(206\) 0 0
\(207\) 1311.07 0.440222
\(208\) 0 0
\(209\) −1657.91 −0.548707
\(210\) 0 0
\(211\) 823.512 0.268687 0.134343 0.990935i \(-0.457107\pi\)
0.134343 + 0.990935i \(0.457107\pi\)
\(212\) 0 0
\(213\) 1291.00 0.415296
\(214\) 0 0
\(215\) 610.781 0.193744
\(216\) 0 0
\(217\) −620.616 −0.194148
\(218\) 0 0
\(219\) −124.022 −0.0382677
\(220\) 0 0
\(221\) 644.944 0.196306
\(222\) 0 0
\(223\) −817.194 −0.245396 −0.122698 0.992444i \(-0.539155\pi\)
−0.122698 + 0.992444i \(0.539155\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −3655.85 −1.06893 −0.534465 0.845190i \(-0.679487\pi\)
−0.534465 + 0.845190i \(0.679487\pi\)
\(228\) 0 0
\(229\) 939.393 0.271078 0.135539 0.990772i \(-0.456723\pi\)
0.135539 + 0.990772i \(0.456723\pi\)
\(230\) 0 0
\(231\) −516.534 −0.147123
\(232\) 0 0
\(233\) −7.64701 −0.00215010 −0.00107505 0.999999i \(-0.500342\pi\)
−0.00107505 + 0.999999i \(0.500342\pi\)
\(234\) 0 0
\(235\) 1771.09 0.491631
\(236\) 0 0
\(237\) 2671.16 0.732112
\(238\) 0 0
\(239\) 889.115 0.240636 0.120318 0.992735i \(-0.461609\pi\)
0.120318 + 0.992735i \(0.461609\pi\)
\(240\) 0 0
\(241\) 2140.23 0.572051 0.286026 0.958222i \(-0.407666\pi\)
0.286026 + 0.958222i \(0.407666\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −2360.16 −0.607990
\(248\) 0 0
\(249\) −3171.45 −0.807158
\(250\) 0 0
\(251\) 6749.81 1.69739 0.848693 0.528886i \(-0.177390\pi\)
0.848693 + 0.528886i \(0.177390\pi\)
\(252\) 0 0
\(253\) −3583.15 −0.890398
\(254\) 0 0
\(255\) −276.281 −0.0678486
\(256\) 0 0
\(257\) 3068.64 0.744811 0.372405 0.928070i \(-0.378533\pi\)
0.372405 + 0.928070i \(0.378533\pi\)
\(258\) 0 0
\(259\) −1134.87 −0.272269
\(260\) 0 0
\(261\) 1929.77 0.457662
\(262\) 0 0
\(263\) 4674.12 1.09589 0.547944 0.836515i \(-0.315411\pi\)
0.547944 + 0.836515i \(0.315411\pi\)
\(264\) 0 0
\(265\) −3383.45 −0.784316
\(266\) 0 0
\(267\) −4421.17 −1.01338
\(268\) 0 0
\(269\) 2417.38 0.547919 0.273960 0.961741i \(-0.411667\pi\)
0.273960 + 0.961741i \(0.411667\pi\)
\(270\) 0 0
\(271\) −7724.30 −1.73143 −0.865715 0.500537i \(-0.833136\pi\)
−0.865715 + 0.500537i \(0.833136\pi\)
\(272\) 0 0
\(273\) −735.328 −0.163019
\(274\) 0 0
\(275\) −614.922 −0.134841
\(276\) 0 0
\(277\) −4576.17 −0.992620 −0.496310 0.868145i \(-0.665312\pi\)
−0.496310 + 0.868145i \(0.665312\pi\)
\(278\) 0 0
\(279\) 797.934 0.171222
\(280\) 0 0
\(281\) −1358.56 −0.288415 −0.144208 0.989547i \(-0.546063\pi\)
−0.144208 + 0.989547i \(0.546063\pi\)
\(282\) 0 0
\(283\) −3885.04 −0.816048 −0.408024 0.912971i \(-0.633782\pi\)
−0.408024 + 0.912971i \(0.633782\pi\)
\(284\) 0 0
\(285\) 1011.05 0.210138
\(286\) 0 0
\(287\) 2364.38 0.486289
\(288\) 0 0
\(289\) −4573.75 −0.930948
\(290\) 0 0
\(291\) −1665.10 −0.335430
\(292\) 0 0
\(293\) −4033.91 −0.804312 −0.402156 0.915571i \(-0.631739\pi\)
−0.402156 + 0.915571i \(0.631739\pi\)
\(294\) 0 0
\(295\) 2506.59 0.494710
\(296\) 0 0
\(297\) 664.116 0.129750
\(298\) 0 0
\(299\) −5100.90 −0.986598
\(300\) 0 0
\(301\) 855.093 0.163743
\(302\) 0 0
\(303\) −5670.43 −1.07511
\(304\) 0 0
\(305\) 3544.66 0.665464
\(306\) 0 0
\(307\) 4620.36 0.858950 0.429475 0.903079i \(-0.358699\pi\)
0.429475 + 0.903079i \(0.358699\pi\)
\(308\) 0 0
\(309\) 1988.10 0.366016
\(310\) 0 0
\(311\) −6675.89 −1.21722 −0.608609 0.793470i \(-0.708272\pi\)
−0.608609 + 0.793470i \(0.708272\pi\)
\(312\) 0 0
\(313\) 2836.78 0.512283 0.256141 0.966639i \(-0.417549\pi\)
0.256141 + 0.966639i \(0.417549\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) 4010.63 0.710597 0.355299 0.934753i \(-0.384379\pi\)
0.355299 + 0.934753i \(0.384379\pi\)
\(318\) 0 0
\(319\) −5274.03 −0.925671
\(320\) 0 0
\(321\) 4843.59 0.842190
\(322\) 0 0
\(323\) −1241.48 −0.213863
\(324\) 0 0
\(325\) −875.391 −0.149409
\(326\) 0 0
\(327\) −651.619 −0.110198
\(328\) 0 0
\(329\) 2479.53 0.415504
\(330\) 0 0
\(331\) −11087.5 −1.84117 −0.920583 0.390546i \(-0.872286\pi\)
−0.920583 + 0.390546i \(0.872286\pi\)
\(332\) 0 0
\(333\) 1459.12 0.240119
\(334\) 0 0
\(335\) −4539.78 −0.740402
\(336\) 0 0
\(337\) 12118.7 1.95890 0.979450 0.201689i \(-0.0646431\pi\)
0.979450 + 0.201689i \(0.0646431\pi\)
\(338\) 0 0
\(339\) 4974.59 0.796999
\(340\) 0 0
\(341\) −2180.74 −0.346316
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 2185.12 0.340995
\(346\) 0 0
\(347\) 6361.22 0.984116 0.492058 0.870562i \(-0.336245\pi\)
0.492058 + 0.870562i \(0.336245\pi\)
\(348\) 0 0
\(349\) −3115.18 −0.477799 −0.238899 0.971044i \(-0.576787\pi\)
−0.238899 + 0.971044i \(0.576787\pi\)
\(350\) 0 0
\(351\) 945.422 0.143769
\(352\) 0 0
\(353\) −11927.4 −1.79839 −0.899194 0.437550i \(-0.855846\pi\)
−0.899194 + 0.437550i \(0.855846\pi\)
\(354\) 0 0
\(355\) 2151.67 0.321687
\(356\) 0 0
\(357\) −386.794 −0.0573426
\(358\) 0 0
\(359\) 6143.95 0.903245 0.451623 0.892209i \(-0.350845\pi\)
0.451623 + 0.892209i \(0.350845\pi\)
\(360\) 0 0
\(361\) −2315.82 −0.337632
\(362\) 0 0
\(363\) 2177.98 0.314916
\(364\) 0 0
\(365\) −206.703 −0.0296420
\(366\) 0 0
\(367\) 1927.67 0.274178 0.137089 0.990559i \(-0.456225\pi\)
0.137089 + 0.990559i \(0.456225\pi\)
\(368\) 0 0
\(369\) −3039.92 −0.428867
\(370\) 0 0
\(371\) −4736.83 −0.662868
\(372\) 0 0
\(373\) 10452.0 1.45090 0.725449 0.688276i \(-0.241632\pi\)
0.725449 + 0.688276i \(0.241632\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −7508.01 −1.02568
\(378\) 0 0
\(379\) −7066.43 −0.957726 −0.478863 0.877890i \(-0.658951\pi\)
−0.478863 + 0.877890i \(0.658951\pi\)
\(380\) 0 0
\(381\) −3326.44 −0.447293
\(382\) 0 0
\(383\) −7168.04 −0.956318 −0.478159 0.878273i \(-0.658696\pi\)
−0.478159 + 0.878273i \(0.658696\pi\)
\(384\) 0 0
\(385\) −860.891 −0.113961
\(386\) 0 0
\(387\) −1099.41 −0.144408
\(388\) 0 0
\(389\) −7414.06 −0.966344 −0.483172 0.875525i \(-0.660515\pi\)
−0.483172 + 0.875525i \(0.660515\pi\)
\(390\) 0 0
\(391\) −2683.15 −0.347040
\(392\) 0 0
\(393\) 556.463 0.0714245
\(394\) 0 0
\(395\) 4451.94 0.567092
\(396\) 0 0
\(397\) −8936.01 −1.12969 −0.564843 0.825198i \(-0.691063\pi\)
−0.564843 + 0.825198i \(0.691063\pi\)
\(398\) 0 0
\(399\) 1415.47 0.177599
\(400\) 0 0
\(401\) 1782.91 0.222031 0.111015 0.993819i \(-0.464590\pi\)
0.111015 + 0.993819i \(0.464590\pi\)
\(402\) 0 0
\(403\) −3104.46 −0.383733
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) −3987.77 −0.485667
\(408\) 0 0
\(409\) −8759.92 −1.05905 −0.529524 0.848295i \(-0.677629\pi\)
−0.529524 + 0.848295i \(0.677629\pi\)
\(410\) 0 0
\(411\) 113.972 0.0136784
\(412\) 0 0
\(413\) 3509.23 0.418106
\(414\) 0 0
\(415\) −5285.75 −0.625222
\(416\) 0 0
\(417\) 550.828 0.0646862
\(418\) 0 0
\(419\) 3212.74 0.374588 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(420\) 0 0
\(421\) 15757.8 1.82420 0.912101 0.409965i \(-0.134459\pi\)
0.912101 + 0.409965i \(0.134459\pi\)
\(422\) 0 0
\(423\) −3187.97 −0.366440
\(424\) 0 0
\(425\) −460.469 −0.0525553
\(426\) 0 0
\(427\) 4962.52 0.562419
\(428\) 0 0
\(429\) −2583.82 −0.290788
\(430\) 0 0
\(431\) 405.917 0.0453650 0.0226825 0.999743i \(-0.492779\pi\)
0.0226825 + 0.999743i \(0.492779\pi\)
\(432\) 0 0
\(433\) −7845.25 −0.870713 −0.435357 0.900258i \(-0.643378\pi\)
−0.435357 + 0.900258i \(0.643378\pi\)
\(434\) 0 0
\(435\) 3216.28 0.354503
\(436\) 0 0
\(437\) 9818.95 1.07484
\(438\) 0 0
\(439\) −423.029 −0.0459911 −0.0229955 0.999736i \(-0.507320\pi\)
−0.0229955 + 0.999736i \(0.507320\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 16058.7 1.72229 0.861143 0.508362i \(-0.169749\pi\)
0.861143 + 0.508362i \(0.169749\pi\)
\(444\) 0 0
\(445\) −7368.62 −0.784958
\(446\) 0 0
\(447\) 4150.01 0.439125
\(448\) 0 0
\(449\) 2186.75 0.229842 0.114921 0.993375i \(-0.463338\pi\)
0.114921 + 0.993375i \(0.463338\pi\)
\(450\) 0 0
\(451\) 8308.05 0.867430
\(452\) 0 0
\(453\) 2295.77 0.238112
\(454\) 0 0
\(455\) −1225.55 −0.126274
\(456\) 0 0
\(457\) −5799.22 −0.593602 −0.296801 0.954939i \(-0.595920\pi\)
−0.296801 + 0.954939i \(0.595920\pi\)
\(458\) 0 0
\(459\) 497.306 0.0505714
\(460\) 0 0
\(461\) 9873.35 0.997500 0.498750 0.866746i \(-0.333793\pi\)
0.498750 + 0.866746i \(0.333793\pi\)
\(462\) 0 0
\(463\) 6181.84 0.620506 0.310253 0.950654i \(-0.399586\pi\)
0.310253 + 0.950654i \(0.399586\pi\)
\(464\) 0 0
\(465\) 1329.89 0.132628
\(466\) 0 0
\(467\) −6145.50 −0.608950 −0.304475 0.952520i \(-0.598481\pi\)
−0.304475 + 0.952520i \(0.598481\pi\)
\(468\) 0 0
\(469\) −6355.69 −0.625754
\(470\) 0 0
\(471\) 7100.28 0.694615
\(472\) 0 0
\(473\) 3004.66 0.292081
\(474\) 0 0
\(475\) 1685.08 0.162772
\(476\) 0 0
\(477\) 6090.22 0.584595
\(478\) 0 0
\(479\) −10879.4 −1.03777 −0.518887 0.854843i \(-0.673653\pi\)
−0.518887 + 0.854843i \(0.673653\pi\)
\(480\) 0 0
\(481\) −5676.91 −0.538139
\(482\) 0 0
\(483\) 3059.17 0.288193
\(484\) 0 0
\(485\) −2775.17 −0.259823
\(486\) 0 0
\(487\) −8087.51 −0.752526 −0.376263 0.926513i \(-0.622791\pi\)
−0.376263 + 0.926513i \(0.622791\pi\)
\(488\) 0 0
\(489\) −9413.08 −0.870499
\(490\) 0 0
\(491\) 6959.90 0.639707 0.319853 0.947467i \(-0.396366\pi\)
0.319853 + 0.947467i \(0.396366\pi\)
\(492\) 0 0
\(493\) −3949.32 −0.360788
\(494\) 0 0
\(495\) 1106.86 0.100504
\(496\) 0 0
\(497\) 3012.34 0.271875
\(498\) 0 0
\(499\) −18632.0 −1.67151 −0.835756 0.549101i \(-0.814970\pi\)
−0.835756 + 0.549101i \(0.814970\pi\)
\(500\) 0 0
\(501\) 439.406 0.0391840
\(502\) 0 0
\(503\) −4627.62 −0.410209 −0.205105 0.978740i \(-0.565753\pi\)
−0.205105 + 0.978740i \(0.565753\pi\)
\(504\) 0 0
\(505\) −9450.72 −0.832775
\(506\) 0 0
\(507\) 2912.72 0.255145
\(508\) 0 0
\(509\) −11351.8 −0.988528 −0.494264 0.869312i \(-0.664562\pi\)
−0.494264 + 0.869312i \(0.664562\pi\)
\(510\) 0 0
\(511\) −289.384 −0.0250521
\(512\) 0 0
\(513\) −1819.88 −0.156627
\(514\) 0 0
\(515\) 3313.50 0.283515
\(516\) 0 0
\(517\) 8712.67 0.741166
\(518\) 0 0
\(519\) 4272.36 0.361340
\(520\) 0 0
\(521\) 19096.1 1.60579 0.802893 0.596123i \(-0.203293\pi\)
0.802893 + 0.596123i \(0.203293\pi\)
\(522\) 0 0
\(523\) 3145.11 0.262956 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) −1632.99 −0.134980
\(528\) 0 0
\(529\) 9054.20 0.744160
\(530\) 0 0
\(531\) −4511.87 −0.368735
\(532\) 0 0
\(533\) 11827.2 0.961148
\(534\) 0 0
\(535\) 8072.66 0.652358
\(536\) 0 0
\(537\) 3734.09 0.300071
\(538\) 0 0
\(539\) −1205.25 −0.0963148
\(540\) 0 0
\(541\) 8776.12 0.697440 0.348720 0.937227i \(-0.386616\pi\)
0.348720 + 0.937227i \(0.386616\pi\)
\(542\) 0 0
\(543\) 11637.3 0.919710
\(544\) 0 0
\(545\) −1086.03 −0.0853587
\(546\) 0 0
\(547\) 13695.1 1.07049 0.535247 0.844696i \(-0.320219\pi\)
0.535247 + 0.844696i \(0.320219\pi\)
\(548\) 0 0
\(549\) −6380.38 −0.496007
\(550\) 0 0
\(551\) 14452.5 1.11742
\(552\) 0 0
\(553\) 6232.71 0.479280
\(554\) 0 0
\(555\) 2431.87 0.185995
\(556\) 0 0
\(557\) 7850.44 0.597188 0.298594 0.954380i \(-0.403482\pi\)
0.298594 + 0.954380i \(0.403482\pi\)
\(558\) 0 0
\(559\) 4277.38 0.323638
\(560\) 0 0
\(561\) −1359.13 −0.102286
\(562\) 0 0
\(563\) 4948.81 0.370457 0.185229 0.982695i \(-0.440697\pi\)
0.185229 + 0.982695i \(0.440697\pi\)
\(564\) 0 0
\(565\) 8290.98 0.617353
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −8115.76 −0.597945 −0.298972 0.954262i \(-0.596644\pi\)
−0.298972 + 0.954262i \(0.596644\pi\)
\(570\) 0 0
\(571\) −5656.42 −0.414560 −0.207280 0.978282i \(-0.566461\pi\)
−0.207280 + 0.978282i \(0.566461\pi\)
\(572\) 0 0
\(573\) 4724.71 0.344463
\(574\) 0 0
\(575\) 3641.87 0.264133
\(576\) 0 0
\(577\) −9536.77 −0.688078 −0.344039 0.938955i \(-0.611795\pi\)
−0.344039 + 0.938955i \(0.611795\pi\)
\(578\) 0 0
\(579\) 14327.0 1.02834
\(580\) 0 0
\(581\) −7400.05 −0.528409
\(582\) 0 0
\(583\) −16644.5 −1.18241
\(584\) 0 0
\(585\) 1575.70 0.111363
\(586\) 0 0
\(587\) 13089.6 0.920383 0.460191 0.887820i \(-0.347781\pi\)
0.460191 + 0.887820i \(0.347781\pi\)
\(588\) 0 0
\(589\) 5975.92 0.418053
\(590\) 0 0
\(591\) 8410.73 0.585400
\(592\) 0 0
\(593\) 4281.96 0.296524 0.148262 0.988948i \(-0.452632\pi\)
0.148262 + 0.988948i \(0.452632\pi\)
\(594\) 0 0
\(595\) −644.656 −0.0444173
\(596\) 0 0
\(597\) 12308.7 0.843825
\(598\) 0 0
\(599\) −3699.92 −0.252378 −0.126189 0.992006i \(-0.540275\pi\)
−0.126189 + 0.992006i \(0.540275\pi\)
\(600\) 0 0
\(601\) −17286.1 −1.17323 −0.586616 0.809865i \(-0.699540\pi\)
−0.586616 + 0.809865i \(0.699540\pi\)
\(602\) 0 0
\(603\) 8171.61 0.551863
\(604\) 0 0
\(605\) 3629.97 0.243933
\(606\) 0 0
\(607\) −14456.7 −0.966689 −0.483344 0.875430i \(-0.660578\pi\)
−0.483344 + 0.875430i \(0.660578\pi\)
\(608\) 0 0
\(609\) 4502.79 0.299610
\(610\) 0 0
\(611\) 12403.2 0.821243
\(612\) 0 0
\(613\) 17981.9 1.18480 0.592400 0.805644i \(-0.298181\pi\)
0.592400 + 0.805644i \(0.298181\pi\)
\(614\) 0 0
\(615\) −5066.53 −0.332199
\(616\) 0 0
\(617\) 19614.7 1.27983 0.639916 0.768445i \(-0.278969\pi\)
0.639916 + 0.768445i \(0.278969\pi\)
\(618\) 0 0
\(619\) 10462.9 0.679385 0.339692 0.940537i \(-0.389677\pi\)
0.339692 + 0.940537i \(0.389677\pi\)
\(620\) 0 0
\(621\) −3933.22 −0.254162
\(622\) 0 0
\(623\) −10316.1 −0.663411
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 4973.72 0.316796
\(628\) 0 0
\(629\) −2986.14 −0.189293
\(630\) 0 0
\(631\) −24481.9 −1.54454 −0.772272 0.635292i \(-0.780880\pi\)
−0.772272 + 0.635292i \(0.780880\pi\)
\(632\) 0 0
\(633\) −2470.54 −0.155126
\(634\) 0 0
\(635\) −5544.06 −0.346471
\(636\) 0 0
\(637\) −1715.77 −0.106721
\(638\) 0 0
\(639\) −3873.01 −0.239771
\(640\) 0 0
\(641\) −1109.39 −0.0683595 −0.0341797 0.999416i \(-0.510882\pi\)
−0.0341797 + 0.999416i \(0.510882\pi\)
\(642\) 0 0
\(643\) −30112.5 −1.84684 −0.923422 0.383787i \(-0.874620\pi\)
−0.923422 + 0.383787i \(0.874620\pi\)
\(644\) 0 0
\(645\) −1832.34 −0.111858
\(646\) 0 0
\(647\) 4260.27 0.258869 0.129435 0.991588i \(-0.458684\pi\)
0.129435 + 0.991588i \(0.458684\pi\)
\(648\) 0 0
\(649\) 12330.9 0.745808
\(650\) 0 0
\(651\) 1861.85 0.112091
\(652\) 0 0
\(653\) −10576.8 −0.633844 −0.316922 0.948452i \(-0.602649\pi\)
−0.316922 + 0.948452i \(0.602649\pi\)
\(654\) 0 0
\(655\) 927.438 0.0553252
\(656\) 0 0
\(657\) 372.066 0.0220939
\(658\) 0 0
\(659\) −3394.70 −0.200666 −0.100333 0.994954i \(-0.531991\pi\)
−0.100333 + 0.994954i \(0.531991\pi\)
\(660\) 0 0
\(661\) −33174.4 −1.95210 −0.976048 0.217554i \(-0.930192\pi\)
−0.976048 + 0.217554i \(0.930192\pi\)
\(662\) 0 0
\(663\) −1934.83 −0.113337
\(664\) 0 0
\(665\) 2359.11 0.137567
\(666\) 0 0
\(667\) 31235.4 1.81326
\(668\) 0 0
\(669\) 2451.58 0.141680
\(670\) 0 0
\(671\) 17437.5 1.00323
\(672\) 0 0
\(673\) 753.881 0.0431797 0.0215899 0.999767i \(-0.493127\pi\)
0.0215899 + 0.999767i \(0.493127\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 15668.8 0.889511 0.444756 0.895652i \(-0.353291\pi\)
0.444756 + 0.895652i \(0.353291\pi\)
\(678\) 0 0
\(679\) −3885.24 −0.219590
\(680\) 0 0
\(681\) 10967.5 0.617147
\(682\) 0 0
\(683\) 11557.4 0.647485 0.323742 0.946145i \(-0.395059\pi\)
0.323742 + 0.946145i \(0.395059\pi\)
\(684\) 0 0
\(685\) 189.953 0.0105952
\(686\) 0 0
\(687\) −2818.18 −0.156507
\(688\) 0 0
\(689\) −23694.7 −1.31016
\(690\) 0 0
\(691\) 18503.1 1.01866 0.509328 0.860572i \(-0.329894\pi\)
0.509328 + 0.860572i \(0.329894\pi\)
\(692\) 0 0
\(693\) 1549.60 0.0849416
\(694\) 0 0
\(695\) 918.046 0.0501057
\(696\) 0 0
\(697\) 6221.28 0.338088
\(698\) 0 0
\(699\) 22.9410 0.00124136
\(700\) 0 0
\(701\) 22580.4 1.21662 0.608311 0.793699i \(-0.291847\pi\)
0.608311 + 0.793699i \(0.291847\pi\)
\(702\) 0 0
\(703\) 10927.7 0.586269
\(704\) 0 0
\(705\) −5313.28 −0.283844
\(706\) 0 0
\(707\) −13231.0 −0.703823
\(708\) 0 0
\(709\) −27426.6 −1.45279 −0.726394 0.687278i \(-0.758805\pi\)
−0.726394 + 0.687278i \(0.758805\pi\)
\(710\) 0 0
\(711\) −8013.49 −0.422685
\(712\) 0 0
\(713\) 12915.5 0.678383
\(714\) 0 0
\(715\) −4306.37 −0.225244
\(716\) 0 0
\(717\) −2667.35 −0.138931
\(718\) 0 0
\(719\) −19383.0 −1.00538 −0.502688 0.864468i \(-0.667656\pi\)
−0.502688 + 0.864468i \(0.667656\pi\)
\(720\) 0 0
\(721\) 4638.90 0.239614
\(722\) 0 0
\(723\) −6420.69 −0.330274
\(724\) 0 0
\(725\) 5360.47 0.274597
\(726\) 0 0
\(727\) 12317.3 0.628368 0.314184 0.949362i \(-0.398269\pi\)
0.314184 + 0.949362i \(0.398269\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 2249.96 0.113841
\(732\) 0 0
\(733\) 1234.02 0.0621822 0.0310911 0.999517i \(-0.490102\pi\)
0.0310911 + 0.999517i \(0.490102\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) −22332.9 −1.11620
\(738\) 0 0
\(739\) 15257.3 0.759473 0.379736 0.925095i \(-0.376015\pi\)
0.379736 + 0.925095i \(0.376015\pi\)
\(740\) 0 0
\(741\) 7080.49 0.351023
\(742\) 0 0
\(743\) 35565.1 1.75606 0.878032 0.478602i \(-0.158856\pi\)
0.878032 + 0.478602i \(0.158856\pi\)
\(744\) 0 0
\(745\) 6916.69 0.340145
\(746\) 0 0
\(747\) 9514.35 0.466013
\(748\) 0 0
\(749\) 11301.7 0.551343
\(750\) 0 0
\(751\) −14266.7 −0.693209 −0.346605 0.938011i \(-0.612665\pi\)
−0.346605 + 0.938011i \(0.612665\pi\)
\(752\) 0 0
\(753\) −20249.4 −0.979986
\(754\) 0 0
\(755\) 3826.28 0.184441
\(756\) 0 0
\(757\) −15927.9 −0.764744 −0.382372 0.924009i \(-0.624893\pi\)
−0.382372 + 0.924009i \(0.624893\pi\)
\(758\) 0 0
\(759\) 10749.4 0.514071
\(760\) 0 0
\(761\) −2566.48 −0.122253 −0.0611266 0.998130i \(-0.519469\pi\)
−0.0611266 + 0.998130i \(0.519469\pi\)
\(762\) 0 0
\(763\) −1520.44 −0.0721413
\(764\) 0 0
\(765\) 828.844 0.0391724
\(766\) 0 0
\(767\) 17554.0 0.826386
\(768\) 0 0
\(769\) 14433.1 0.676816 0.338408 0.940999i \(-0.390112\pi\)
0.338408 + 0.940999i \(0.390112\pi\)
\(770\) 0 0
\(771\) −9205.91 −0.430017
\(772\) 0 0
\(773\) −29443.2 −1.36999 −0.684993 0.728550i \(-0.740195\pi\)
−0.684993 + 0.728550i \(0.740195\pi\)
\(774\) 0 0
\(775\) 2216.48 0.102733
\(776\) 0 0
\(777\) 3404.62 0.157195
\(778\) 0 0
\(779\) −22766.7 −1.04711
\(780\) 0 0
\(781\) 10584.9 0.484964
\(782\) 0 0
\(783\) −5789.31 −0.264231
\(784\) 0 0
\(785\) 11833.8 0.538046
\(786\) 0 0
\(787\) −26390.6 −1.19533 −0.597664 0.801747i \(-0.703904\pi\)
−0.597664 + 0.801747i \(0.703904\pi\)
\(788\) 0 0
\(789\) −14022.4 −0.632711
\(790\) 0 0
\(791\) 11607.4 0.521758
\(792\) 0 0
\(793\) 24823.7 1.11162
\(794\) 0 0
\(795\) 10150.4 0.452825
\(796\) 0 0
\(797\) −3738.33 −0.166146 −0.0830730 0.996543i \(-0.526473\pi\)
−0.0830730 + 0.996543i \(0.526473\pi\)
\(798\) 0 0
\(799\) 6524.26 0.288876
\(800\) 0 0
\(801\) 13263.5 0.585073
\(802\) 0 0
\(803\) −1016.85 −0.0446873
\(804\) 0 0
\(805\) 5098.62 0.223233
\(806\) 0 0
\(807\) −7252.14 −0.316341
\(808\) 0 0
\(809\) 43204.1 1.87760 0.938798 0.344468i \(-0.111941\pi\)
0.938798 + 0.344468i \(0.111941\pi\)
\(810\) 0 0
\(811\) 30192.4 1.30727 0.653637 0.756809i \(-0.273242\pi\)
0.653637 + 0.756809i \(0.273242\pi\)
\(812\) 0 0
\(813\) 23172.9 0.999642
\(814\) 0 0
\(815\) −15688.5 −0.674286
\(816\) 0 0
\(817\) −8233.71 −0.352584
\(818\) 0 0
\(819\) 2205.98 0.0941188
\(820\) 0 0
\(821\) −40274.7 −1.71206 −0.856028 0.516929i \(-0.827075\pi\)
−0.856028 + 0.516929i \(0.827075\pi\)
\(822\) 0 0
\(823\) −25184.2 −1.06667 −0.533334 0.845905i \(-0.679061\pi\)
−0.533334 + 0.845905i \(0.679061\pi\)
\(824\) 0 0
\(825\) 1844.77 0.0778503
\(826\) 0 0
\(827\) 38941.7 1.63741 0.818703 0.574218i \(-0.194694\pi\)
0.818703 + 0.574218i \(0.194694\pi\)
\(828\) 0 0
\(829\) −8327.05 −0.348867 −0.174433 0.984669i \(-0.555809\pi\)
−0.174433 + 0.984669i \(0.555809\pi\)
\(830\) 0 0
\(831\) 13728.5 0.573089
\(832\) 0 0
\(833\) −902.519 −0.0375395
\(834\) 0 0
\(835\) 732.343 0.0303518
\(836\) 0 0
\(837\) −2393.80 −0.0988553
\(838\) 0 0
\(839\) −8784.41 −0.361468 −0.180734 0.983532i \(-0.557847\pi\)
−0.180734 + 0.983532i \(0.557847\pi\)
\(840\) 0 0
\(841\) 21586.4 0.885087
\(842\) 0 0
\(843\) 4075.67 0.166517
\(844\) 0 0
\(845\) 4854.53 0.197634
\(846\) 0 0
\(847\) 5081.96 0.206161
\(848\) 0 0
\(849\) 11655.1 0.471145
\(850\) 0 0
\(851\) 23617.6 0.951350
\(852\) 0 0
\(853\) −9076.15 −0.364316 −0.182158 0.983269i \(-0.558308\pi\)
−0.182158 + 0.983269i \(0.558308\pi\)
\(854\) 0 0
\(855\) −3033.14 −0.121323
\(856\) 0 0
\(857\) 36396.7 1.45074 0.725372 0.688357i \(-0.241668\pi\)
0.725372 + 0.688357i \(0.241668\pi\)
\(858\) 0 0
\(859\) −8915.27 −0.354115 −0.177058 0.984200i \(-0.556658\pi\)
−0.177058 + 0.984200i \(0.556658\pi\)
\(860\) 0 0
\(861\) −7093.14 −0.280759
\(862\) 0 0
\(863\) 6148.26 0.242514 0.121257 0.992621i \(-0.461308\pi\)
0.121257 + 0.992621i \(0.461308\pi\)
\(864\) 0 0
\(865\) 7120.59 0.279893
\(866\) 0 0
\(867\) 13721.2 0.537483
\(868\) 0 0
\(869\) 21900.8 0.854928
\(870\) 0 0
\(871\) −31792.6 −1.23680
\(872\) 0 0
\(873\) 4995.31 0.193660
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −14287.0 −0.550101 −0.275050 0.961430i \(-0.588694\pi\)
−0.275050 + 0.961430i \(0.588694\pi\)
\(878\) 0 0
\(879\) 12101.7 0.464370
\(880\) 0 0
\(881\) −13315.9 −0.509221 −0.254610 0.967044i \(-0.581947\pi\)
−0.254610 + 0.967044i \(0.581947\pi\)
\(882\) 0 0
\(883\) 5271.78 0.200917 0.100458 0.994941i \(-0.467969\pi\)
0.100458 + 0.994941i \(0.467969\pi\)
\(884\) 0 0
\(885\) −7519.78 −0.285621
\(886\) 0 0
\(887\) −2606.07 −0.0986507 −0.0493253 0.998783i \(-0.515707\pi\)
−0.0493253 + 0.998783i \(0.515707\pi\)
\(888\) 0 0
\(889\) −7761.69 −0.292822
\(890\) 0 0
\(891\) −1992.35 −0.0749115
\(892\) 0 0
\(893\) −23875.4 −0.894694
\(894\) 0 0
\(895\) 6223.48 0.232434
\(896\) 0 0
\(897\) 15302.7 0.569612
\(898\) 0 0
\(899\) 19010.2 0.705258
\(900\) 0 0
\(901\) −12463.8 −0.460854
\(902\) 0 0
\(903\) −2565.28 −0.0945373
\(904\) 0 0
\(905\) 19395.4 0.712405
\(906\) 0 0
\(907\) −18610.6 −0.681317 −0.340659 0.940187i \(-0.610650\pi\)
−0.340659 + 0.940187i \(0.610650\pi\)
\(908\) 0 0
\(909\) 17011.3 0.620714
\(910\) 0 0
\(911\) −41091.7 −1.49443 −0.747216 0.664581i \(-0.768610\pi\)
−0.747216 + 0.664581i \(0.768610\pi\)
\(912\) 0 0
\(913\) −26002.6 −0.942563
\(914\) 0 0
\(915\) −10634.0 −0.384206
\(916\) 0 0
\(917\) 1298.41 0.0467583
\(918\) 0 0
\(919\) −38891.3 −1.39598 −0.697990 0.716107i \(-0.745922\pi\)
−0.697990 + 0.716107i \(0.745922\pi\)
\(920\) 0 0
\(921\) −13861.1 −0.495915
\(922\) 0 0
\(923\) 15068.4 0.537360
\(924\) 0 0
\(925\) 4053.12 0.144071
\(926\) 0 0
\(927\) −5964.30 −0.211320
\(928\) 0 0
\(929\) 18699.4 0.660396 0.330198 0.943912i \(-0.392885\pi\)
0.330198 + 0.943912i \(0.392885\pi\)
\(930\) 0 0
\(931\) 3302.75 0.116266
\(932\) 0 0
\(933\) 20027.7 0.702761
\(934\) 0 0
\(935\) −2265.22 −0.0792305
\(936\) 0 0
\(937\) 21509.6 0.749933 0.374967 0.927038i \(-0.377654\pi\)
0.374967 + 0.927038i \(0.377654\pi\)
\(938\) 0 0
\(939\) −8510.35 −0.295767
\(940\) 0 0
\(941\) −11241.7 −0.389448 −0.194724 0.980858i \(-0.562381\pi\)
−0.194724 + 0.980858i \(0.562381\pi\)
\(942\) 0 0
\(943\) −49204.5 −1.69917
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) 36556.3 1.25441 0.627203 0.778856i \(-0.284200\pi\)
0.627203 + 0.778856i \(0.284200\pi\)
\(948\) 0 0
\(949\) −1447.57 −0.0495153
\(950\) 0 0
\(951\) −12031.9 −0.410263
\(952\) 0 0
\(953\) −36633.4 −1.24520 −0.622598 0.782542i \(-0.713923\pi\)
−0.622598 + 0.782542i \(0.713923\pi\)
\(954\) 0 0
\(955\) 7874.52 0.266820
\(956\) 0 0
\(957\) 15822.1 0.534436
\(958\) 0 0
\(959\) 265.935 0.00895462
\(960\) 0 0
\(961\) −21930.5 −0.736146
\(962\) 0 0
\(963\) −14530.8 −0.486239
\(964\) 0 0
\(965\) 23878.4 0.796551
\(966\) 0 0
\(967\) 35515.8 1.18109 0.590544 0.807006i \(-0.298913\pi\)
0.590544 + 0.807006i \(0.298913\pi\)
\(968\) 0 0
\(969\) 3724.44 0.123474
\(970\) 0 0
\(971\) 39661.0 1.31080 0.655398 0.755283i \(-0.272501\pi\)
0.655398 + 0.755283i \(0.272501\pi\)
\(972\) 0 0
\(973\) 1285.26 0.0423471
\(974\) 0 0
\(975\) 2626.17 0.0862613
\(976\) 0 0
\(977\) 50325.3 1.64795 0.823977 0.566624i \(-0.191751\pi\)
0.823977 + 0.566624i \(0.191751\pi\)
\(978\) 0 0
\(979\) −36249.0 −1.18337
\(980\) 0 0
\(981\) 1954.86 0.0636226
\(982\) 0 0
\(983\) −51189.0 −1.66091 −0.830456 0.557084i \(-0.811920\pi\)
−0.830456 + 0.557084i \(0.811920\pi\)
\(984\) 0 0
\(985\) 14017.9 0.453449
\(986\) 0 0
\(987\) −7438.59 −0.239892
\(988\) 0 0
\(989\) −17795.1 −0.572145
\(990\) 0 0
\(991\) 55137.3 1.76740 0.883700 0.468054i \(-0.155045\pi\)
0.883700 + 0.468054i \(0.155045\pi\)
\(992\) 0 0
\(993\) 33262.6 1.06300
\(994\) 0 0
\(995\) 20514.6 0.653624
\(996\) 0 0
\(997\) 41606.5 1.32166 0.660828 0.750537i \(-0.270205\pi\)
0.660828 + 0.750537i \(0.270205\pi\)
\(998\) 0 0
\(999\) −4377.37 −0.138633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.4.a.y.1.2 2
4.3 odd 2 105.4.a.g.1.2 2
12.11 even 2 315.4.a.g.1.1 2
20.3 even 4 525.4.d.j.274.1 4
20.7 even 4 525.4.d.j.274.4 4
20.19 odd 2 525.4.a.i.1.1 2
28.27 even 2 735.4.a.q.1.2 2
60.59 even 2 1575.4.a.y.1.2 2
84.83 odd 2 2205.4.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.2 2 4.3 odd 2
315.4.a.g.1.1 2 12.11 even 2
525.4.a.i.1.1 2 20.19 odd 2
525.4.d.j.274.1 4 20.3 even 4
525.4.d.j.274.4 4 20.7 even 4
735.4.a.q.1.2 2 28.27 even 2
1575.4.a.y.1.2 2 60.59 even 2
1680.4.a.y.1.2 2 1.1 even 1 trivial
2205.4.a.v.1.1 2 84.83 odd 2