Properties

Label 1680.4.a.y.1.1
Level $1680$
Weight $4$
Character 1680.1
Self dual yes
Analytic conductor $99.123$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 1680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} -37.4031 q^{11} +29.0156 q^{13} +15.0000 q^{15} +58.4187 q^{17} +54.5969 q^{19} +21.0000 q^{21} -161.675 q^{23} +25.0000 q^{25} -27.0000 q^{27} +137.581 q^{29} -154.659 q^{31} +112.209 q^{33} +35.0000 q^{35} -350.125 q^{37} -87.0469 q^{39} +353.769 q^{41} +518.156 q^{43} -45.0000 q^{45} +542.219 q^{47} +49.0000 q^{49} -175.256 q^{51} +305.309 q^{53} +187.016 q^{55} -163.791 q^{57} -14.6813 q^{59} -171.069 q^{61} -63.0000 q^{63} -145.078 q^{65} -551.956 q^{67} +485.025 q^{69} +120.334 q^{71} +284.659 q^{73} -75.0000 q^{75} +261.822 q^{77} -941.612 q^{79} +81.0000 q^{81} -377.150 q^{83} -292.094 q^{85} -412.744 q^{87} -677.725 q^{89} -203.109 q^{91} +463.978 q^{93} -272.984 q^{95} -1225.03 q^{97} -336.628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 10 q^{5} - 14 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} - 10 q^{5} - 14 q^{7} + 18 q^{9} - 62 q^{11} - 6 q^{13} + 30 q^{15} + 40 q^{17} + 122 q^{19} + 42 q^{21} - 16 q^{23} + 50 q^{25} - 54 q^{27} + 352 q^{29} - 66 q^{31} + 186 q^{33} + 70 q^{35} - 188 q^{37} + 18 q^{39} + 16 q^{41} + 396 q^{43} - 90 q^{45} + 188 q^{47} + 98 q^{49} - 120 q^{51} + 982 q^{53} + 310 q^{55} - 366 q^{57} - 516 q^{59} - 880 q^{61} - 126 q^{63} + 30 q^{65} + 356 q^{67} + 48 q^{69} - 310 q^{71} + 326 q^{73} - 150 q^{75} + 434 q^{77} - 1832 q^{79} + 162 q^{81} + 680 q^{83} - 200 q^{85} - 1056 q^{87} + 796 q^{89} + 42 q^{91} + 198 q^{93} - 610 q^{95} - 670 q^{97} - 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −37.4031 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(12\) 0 0
\(13\) 29.0156 0.619037 0.309519 0.950893i \(-0.399832\pi\)
0.309519 + 0.950893i \(0.399832\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) 58.4187 0.833449 0.416724 0.909033i \(-0.363178\pi\)
0.416724 + 0.909033i \(0.363178\pi\)
\(18\) 0 0
\(19\) 54.5969 0.659231 0.329615 0.944115i \(-0.393081\pi\)
0.329615 + 0.944115i \(0.393081\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) −161.675 −1.46572 −0.732860 0.680379i \(-0.761815\pi\)
−0.732860 + 0.680379i \(0.761815\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 137.581 0.880972 0.440486 0.897759i \(-0.354806\pi\)
0.440486 + 0.897759i \(0.354806\pi\)
\(30\) 0 0
\(31\) −154.659 −0.896053 −0.448026 0.894020i \(-0.647873\pi\)
−0.448026 + 0.894020i \(0.647873\pi\)
\(32\) 0 0
\(33\) 112.209 0.591913
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −350.125 −1.55568 −0.777840 0.628462i \(-0.783685\pi\)
−0.777840 + 0.628462i \(0.783685\pi\)
\(38\) 0 0
\(39\) −87.0469 −0.357401
\(40\) 0 0
\(41\) 353.769 1.34755 0.673773 0.738938i \(-0.264673\pi\)
0.673773 + 0.738938i \(0.264673\pi\)
\(42\) 0 0
\(43\) 518.156 1.83763 0.918815 0.394689i \(-0.129148\pi\)
0.918815 + 0.394689i \(0.129148\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) 542.219 1.68278 0.841391 0.540427i \(-0.181737\pi\)
0.841391 + 0.540427i \(0.181737\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −175.256 −0.481192
\(52\) 0 0
\(53\) 305.309 0.791273 0.395637 0.918407i \(-0.370524\pi\)
0.395637 + 0.918407i \(0.370524\pi\)
\(54\) 0 0
\(55\) 187.016 0.458494
\(56\) 0 0
\(57\) −163.791 −0.380607
\(58\) 0 0
\(59\) −14.6813 −0.0323956 −0.0161978 0.999869i \(-0.505156\pi\)
−0.0161978 + 0.999869i \(0.505156\pi\)
\(60\) 0 0
\(61\) −171.069 −0.359067 −0.179534 0.983752i \(-0.557459\pi\)
−0.179534 + 0.983752i \(0.557459\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) −145.078 −0.276842
\(66\) 0 0
\(67\) −551.956 −1.00645 −0.503225 0.864155i \(-0.667853\pi\)
−0.503225 + 0.864155i \(0.667853\pi\)
\(68\) 0 0
\(69\) 485.025 0.846234
\(70\) 0 0
\(71\) 120.334 0.201142 0.100571 0.994930i \(-0.467933\pi\)
0.100571 + 0.994930i \(0.467933\pi\)
\(72\) 0 0
\(73\) 284.659 0.456395 0.228198 0.973615i \(-0.426717\pi\)
0.228198 + 0.973615i \(0.426717\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 261.822 0.387498
\(78\) 0 0
\(79\) −941.612 −1.34101 −0.670504 0.741906i \(-0.733922\pi\)
−0.670504 + 0.741906i \(0.733922\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −377.150 −0.498766 −0.249383 0.968405i \(-0.580228\pi\)
−0.249383 + 0.968405i \(0.580228\pi\)
\(84\) 0 0
\(85\) −292.094 −0.372730
\(86\) 0 0
\(87\) −412.744 −0.508630
\(88\) 0 0
\(89\) −677.725 −0.807176 −0.403588 0.914941i \(-0.632237\pi\)
−0.403588 + 0.914941i \(0.632237\pi\)
\(90\) 0 0
\(91\) −203.109 −0.233974
\(92\) 0 0
\(93\) 463.978 0.517336
\(94\) 0 0
\(95\) −272.984 −0.294817
\(96\) 0 0
\(97\) −1225.03 −1.28230 −0.641151 0.767414i \(-0.721543\pi\)
−0.641151 + 0.767414i \(0.721543\pi\)
\(98\) 0 0
\(99\) −336.628 −0.341741
\(100\) 0 0
\(101\) −338.144 −0.333134 −0.166567 0.986030i \(-0.553268\pi\)
−0.166567 + 0.986030i \(0.553268\pi\)
\(102\) 0 0
\(103\) 566.700 0.542122 0.271061 0.962562i \(-0.412625\pi\)
0.271061 + 0.962562i \(0.412625\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) 562.531 0.508242 0.254121 0.967172i \(-0.418214\pi\)
0.254121 + 0.967172i \(0.418214\pi\)
\(108\) 0 0
\(109\) 1830.79 1.60879 0.804396 0.594094i \(-0.202489\pi\)
0.804396 + 0.594094i \(0.202489\pi\)
\(110\) 0 0
\(111\) 1050.37 0.898173
\(112\) 0 0
\(113\) −31.8032 −0.0264761 −0.0132380 0.999912i \(-0.504214\pi\)
−0.0132380 + 0.999912i \(0.504214\pi\)
\(114\) 0 0
\(115\) 808.375 0.655490
\(116\) 0 0
\(117\) 261.141 0.206346
\(118\) 0 0
\(119\) −408.931 −0.315014
\(120\) 0 0
\(121\) 67.9937 0.0510847
\(122\) 0 0
\(123\) −1061.31 −0.778006
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −2220.81 −1.55169 −0.775847 0.630921i \(-0.782677\pi\)
−0.775847 + 0.630921i \(0.782677\pi\)
\(128\) 0 0
\(129\) −1554.47 −1.06096
\(130\) 0 0
\(131\) −646.512 −0.431191 −0.215596 0.976483i \(-0.569169\pi\)
−0.215596 + 0.976483i \(0.569169\pi\)
\(132\) 0 0
\(133\) −382.178 −0.249166
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −896.009 −0.558768 −0.279384 0.960179i \(-0.590130\pi\)
−0.279384 + 0.960179i \(0.590130\pi\)
\(138\) 0 0
\(139\) 2313.61 1.41178 0.705891 0.708320i \(-0.250547\pi\)
0.705891 + 0.708320i \(0.250547\pi\)
\(140\) 0 0
\(141\) −1626.66 −0.971554
\(142\) 0 0
\(143\) −1085.27 −0.634652
\(144\) 0 0
\(145\) −687.906 −0.393983
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) 819.337 0.450488 0.225244 0.974302i \(-0.427682\pi\)
0.225244 + 0.974302i \(0.427682\pi\)
\(150\) 0 0
\(151\) −534.744 −0.288191 −0.144095 0.989564i \(-0.546027\pi\)
−0.144095 + 0.989564i \(0.546027\pi\)
\(152\) 0 0
\(153\) 525.769 0.277816
\(154\) 0 0
\(155\) 773.297 0.400727
\(156\) 0 0
\(157\) 1564.76 0.795423 0.397711 0.917511i \(-0.369805\pi\)
0.397711 + 0.917511i \(0.369805\pi\)
\(158\) 0 0
\(159\) −915.928 −0.456842
\(160\) 0 0
\(161\) 1131.72 0.553990
\(162\) 0 0
\(163\) 1114.31 0.535455 0.267728 0.963495i \(-0.413727\pi\)
0.267728 + 0.963495i \(0.413727\pi\)
\(164\) 0 0
\(165\) −561.047 −0.264712
\(166\) 0 0
\(167\) 1774.47 0.822231 0.411115 0.911583i \(-0.365139\pi\)
0.411115 + 0.911583i \(0.365139\pi\)
\(168\) 0 0
\(169\) −1355.09 −0.616793
\(170\) 0 0
\(171\) 491.372 0.219744
\(172\) 0 0
\(173\) −4215.88 −1.85276 −0.926380 0.376590i \(-0.877097\pi\)
−0.926380 + 0.376590i \(0.877097\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 44.0438 0.0187036
\(178\) 0 0
\(179\) 2430.70 1.01497 0.507483 0.861662i \(-0.330576\pi\)
0.507483 + 0.861662i \(0.330576\pi\)
\(180\) 0 0
\(181\) −2700.91 −1.10916 −0.554578 0.832132i \(-0.687120\pi\)
−0.554578 + 0.832132i \(0.687120\pi\)
\(182\) 0 0
\(183\) 513.206 0.207308
\(184\) 0 0
\(185\) 1750.62 0.695722
\(186\) 0 0
\(187\) −2185.04 −0.854472
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −3611.10 −1.36801 −0.684005 0.729478i \(-0.739763\pi\)
−0.684005 + 0.729478i \(0.739763\pi\)
\(192\) 0 0
\(193\) −4468.33 −1.66651 −0.833257 0.552886i \(-0.813526\pi\)
−0.833257 + 0.552886i \(0.813526\pi\)
\(194\) 0 0
\(195\) 435.234 0.159835
\(196\) 0 0
\(197\) −434.422 −0.157113 −0.0785566 0.996910i \(-0.525031\pi\)
−0.0785566 + 0.996910i \(0.525031\pi\)
\(198\) 0 0
\(199\) 468.915 0.167038 0.0835189 0.996506i \(-0.473384\pi\)
0.0835189 + 0.996506i \(0.473384\pi\)
\(200\) 0 0
\(201\) 1655.87 0.581074
\(202\) 0 0
\(203\) −963.069 −0.332976
\(204\) 0 0
\(205\) −1768.84 −0.602641
\(206\) 0 0
\(207\) −1455.07 −0.488573
\(208\) 0 0
\(209\) −2042.09 −0.675859
\(210\) 0 0
\(211\) −3735.51 −1.21878 −0.609392 0.792869i \(-0.708586\pi\)
−0.609392 + 0.792869i \(0.708586\pi\)
\(212\) 0 0
\(213\) −361.003 −0.116129
\(214\) 0 0
\(215\) −2590.78 −0.821813
\(216\) 0 0
\(217\) 1082.62 0.338676
\(218\) 0 0
\(219\) −853.978 −0.263500
\(220\) 0 0
\(221\) 1695.06 0.515936
\(222\) 0 0
\(223\) −842.806 −0.253087 −0.126544 0.991961i \(-0.540388\pi\)
−0.126544 + 0.991961i \(0.540388\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −992.150 −0.290094 −0.145047 0.989425i \(-0.546333\pi\)
−0.145047 + 0.989425i \(0.546333\pi\)
\(228\) 0 0
\(229\) −6411.39 −1.85012 −0.925059 0.379825i \(-0.875984\pi\)
−0.925059 + 0.379825i \(0.875984\pi\)
\(230\) 0 0
\(231\) −785.466 −0.223722
\(232\) 0 0
\(233\) −2274.35 −0.639476 −0.319738 0.947506i \(-0.603595\pi\)
−0.319738 + 0.947506i \(0.603595\pi\)
\(234\) 0 0
\(235\) −2711.09 −0.752563
\(236\) 0 0
\(237\) 2824.84 0.774232
\(238\) 0 0
\(239\) −2863.12 −0.774893 −0.387447 0.921892i \(-0.626643\pi\)
−0.387447 + 0.921892i \(0.626643\pi\)
\(240\) 0 0
\(241\) −5364.23 −1.43378 −0.716889 0.697187i \(-0.754435\pi\)
−0.716889 + 0.697187i \(0.754435\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 1584.16 0.408088
\(248\) 0 0
\(249\) 1131.45 0.287963
\(250\) 0 0
\(251\) −5569.81 −1.40065 −0.700325 0.713824i \(-0.746961\pi\)
−0.700325 + 0.713824i \(0.746961\pi\)
\(252\) 0 0
\(253\) 6047.15 1.50269
\(254\) 0 0
\(255\) 876.281 0.215196
\(256\) 0 0
\(257\) 2095.36 0.508580 0.254290 0.967128i \(-0.418158\pi\)
0.254290 + 0.967128i \(0.418158\pi\)
\(258\) 0 0
\(259\) 2450.87 0.587992
\(260\) 0 0
\(261\) 1238.23 0.293657
\(262\) 0 0
\(263\) 7465.88 1.75044 0.875220 0.483724i \(-0.160716\pi\)
0.875220 + 0.483724i \(0.160716\pi\)
\(264\) 0 0
\(265\) −1526.55 −0.353868
\(266\) 0 0
\(267\) 2033.17 0.466023
\(268\) 0 0
\(269\) −6521.38 −1.47812 −0.739062 0.673637i \(-0.764731\pi\)
−0.739062 + 0.673637i \(0.764731\pi\)
\(270\) 0 0
\(271\) −2409.70 −0.540144 −0.270072 0.962840i \(-0.587048\pi\)
−0.270072 + 0.962840i \(0.587048\pi\)
\(272\) 0 0
\(273\) 609.328 0.135085
\(274\) 0 0
\(275\) −935.078 −0.205045
\(276\) 0 0
\(277\) −2219.83 −0.481503 −0.240752 0.970587i \(-0.577394\pi\)
−0.240752 + 0.970587i \(0.577394\pi\)
\(278\) 0 0
\(279\) −1391.93 −0.298684
\(280\) 0 0
\(281\) 5838.56 1.23950 0.619749 0.784800i \(-0.287234\pi\)
0.619749 + 0.784800i \(0.287234\pi\)
\(282\) 0 0
\(283\) 3645.04 0.765636 0.382818 0.923824i \(-0.374954\pi\)
0.382818 + 0.923824i \(0.374954\pi\)
\(284\) 0 0
\(285\) 818.953 0.170213
\(286\) 0 0
\(287\) −2476.38 −0.509325
\(288\) 0 0
\(289\) −1500.25 −0.305363
\(290\) 0 0
\(291\) 3675.10 0.740338
\(292\) 0 0
\(293\) 3777.91 0.753268 0.376634 0.926362i \(-0.377081\pi\)
0.376634 + 0.926362i \(0.377081\pi\)
\(294\) 0 0
\(295\) 73.4064 0.0144877
\(296\) 0 0
\(297\) 1009.88 0.197304
\(298\) 0 0
\(299\) −4691.10 −0.907336
\(300\) 0 0
\(301\) −3627.09 −0.694559
\(302\) 0 0
\(303\) 1014.43 0.192335
\(304\) 0 0
\(305\) 855.344 0.160580
\(306\) 0 0
\(307\) 4799.64 0.892281 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(308\) 0 0
\(309\) −1700.10 −0.312994
\(310\) 0 0
\(311\) −580.113 −0.105772 −0.0528861 0.998601i \(-0.516842\pi\)
−0.0528861 + 0.998601i \(0.516842\pi\)
\(312\) 0 0
\(313\) −6114.78 −1.10424 −0.552121 0.833764i \(-0.686182\pi\)
−0.552121 + 0.833764i \(0.686182\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) −4300.63 −0.761979 −0.380989 0.924579i \(-0.624417\pi\)
−0.380989 + 0.924579i \(0.624417\pi\)
\(318\) 0 0
\(319\) −5145.97 −0.903194
\(320\) 0 0
\(321\) −1687.59 −0.293434
\(322\) 0 0
\(323\) 3189.48 0.549435
\(324\) 0 0
\(325\) 725.391 0.123807
\(326\) 0 0
\(327\) −5492.38 −0.928836
\(328\) 0 0
\(329\) −3795.53 −0.636032
\(330\) 0 0
\(331\) 6687.54 1.11051 0.555257 0.831679i \(-0.312620\pi\)
0.555257 + 0.831679i \(0.312620\pi\)
\(332\) 0 0
\(333\) −3151.12 −0.518560
\(334\) 0 0
\(335\) 2759.78 0.450098
\(336\) 0 0
\(337\) 5869.28 0.948723 0.474362 0.880330i \(-0.342679\pi\)
0.474362 + 0.880330i \(0.342679\pi\)
\(338\) 0 0
\(339\) 95.4097 0.0152860
\(340\) 0 0
\(341\) 5784.74 0.918655
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −2425.12 −0.378447
\(346\) 0 0
\(347\) −1937.22 −0.299699 −0.149850 0.988709i \(-0.547879\pi\)
−0.149850 + 0.988709i \(0.547879\pi\)
\(348\) 0 0
\(349\) −9748.82 −1.49525 −0.747625 0.664121i \(-0.768806\pi\)
−0.747625 + 0.664121i \(0.768806\pi\)
\(350\) 0 0
\(351\) −783.422 −0.119134
\(352\) 0 0
\(353\) −4576.61 −0.690052 −0.345026 0.938593i \(-0.612130\pi\)
−0.345026 + 0.938593i \(0.612130\pi\)
\(354\) 0 0
\(355\) −601.672 −0.0899533
\(356\) 0 0
\(357\) 1226.79 0.181873
\(358\) 0 0
\(359\) −10849.9 −1.59509 −0.797546 0.603258i \(-0.793869\pi\)
−0.797546 + 0.603258i \(0.793869\pi\)
\(360\) 0 0
\(361\) −3878.18 −0.565415
\(362\) 0 0
\(363\) −203.981 −0.0294938
\(364\) 0 0
\(365\) −1423.30 −0.204106
\(366\) 0 0
\(367\) −11467.7 −1.63108 −0.815541 0.578699i \(-0.803561\pi\)
−0.815541 + 0.578699i \(0.803561\pi\)
\(368\) 0 0
\(369\) 3183.92 0.449182
\(370\) 0 0
\(371\) −2137.17 −0.299073
\(372\) 0 0
\(373\) 539.982 0.0749576 0.0374788 0.999297i \(-0.488067\pi\)
0.0374788 + 0.999297i \(0.488067\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) 3992.01 0.545355
\(378\) 0 0
\(379\) −8577.57 −1.16253 −0.581267 0.813713i \(-0.697443\pi\)
−0.581267 + 0.813713i \(0.697443\pi\)
\(380\) 0 0
\(381\) 6662.44 0.895871
\(382\) 0 0
\(383\) −8627.96 −1.15109 −0.575546 0.817770i \(-0.695210\pi\)
−0.575546 + 0.817770i \(0.695210\pi\)
\(384\) 0 0
\(385\) −1309.11 −0.173295
\(386\) 0 0
\(387\) 4663.41 0.612543
\(388\) 0 0
\(389\) 9234.06 1.20356 0.601781 0.798661i \(-0.294458\pi\)
0.601781 + 0.798661i \(0.294458\pi\)
\(390\) 0 0
\(391\) −9444.85 −1.22160
\(392\) 0 0
\(393\) 1939.54 0.248948
\(394\) 0 0
\(395\) 4708.06 0.599717
\(396\) 0 0
\(397\) 11618.0 1.46874 0.734372 0.678747i \(-0.237477\pi\)
0.734372 + 0.678747i \(0.237477\pi\)
\(398\) 0 0
\(399\) 1146.53 0.143856
\(400\) 0 0
\(401\) 11157.1 1.38942 0.694711 0.719289i \(-0.255532\pi\)
0.694711 + 0.719289i \(0.255532\pi\)
\(402\) 0 0
\(403\) −4487.54 −0.554690
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) 13095.8 1.59492
\(408\) 0 0
\(409\) −7428.08 −0.898031 −0.449015 0.893524i \(-0.648225\pi\)
−0.449015 + 0.893524i \(0.648225\pi\)
\(410\) 0 0
\(411\) 2688.03 0.322605
\(412\) 0 0
\(413\) 102.769 0.0122444
\(414\) 0 0
\(415\) 1885.75 0.223055
\(416\) 0 0
\(417\) −6940.83 −0.815093
\(418\) 0 0
\(419\) −9644.74 −1.12453 −0.562263 0.826959i \(-0.690069\pi\)
−0.562263 + 0.826959i \(0.690069\pi\)
\(420\) 0 0
\(421\) 9918.18 1.14818 0.574088 0.818793i \(-0.305357\pi\)
0.574088 + 0.818793i \(0.305357\pi\)
\(422\) 0 0
\(423\) 4879.97 0.560927
\(424\) 0 0
\(425\) 1460.47 0.166690
\(426\) 0 0
\(427\) 1197.48 0.135715
\(428\) 0 0
\(429\) 3255.82 0.366417
\(430\) 0 0
\(431\) 16324.1 1.82437 0.912185 0.409779i \(-0.134394\pi\)
0.912185 + 0.409779i \(0.134394\pi\)
\(432\) 0 0
\(433\) −5168.75 −0.573659 −0.286829 0.957982i \(-0.592601\pi\)
−0.286829 + 0.957982i \(0.592601\pi\)
\(434\) 0 0
\(435\) 2063.72 0.227466
\(436\) 0 0
\(437\) −8826.95 −0.966248
\(438\) 0 0
\(439\) −18339.0 −1.99378 −0.996892 0.0787782i \(-0.974898\pi\)
−0.996892 + 0.0787782i \(0.974898\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 1613.28 0.173023 0.0865113 0.996251i \(-0.472428\pi\)
0.0865113 + 0.996251i \(0.472428\pi\)
\(444\) 0 0
\(445\) 3388.62 0.360980
\(446\) 0 0
\(447\) −2458.01 −0.260089
\(448\) 0 0
\(449\) −886.750 −0.0932034 −0.0466017 0.998914i \(-0.514839\pi\)
−0.0466017 + 0.998914i \(0.514839\pi\)
\(450\) 0 0
\(451\) −13232.1 −1.38154
\(452\) 0 0
\(453\) 1604.23 0.166387
\(454\) 0 0
\(455\) 1015.55 0.104636
\(456\) 0 0
\(457\) 7391.22 0.756557 0.378279 0.925692i \(-0.376516\pi\)
0.378279 + 0.925692i \(0.376516\pi\)
\(458\) 0 0
\(459\) −1577.31 −0.160397
\(460\) 0 0
\(461\) −7133.35 −0.720679 −0.360340 0.932821i \(-0.617339\pi\)
−0.360340 + 0.932821i \(0.617339\pi\)
\(462\) 0 0
\(463\) −14461.8 −1.45162 −0.725808 0.687897i \(-0.758534\pi\)
−0.725808 + 0.687897i \(0.758534\pi\)
\(464\) 0 0
\(465\) −2319.89 −0.231360
\(466\) 0 0
\(467\) 16393.5 1.62441 0.812206 0.583370i \(-0.198266\pi\)
0.812206 + 0.583370i \(0.198266\pi\)
\(468\) 0 0
\(469\) 3863.69 0.380403
\(470\) 0 0
\(471\) −4694.28 −0.459238
\(472\) 0 0
\(473\) −19380.7 −1.88398
\(474\) 0 0
\(475\) 1364.92 0.131846
\(476\) 0 0
\(477\) 2747.78 0.263758
\(478\) 0 0
\(479\) 12991.4 1.23923 0.619617 0.784904i \(-0.287288\pi\)
0.619617 + 0.784904i \(0.287288\pi\)
\(480\) 0 0
\(481\) −10159.1 −0.963025
\(482\) 0 0
\(483\) −3395.17 −0.319846
\(484\) 0 0
\(485\) 6125.17 0.573463
\(486\) 0 0
\(487\) 12863.5 1.19692 0.598461 0.801152i \(-0.295779\pi\)
0.598461 + 0.801152i \(0.295779\pi\)
\(488\) 0 0
\(489\) −3342.92 −0.309145
\(490\) 0 0
\(491\) 4898.10 0.450200 0.225100 0.974336i \(-0.427729\pi\)
0.225100 + 0.974336i \(0.427729\pi\)
\(492\) 0 0
\(493\) 8037.32 0.734245
\(494\) 0 0
\(495\) 1683.14 0.152831
\(496\) 0 0
\(497\) −842.340 −0.0760244
\(498\) 0 0
\(499\) −10308.0 −0.924746 −0.462373 0.886686i \(-0.653002\pi\)
−0.462373 + 0.886686i \(0.653002\pi\)
\(500\) 0 0
\(501\) −5323.41 −0.474715
\(502\) 0 0
\(503\) 15119.6 1.34026 0.670130 0.742244i \(-0.266238\pi\)
0.670130 + 0.742244i \(0.266238\pi\)
\(504\) 0 0
\(505\) 1690.72 0.148982
\(506\) 0 0
\(507\) 4065.28 0.356105
\(508\) 0 0
\(509\) 14183.8 1.23514 0.617571 0.786515i \(-0.288117\pi\)
0.617571 + 0.786515i \(0.288117\pi\)
\(510\) 0 0
\(511\) −1992.62 −0.172501
\(512\) 0 0
\(513\) −1474.12 −0.126869
\(514\) 0 0
\(515\) −2833.50 −0.242444
\(516\) 0 0
\(517\) −20280.7 −1.72523
\(518\) 0 0
\(519\) 12647.6 1.06969
\(520\) 0 0
\(521\) −7464.08 −0.627653 −0.313827 0.949480i \(-0.601611\pi\)
−0.313827 + 0.949480i \(0.601611\pi\)
\(522\) 0 0
\(523\) 16642.9 1.39148 0.695739 0.718295i \(-0.255077\pi\)
0.695739 + 0.718295i \(0.255077\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) −9035.01 −0.746814
\(528\) 0 0
\(529\) 13971.8 1.14834
\(530\) 0 0
\(531\) −132.132 −0.0107985
\(532\) 0 0
\(533\) 10264.8 0.834181
\(534\) 0 0
\(535\) −2812.66 −0.227293
\(536\) 0 0
\(537\) −7292.09 −0.585991
\(538\) 0 0
\(539\) −1832.75 −0.146461
\(540\) 0 0
\(541\) 67.8755 0.00539408 0.00269704 0.999996i \(-0.499142\pi\)
0.00269704 + 0.999996i \(0.499142\pi\)
\(542\) 0 0
\(543\) 8102.74 0.640372
\(544\) 0 0
\(545\) −9153.97 −0.719473
\(546\) 0 0
\(547\) 9212.91 0.720138 0.360069 0.932926i \(-0.382753\pi\)
0.360069 + 0.932926i \(0.382753\pi\)
\(548\) 0 0
\(549\) −1539.62 −0.119689
\(550\) 0 0
\(551\) 7511.51 0.580764
\(552\) 0 0
\(553\) 6591.29 0.506854
\(554\) 0 0
\(555\) −5251.87 −0.401675
\(556\) 0 0
\(557\) 16699.6 1.27035 0.635173 0.772370i \(-0.280929\pi\)
0.635173 + 0.772370i \(0.280929\pi\)
\(558\) 0 0
\(559\) 15034.6 1.13756
\(560\) 0 0
\(561\) 6555.13 0.493329
\(562\) 0 0
\(563\) −14772.8 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(564\) 0 0
\(565\) 159.016 0.0118405
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 5663.76 0.417289 0.208644 0.977992i \(-0.433095\pi\)
0.208644 + 0.977992i \(0.433095\pi\)
\(570\) 0 0
\(571\) −5579.58 −0.408929 −0.204464 0.978874i \(-0.565545\pi\)
−0.204464 + 0.978874i \(0.565545\pi\)
\(572\) 0 0
\(573\) 10833.3 0.789821
\(574\) 0 0
\(575\) −4041.87 −0.293144
\(576\) 0 0
\(577\) −2301.23 −0.166034 −0.0830170 0.996548i \(-0.526456\pi\)
−0.0830170 + 0.996548i \(0.526456\pi\)
\(578\) 0 0
\(579\) 13405.0 0.962162
\(580\) 0 0
\(581\) 2640.05 0.188516
\(582\) 0 0
\(583\) −11419.5 −0.811232
\(584\) 0 0
\(585\) −1305.70 −0.0922806
\(586\) 0 0
\(587\) 16470.4 1.15810 0.579052 0.815291i \(-0.303423\pi\)
0.579052 + 0.815291i \(0.303423\pi\)
\(588\) 0 0
\(589\) −8443.92 −0.590706
\(590\) 0 0
\(591\) 1303.27 0.0907093
\(592\) 0 0
\(593\) −13570.0 −0.939715 −0.469858 0.882742i \(-0.655695\pi\)
−0.469858 + 0.882742i \(0.655695\pi\)
\(594\) 0 0
\(595\) 2044.66 0.140879
\(596\) 0 0
\(597\) −1406.75 −0.0964393
\(598\) 0 0
\(599\) −27814.1 −1.89725 −0.948625 0.316403i \(-0.897525\pi\)
−0.948625 + 0.316403i \(0.897525\pi\)
\(600\) 0 0
\(601\) 20646.1 1.40128 0.700641 0.713514i \(-0.252898\pi\)
0.700641 + 0.713514i \(0.252898\pi\)
\(602\) 0 0
\(603\) −4967.61 −0.335483
\(604\) 0 0
\(605\) −339.969 −0.0228458
\(606\) 0 0
\(607\) −3315.28 −0.221686 −0.110843 0.993838i \(-0.535355\pi\)
−0.110843 + 0.993838i \(0.535355\pi\)
\(608\) 0 0
\(609\) 2889.21 0.192244
\(610\) 0 0
\(611\) 15732.8 1.04170
\(612\) 0 0
\(613\) −11113.9 −0.732278 −0.366139 0.930560i \(-0.619320\pi\)
−0.366139 + 0.930560i \(0.619320\pi\)
\(614\) 0 0
\(615\) 5306.53 0.347935
\(616\) 0 0
\(617\) 7871.34 0.513595 0.256797 0.966465i \(-0.417333\pi\)
0.256797 + 0.966465i \(0.417333\pi\)
\(618\) 0 0
\(619\) 19107.1 1.24068 0.620339 0.784334i \(-0.286995\pi\)
0.620339 + 0.784334i \(0.286995\pi\)
\(620\) 0 0
\(621\) 4365.22 0.282078
\(622\) 0 0
\(623\) 4744.07 0.305084
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 6126.28 0.390208
\(628\) 0 0
\(629\) −20453.9 −1.29658
\(630\) 0 0
\(631\) 25769.9 1.62580 0.812902 0.582401i \(-0.197887\pi\)
0.812902 + 0.582401i \(0.197887\pi\)
\(632\) 0 0
\(633\) 11206.5 0.703665
\(634\) 0 0
\(635\) 11104.1 0.693939
\(636\) 0 0
\(637\) 1421.77 0.0884339
\(638\) 0 0
\(639\) 1083.01 0.0670472
\(640\) 0 0
\(641\) −1954.61 −0.120440 −0.0602202 0.998185i \(-0.519180\pi\)
−0.0602202 + 0.998185i \(0.519180\pi\)
\(642\) 0 0
\(643\) 19396.5 1.18961 0.594807 0.803868i \(-0.297228\pi\)
0.594807 + 0.803868i \(0.297228\pi\)
\(644\) 0 0
\(645\) 7772.34 0.474474
\(646\) 0 0
\(647\) −31264.3 −1.89973 −0.949865 0.312661i \(-0.898780\pi\)
−0.949865 + 0.312661i \(0.898780\pi\)
\(648\) 0 0
\(649\) 549.126 0.0332127
\(650\) 0 0
\(651\) −3247.85 −0.195535
\(652\) 0 0
\(653\) 6442.75 0.386102 0.193051 0.981189i \(-0.438162\pi\)
0.193051 + 0.981189i \(0.438162\pi\)
\(654\) 0 0
\(655\) 3232.56 0.192835
\(656\) 0 0
\(657\) 2561.93 0.152132
\(658\) 0 0
\(659\) 3584.70 0.211897 0.105949 0.994372i \(-0.466212\pi\)
0.105949 + 0.994372i \(0.466212\pi\)
\(660\) 0 0
\(661\) 6294.43 0.370386 0.185193 0.982702i \(-0.440709\pi\)
0.185193 + 0.982702i \(0.440709\pi\)
\(662\) 0 0
\(663\) −5085.17 −0.297876
\(664\) 0 0
\(665\) 1910.89 0.111430
\(666\) 0 0
\(667\) −22243.4 −1.29126
\(668\) 0 0
\(669\) 2528.42 0.146120
\(670\) 0 0
\(671\) 6398.51 0.368125
\(672\) 0 0
\(673\) −10233.9 −0.586162 −0.293081 0.956088i \(-0.594681\pi\)
−0.293081 + 0.956088i \(0.594681\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −7100.75 −0.403108 −0.201554 0.979477i \(-0.564599\pi\)
−0.201554 + 0.979477i \(0.564599\pi\)
\(678\) 0 0
\(679\) 8575.24 0.484665
\(680\) 0 0
\(681\) 2976.45 0.167486
\(682\) 0 0
\(683\) 35274.6 1.97620 0.988100 0.153813i \(-0.0491554\pi\)
0.988100 + 0.153813i \(0.0491554\pi\)
\(684\) 0 0
\(685\) 4480.05 0.249889
\(686\) 0 0
\(687\) 19234.2 1.06817
\(688\) 0 0
\(689\) 8858.74 0.489828
\(690\) 0 0
\(691\) −4945.12 −0.272245 −0.136122 0.990692i \(-0.543464\pi\)
−0.136122 + 0.990692i \(0.543464\pi\)
\(692\) 0 0
\(693\) 2356.40 0.129166
\(694\) 0 0
\(695\) −11568.0 −0.631368
\(696\) 0 0
\(697\) 20666.7 1.12311
\(698\) 0 0
\(699\) 6823.06 0.369201
\(700\) 0 0
\(701\) −15300.4 −0.824379 −0.412190 0.911098i \(-0.635236\pi\)
−0.412190 + 0.911098i \(0.635236\pi\)
\(702\) 0 0
\(703\) −19115.7 −1.02555
\(704\) 0 0
\(705\) 8133.28 0.434492
\(706\) 0 0
\(707\) 2367.01 0.125913
\(708\) 0 0
\(709\) −28297.4 −1.49892 −0.749458 0.662052i \(-0.769686\pi\)
−0.749458 + 0.662052i \(0.769686\pi\)
\(710\) 0 0
\(711\) −8474.51 −0.447003
\(712\) 0 0
\(713\) 25004.5 1.31336
\(714\) 0 0
\(715\) 5426.37 0.283825
\(716\) 0 0
\(717\) 8589.35 0.447385
\(718\) 0 0
\(719\) −8548.96 −0.443425 −0.221712 0.975112i \(-0.571165\pi\)
−0.221712 + 0.975112i \(0.571165\pi\)
\(720\) 0 0
\(721\) −3966.90 −0.204903
\(722\) 0 0
\(723\) 16092.7 0.827792
\(724\) 0 0
\(725\) 3439.53 0.176194
\(726\) 0 0
\(727\) −14345.3 −0.731827 −0.365913 0.930649i \(-0.619243\pi\)
−0.365913 + 0.930649i \(0.619243\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 30270.0 1.53157
\(732\) 0 0
\(733\) −22624.0 −1.14002 −0.570012 0.821637i \(-0.693061\pi\)
−0.570012 + 0.821637i \(0.693061\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) 20644.9 1.03184
\(738\) 0 0
\(739\) −14837.3 −0.738566 −0.369283 0.929317i \(-0.620397\pi\)
−0.369283 + 0.929317i \(0.620397\pi\)
\(740\) 0 0
\(741\) −4752.49 −0.235610
\(742\) 0 0
\(743\) −13073.1 −0.645497 −0.322749 0.946485i \(-0.604607\pi\)
−0.322749 + 0.946485i \(0.604607\pi\)
\(744\) 0 0
\(745\) −4096.69 −0.201464
\(746\) 0 0
\(747\) −3394.35 −0.166255
\(748\) 0 0
\(749\) −3937.72 −0.192098
\(750\) 0 0
\(751\) −16213.3 −0.787791 −0.393895 0.919155i \(-0.628873\pi\)
−0.393895 + 0.919155i \(0.628873\pi\)
\(752\) 0 0
\(753\) 16709.4 0.808665
\(754\) 0 0
\(755\) 2673.72 0.128883
\(756\) 0 0
\(757\) 19903.9 0.955642 0.477821 0.878457i \(-0.341427\pi\)
0.477821 + 0.878457i \(0.341427\pi\)
\(758\) 0 0
\(759\) −18141.4 −0.867580
\(760\) 0 0
\(761\) −30125.5 −1.43502 −0.717509 0.696549i \(-0.754718\pi\)
−0.717509 + 0.696549i \(0.754718\pi\)
\(762\) 0 0
\(763\) −12815.6 −0.608066
\(764\) 0 0
\(765\) −2628.84 −0.124243
\(766\) 0 0
\(767\) −425.986 −0.0200541
\(768\) 0 0
\(769\) −36049.1 −1.69046 −0.845230 0.534402i \(-0.820537\pi\)
−0.845230 + 0.534402i \(0.820537\pi\)
\(770\) 0 0
\(771\) −6286.09 −0.293629
\(772\) 0 0
\(773\) −9644.77 −0.448769 −0.224384 0.974501i \(-0.572037\pi\)
−0.224384 + 0.974501i \(0.572037\pi\)
\(774\) 0 0
\(775\) −3866.48 −0.179211
\(776\) 0 0
\(777\) −7352.62 −0.339477
\(778\) 0 0
\(779\) 19314.7 0.888344
\(780\) 0 0
\(781\) −4500.88 −0.206215
\(782\) 0 0
\(783\) −3714.69 −0.169543
\(784\) 0 0
\(785\) −7823.80 −0.355724
\(786\) 0 0
\(787\) 25218.6 1.14224 0.571122 0.820865i \(-0.306508\pi\)
0.571122 + 0.820865i \(0.306508\pi\)
\(788\) 0 0
\(789\) −22397.6 −1.01062
\(790\) 0 0
\(791\) 222.623 0.0100070
\(792\) 0 0
\(793\) −4963.67 −0.222276
\(794\) 0 0
\(795\) 4579.64 0.204306
\(796\) 0 0
\(797\) 32042.3 1.42409 0.712044 0.702135i \(-0.247770\pi\)
0.712044 + 0.702135i \(0.247770\pi\)
\(798\) 0 0
\(799\) 31675.7 1.40251
\(800\) 0 0
\(801\) −6099.52 −0.269059
\(802\) 0 0
\(803\) −10647.1 −0.467908
\(804\) 0 0
\(805\) −5658.62 −0.247752
\(806\) 0 0
\(807\) 19564.1 0.853396
\(808\) 0 0
\(809\) 3427.90 0.148972 0.0744860 0.997222i \(-0.476268\pi\)
0.0744860 + 0.997222i \(0.476268\pi\)
\(810\) 0 0
\(811\) −23094.4 −0.999943 −0.499972 0.866042i \(-0.666656\pi\)
−0.499972 + 0.866042i \(0.666656\pi\)
\(812\) 0 0
\(813\) 7229.11 0.311852
\(814\) 0 0
\(815\) −5571.53 −0.239463
\(816\) 0 0
\(817\) 28289.7 1.21142
\(818\) 0 0
\(819\) −1827.98 −0.0779914
\(820\) 0 0
\(821\) 474.741 0.0201810 0.0100905 0.999949i \(-0.496788\pi\)
0.0100905 + 0.999949i \(0.496788\pi\)
\(822\) 0 0
\(823\) −24159.8 −1.02328 −0.511638 0.859201i \(-0.670961\pi\)
−0.511638 + 0.859201i \(0.670961\pi\)
\(824\) 0 0
\(825\) 2805.23 0.118383
\(826\) 0 0
\(827\) 7566.35 0.318147 0.159074 0.987267i \(-0.449149\pi\)
0.159074 + 0.987267i \(0.449149\pi\)
\(828\) 0 0
\(829\) −10580.9 −0.443295 −0.221648 0.975127i \(-0.571143\pi\)
−0.221648 + 0.975127i \(0.571143\pi\)
\(830\) 0 0
\(831\) 6659.48 0.277996
\(832\) 0 0
\(833\) 2862.52 0.119064
\(834\) 0 0
\(835\) −8872.34 −0.367713
\(836\) 0 0
\(837\) 4175.80 0.172445
\(838\) 0 0
\(839\) −15315.6 −0.630218 −0.315109 0.949055i \(-0.602041\pi\)
−0.315109 + 0.949055i \(0.602041\pi\)
\(840\) 0 0
\(841\) −5460.40 −0.223888
\(842\) 0 0
\(843\) −17515.7 −0.715625
\(844\) 0 0
\(845\) 6775.47 0.275838
\(846\) 0 0
\(847\) −475.956 −0.0193082
\(848\) 0 0
\(849\) −10935.1 −0.442040
\(850\) 0 0
\(851\) 56606.4 2.28019
\(852\) 0 0
\(853\) 18598.2 0.746528 0.373264 0.927725i \(-0.378239\pi\)
0.373264 + 0.927725i \(0.378239\pi\)
\(854\) 0 0
\(855\) −2456.86 −0.0982723
\(856\) 0 0
\(857\) 41775.3 1.66513 0.832566 0.553926i \(-0.186871\pi\)
0.832566 + 0.553926i \(0.186871\pi\)
\(858\) 0 0
\(859\) −32414.7 −1.28752 −0.643758 0.765229i \(-0.722626\pi\)
−0.643758 + 0.765229i \(0.722626\pi\)
\(860\) 0 0
\(861\) 7429.14 0.294059
\(862\) 0 0
\(863\) 31299.7 1.23459 0.617297 0.786730i \(-0.288228\pi\)
0.617297 + 0.786730i \(0.288228\pi\)
\(864\) 0 0
\(865\) 21079.4 0.828580
\(866\) 0 0
\(867\) 4500.75 0.176302
\(868\) 0 0
\(869\) 35219.2 1.37483
\(870\) 0 0
\(871\) −16015.4 −0.623030
\(872\) 0 0
\(873\) −11025.3 −0.427434
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −19973.0 −0.769031 −0.384515 0.923119i \(-0.625631\pi\)
−0.384515 + 0.923119i \(0.625631\pi\)
\(878\) 0 0
\(879\) −11333.7 −0.434900
\(880\) 0 0
\(881\) 17367.9 0.664176 0.332088 0.943248i \(-0.392247\pi\)
0.332088 + 0.943248i \(0.392247\pi\)
\(882\) 0 0
\(883\) 14364.2 0.547446 0.273723 0.961809i \(-0.411745\pi\)
0.273723 + 0.961809i \(0.411745\pi\)
\(884\) 0 0
\(885\) −220.219 −0.00836450
\(886\) 0 0
\(887\) 33738.1 1.27713 0.638564 0.769568i \(-0.279529\pi\)
0.638564 + 0.769568i \(0.279529\pi\)
\(888\) 0 0
\(889\) 15545.7 0.586485
\(890\) 0 0
\(891\) −3029.65 −0.113914
\(892\) 0 0
\(893\) 29603.4 1.10934
\(894\) 0 0
\(895\) −12153.5 −0.453906
\(896\) 0 0
\(897\) 14073.3 0.523850
\(898\) 0 0
\(899\) −21278.2 −0.789398
\(900\) 0 0
\(901\) 17835.8 0.659485
\(902\) 0 0
\(903\) 10881.3 0.401004
\(904\) 0 0
\(905\) 13504.6 0.496030
\(906\) 0 0
\(907\) 32998.6 1.20805 0.604024 0.796966i \(-0.293563\pi\)
0.604024 + 0.796966i \(0.293563\pi\)
\(908\) 0 0
\(909\) −3043.29 −0.111045
\(910\) 0 0
\(911\) −33446.3 −1.21638 −0.608192 0.793790i \(-0.708105\pi\)
−0.608192 + 0.793790i \(0.708105\pi\)
\(912\) 0 0
\(913\) 14106.6 0.511347
\(914\) 0 0
\(915\) −2566.03 −0.0927108
\(916\) 0 0
\(917\) 4525.59 0.162975
\(918\) 0 0
\(919\) −41708.7 −1.49711 −0.748554 0.663074i \(-0.769252\pi\)
−0.748554 + 0.663074i \(0.769252\pi\)
\(920\) 0 0
\(921\) −14398.9 −0.515158
\(922\) 0 0
\(923\) 3491.58 0.124514
\(924\) 0 0
\(925\) −8753.12 −0.311136
\(926\) 0 0
\(927\) 5100.30 0.180707
\(928\) 0 0
\(929\) 49024.6 1.73137 0.865686 0.500587i \(-0.166883\pi\)
0.865686 + 0.500587i \(0.166883\pi\)
\(930\) 0 0
\(931\) 2675.25 0.0941758
\(932\) 0 0
\(933\) 1740.34 0.0610677
\(934\) 0 0
\(935\) 10925.2 0.382131
\(936\) 0 0
\(937\) −5447.58 −0.189930 −0.0949651 0.995481i \(-0.530274\pi\)
−0.0949651 + 0.995481i \(0.530274\pi\)
\(938\) 0 0
\(939\) 18344.4 0.637535
\(940\) 0 0
\(941\) 4125.75 0.142928 0.0714642 0.997443i \(-0.477233\pi\)
0.0714642 + 0.997443i \(0.477233\pi\)
\(942\) 0 0
\(943\) −57195.5 −1.97513
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) −17332.3 −0.594747 −0.297374 0.954761i \(-0.596111\pi\)
−0.297374 + 0.954761i \(0.596111\pi\)
\(948\) 0 0
\(949\) 8259.57 0.282526
\(950\) 0 0
\(951\) 12901.9 0.439929
\(952\) 0 0
\(953\) 56839.4 1.93201 0.966007 0.258517i \(-0.0832337\pi\)
0.966007 + 0.258517i \(0.0832337\pi\)
\(954\) 0 0
\(955\) 18055.5 0.611792
\(956\) 0 0
\(957\) 15437.9 0.521459
\(958\) 0 0
\(959\) 6272.07 0.211195
\(960\) 0 0
\(961\) −5871.48 −0.197089
\(962\) 0 0
\(963\) 5062.78 0.169414
\(964\) 0 0
\(965\) 22341.6 0.745287
\(966\) 0 0
\(967\) 13284.2 0.441769 0.220884 0.975300i \(-0.429106\pi\)
0.220884 + 0.975300i \(0.429106\pi\)
\(968\) 0 0
\(969\) −9568.44 −0.317216
\(970\) 0 0
\(971\) −12153.0 −0.401658 −0.200829 0.979626i \(-0.564364\pi\)
−0.200829 + 0.979626i \(0.564364\pi\)
\(972\) 0 0
\(973\) −16195.3 −0.533604
\(974\) 0 0
\(975\) −2176.17 −0.0714803
\(976\) 0 0
\(977\) −37999.3 −1.24433 −0.622163 0.782888i \(-0.713746\pi\)
−0.622163 + 0.782888i \(0.713746\pi\)
\(978\) 0 0
\(979\) 25349.0 0.827537
\(980\) 0 0
\(981\) 16477.1 0.536264
\(982\) 0 0
\(983\) −22375.0 −0.725993 −0.362996 0.931791i \(-0.618246\pi\)
−0.362996 + 0.931791i \(0.618246\pi\)
\(984\) 0 0
\(985\) 2172.11 0.0702631
\(986\) 0 0
\(987\) 11386.6 0.367213
\(988\) 0 0
\(989\) −83772.9 −2.69345
\(990\) 0 0
\(991\) −18985.3 −0.608564 −0.304282 0.952582i \(-0.598417\pi\)
−0.304282 + 0.952582i \(0.598417\pi\)
\(992\) 0 0
\(993\) −20062.6 −0.641156
\(994\) 0 0
\(995\) −2344.58 −0.0747016
\(996\) 0 0
\(997\) −56476.5 −1.79401 −0.897006 0.442019i \(-0.854262\pi\)
−0.897006 + 0.442019i \(0.854262\pi\)
\(998\) 0 0
\(999\) 9453.37 0.299391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.4.a.y.1.1 2
4.3 odd 2 105.4.a.g.1.1 2
12.11 even 2 315.4.a.g.1.2 2
20.3 even 4 525.4.d.j.274.3 4
20.7 even 4 525.4.d.j.274.2 4
20.19 odd 2 525.4.a.i.1.2 2
28.27 even 2 735.4.a.q.1.1 2
60.59 even 2 1575.4.a.y.1.1 2
84.83 odd 2 2205.4.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.1 2 4.3 odd 2
315.4.a.g.1.2 2 12.11 even 2
525.4.a.i.1.2 2 20.19 odd 2
525.4.d.j.274.2 4 20.7 even 4
525.4.d.j.274.3 4 20.3 even 4
735.4.a.q.1.1 2 28.27 even 2
1575.4.a.y.1.1 2 60.59 even 2
1680.4.a.y.1.1 2 1.1 even 1 trivial
2205.4.a.v.1.2 2 84.83 odd 2