Properties

Label 1680.4.a.u.1.1
Level $1680$
Weight $4$
Character 1680.1
Self dual yes
Analytic conductor $99.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} -12.0000 q^{11} +30.0000 q^{13} +15.0000 q^{15} -134.000 q^{17} +92.0000 q^{19} -21.0000 q^{21} -112.000 q^{23} +25.0000 q^{25} +27.0000 q^{27} -58.0000 q^{29} +224.000 q^{31} -36.0000 q^{33} -35.0000 q^{35} -146.000 q^{37} +90.0000 q^{39} +18.0000 q^{41} -340.000 q^{43} +45.0000 q^{45} -208.000 q^{47} +49.0000 q^{49} -402.000 q^{51} -754.000 q^{53} -60.0000 q^{55} +276.000 q^{57} -380.000 q^{59} +718.000 q^{61} -63.0000 q^{63} +150.000 q^{65} -412.000 q^{67} -336.000 q^{69} +960.000 q^{71} +1066.00 q^{73} +75.0000 q^{75} +84.0000 q^{77} -896.000 q^{79} +81.0000 q^{81} -436.000 q^{83} -670.000 q^{85} -174.000 q^{87} -1038.00 q^{89} -210.000 q^{91} +672.000 q^{93} +460.000 q^{95} -702.000 q^{97} -108.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 0 0
\(13\) 30.0000 0.640039 0.320019 0.947411i \(-0.396311\pi\)
0.320019 + 0.947411i \(0.396311\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −134.000 −1.91175 −0.955876 0.293771i \(-0.905090\pi\)
−0.955876 + 0.293771i \(0.905090\pi\)
\(18\) 0 0
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) −112.000 −1.01537 −0.507687 0.861541i \(-0.669499\pi\)
−0.507687 + 0.861541i \(0.669499\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −58.0000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 224.000 1.29779 0.648897 0.760877i \(-0.275231\pi\)
0.648897 + 0.760877i \(0.275231\pi\)
\(32\) 0 0
\(33\) −36.0000 −0.189903
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −146.000 −0.648710 −0.324355 0.945936i \(-0.605147\pi\)
−0.324355 + 0.945936i \(0.605147\pi\)
\(38\) 0 0
\(39\) 90.0000 0.369527
\(40\) 0 0
\(41\) 18.0000 0.0685641 0.0342820 0.999412i \(-0.489086\pi\)
0.0342820 + 0.999412i \(0.489086\pi\)
\(42\) 0 0
\(43\) −340.000 −1.20580 −0.602901 0.797816i \(-0.705989\pi\)
−0.602901 + 0.797816i \(0.705989\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) −208.000 −0.645530 −0.322765 0.946479i \(-0.604612\pi\)
−0.322765 + 0.946479i \(0.604612\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −402.000 −1.10375
\(52\) 0 0
\(53\) −754.000 −1.95415 −0.977074 0.212899i \(-0.931709\pi\)
−0.977074 + 0.212899i \(0.931709\pi\)
\(54\) 0 0
\(55\) −60.0000 −0.147098
\(56\) 0 0
\(57\) 276.000 0.641353
\(58\) 0 0
\(59\) −380.000 −0.838505 −0.419252 0.907870i \(-0.637708\pi\)
−0.419252 + 0.907870i \(0.637708\pi\)
\(60\) 0 0
\(61\) 718.000 1.50706 0.753529 0.657415i \(-0.228350\pi\)
0.753529 + 0.657415i \(0.228350\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 150.000 0.286234
\(66\) 0 0
\(67\) −412.000 −0.751251 −0.375625 0.926772i \(-0.622572\pi\)
−0.375625 + 0.926772i \(0.622572\pi\)
\(68\) 0 0
\(69\) −336.000 −0.586227
\(70\) 0 0
\(71\) 960.000 1.60466 0.802331 0.596879i \(-0.203593\pi\)
0.802331 + 0.596879i \(0.203593\pi\)
\(72\) 0 0
\(73\) 1066.00 1.70912 0.854561 0.519352i \(-0.173826\pi\)
0.854561 + 0.519352i \(0.173826\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) 84.0000 0.124321
\(78\) 0 0
\(79\) −896.000 −1.27605 −0.638025 0.770016i \(-0.720248\pi\)
−0.638025 + 0.770016i \(0.720248\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −436.000 −0.576593 −0.288296 0.957541i \(-0.593089\pi\)
−0.288296 + 0.957541i \(0.593089\pi\)
\(84\) 0 0
\(85\) −670.000 −0.854961
\(86\) 0 0
\(87\) −174.000 −0.214423
\(88\) 0 0
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 0 0
\(91\) −210.000 −0.241912
\(92\) 0 0
\(93\) 672.000 0.749281
\(94\) 0 0
\(95\) 460.000 0.496790
\(96\) 0 0
\(97\) −702.000 −0.734818 −0.367409 0.930060i \(-0.619755\pi\)
−0.367409 + 0.930060i \(0.619755\pi\)
\(98\) 0 0
\(99\) −108.000 −0.109640
\(100\) 0 0
\(101\) 46.0000 0.0453185 0.0226593 0.999743i \(-0.492787\pi\)
0.0226593 + 0.999743i \(0.492787\pi\)
\(102\) 0 0
\(103\) −1880.00 −1.79847 −0.899233 0.437471i \(-0.855874\pi\)
−0.899233 + 0.437471i \(0.855874\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −732.000 −0.661356 −0.330678 0.943744i \(-0.607277\pi\)
−0.330678 + 0.943744i \(0.607277\pi\)
\(108\) 0 0
\(109\) −378.000 −0.332164 −0.166082 0.986112i \(-0.553112\pi\)
−0.166082 + 0.986112i \(0.553112\pi\)
\(110\) 0 0
\(111\) −438.000 −0.374533
\(112\) 0 0
\(113\) 1458.00 1.21378 0.606890 0.794786i \(-0.292417\pi\)
0.606890 + 0.794786i \(0.292417\pi\)
\(114\) 0 0
\(115\) −560.000 −0.454089
\(116\) 0 0
\(117\) 270.000 0.213346
\(118\) 0 0
\(119\) 938.000 0.722574
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 0 0
\(123\) 54.0000 0.0395855
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −608.000 −0.424813 −0.212407 0.977181i \(-0.568130\pi\)
−0.212407 + 0.977181i \(0.568130\pi\)
\(128\) 0 0
\(129\) −1020.00 −0.696170
\(130\) 0 0
\(131\) 956.000 0.637604 0.318802 0.947821i \(-0.396720\pi\)
0.318802 + 0.947821i \(0.396720\pi\)
\(132\) 0 0
\(133\) −644.000 −0.419864
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −374.000 −0.233233 −0.116617 0.993177i \(-0.537205\pi\)
−0.116617 + 0.993177i \(0.537205\pi\)
\(138\) 0 0
\(139\) −396.000 −0.241642 −0.120821 0.992674i \(-0.538553\pi\)
−0.120821 + 0.992674i \(0.538553\pi\)
\(140\) 0 0
\(141\) −624.000 −0.372697
\(142\) 0 0
\(143\) −360.000 −0.210522
\(144\) 0 0
\(145\) −290.000 −0.166091
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −1874.00 −1.03036 −0.515181 0.857081i \(-0.672275\pi\)
−0.515181 + 0.857081i \(0.672275\pi\)
\(150\) 0 0
\(151\) 1096.00 0.590670 0.295335 0.955394i \(-0.404569\pi\)
0.295335 + 0.955394i \(0.404569\pi\)
\(152\) 0 0
\(153\) −1206.00 −0.637250
\(154\) 0 0
\(155\) 1120.00 0.580391
\(156\) 0 0
\(157\) 1918.00 0.974988 0.487494 0.873126i \(-0.337911\pi\)
0.487494 + 0.873126i \(0.337911\pi\)
\(158\) 0 0
\(159\) −2262.00 −1.12823
\(160\) 0 0
\(161\) 784.000 0.383776
\(162\) 0 0
\(163\) −2316.00 −1.11290 −0.556451 0.830880i \(-0.687837\pi\)
−0.556451 + 0.830880i \(0.687837\pi\)
\(164\) 0 0
\(165\) −180.000 −0.0849272
\(166\) 0 0
\(167\) 1736.00 0.804405 0.402203 0.915551i \(-0.368245\pi\)
0.402203 + 0.915551i \(0.368245\pi\)
\(168\) 0 0
\(169\) −1297.00 −0.590350
\(170\) 0 0
\(171\) 828.000 0.370285
\(172\) 0 0
\(173\) −2442.00 −1.07319 −0.536595 0.843840i \(-0.680290\pi\)
−0.536595 + 0.843840i \(0.680290\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −1140.00 −0.484111
\(178\) 0 0
\(179\) 4092.00 1.70866 0.854331 0.519730i \(-0.173967\pi\)
0.854331 + 0.519730i \(0.173967\pi\)
\(180\) 0 0
\(181\) 1270.00 0.521538 0.260769 0.965401i \(-0.416024\pi\)
0.260769 + 0.965401i \(0.416024\pi\)
\(182\) 0 0
\(183\) 2154.00 0.870100
\(184\) 0 0
\(185\) −730.000 −0.290112
\(186\) 0 0
\(187\) 1608.00 0.628816
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −4904.00 −1.85781 −0.928903 0.370323i \(-0.879247\pi\)
−0.928903 + 0.370323i \(0.879247\pi\)
\(192\) 0 0
\(193\) 2178.00 0.812310 0.406155 0.913804i \(-0.366869\pi\)
0.406155 + 0.913804i \(0.366869\pi\)
\(194\) 0 0
\(195\) 450.000 0.165257
\(196\) 0 0
\(197\) −2850.00 −1.03073 −0.515366 0.856970i \(-0.672344\pi\)
−0.515366 + 0.856970i \(0.672344\pi\)
\(198\) 0 0
\(199\) 1144.00 0.407518 0.203759 0.979021i \(-0.434684\pi\)
0.203759 + 0.979021i \(0.434684\pi\)
\(200\) 0 0
\(201\) −1236.00 −0.433735
\(202\) 0 0
\(203\) 406.000 0.140372
\(204\) 0 0
\(205\) 90.0000 0.0306628
\(206\) 0 0
\(207\) −1008.00 −0.338458
\(208\) 0 0
\(209\) −1104.00 −0.365384
\(210\) 0 0
\(211\) −412.000 −0.134423 −0.0672115 0.997739i \(-0.521410\pi\)
−0.0672115 + 0.997739i \(0.521410\pi\)
\(212\) 0 0
\(213\) 2880.00 0.926452
\(214\) 0 0
\(215\) −1700.00 −0.539251
\(216\) 0 0
\(217\) −1568.00 −0.490520
\(218\) 0 0
\(219\) 3198.00 0.986762
\(220\) 0 0
\(221\) −4020.00 −1.22359
\(222\) 0 0
\(223\) 1632.00 0.490075 0.245038 0.969514i \(-0.421200\pi\)
0.245038 + 0.969514i \(0.421200\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −4084.00 −1.19412 −0.597059 0.802198i \(-0.703664\pi\)
−0.597059 + 0.802198i \(0.703664\pi\)
\(228\) 0 0
\(229\) −3386.00 −0.977088 −0.488544 0.872539i \(-0.662472\pi\)
−0.488544 + 0.872539i \(0.662472\pi\)
\(230\) 0 0
\(231\) 252.000 0.0717765
\(232\) 0 0
\(233\) 5322.00 1.49638 0.748188 0.663486i \(-0.230924\pi\)
0.748188 + 0.663486i \(0.230924\pi\)
\(234\) 0 0
\(235\) −1040.00 −0.288690
\(236\) 0 0
\(237\) −2688.00 −0.736727
\(238\) 0 0
\(239\) −3736.00 −1.01114 −0.505569 0.862786i \(-0.668717\pi\)
−0.505569 + 0.862786i \(0.668717\pi\)
\(240\) 0 0
\(241\) 210.000 0.0561298 0.0280649 0.999606i \(-0.491065\pi\)
0.0280649 + 0.999606i \(0.491065\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 2760.00 0.710990
\(248\) 0 0
\(249\) −1308.00 −0.332896
\(250\) 0 0
\(251\) 4212.00 1.05920 0.529600 0.848248i \(-0.322342\pi\)
0.529600 + 0.848248i \(0.322342\pi\)
\(252\) 0 0
\(253\) 1344.00 0.333978
\(254\) 0 0
\(255\) −2010.00 −0.493612
\(256\) 0 0
\(257\) 5130.00 1.24514 0.622569 0.782565i \(-0.286089\pi\)
0.622569 + 0.782565i \(0.286089\pi\)
\(258\) 0 0
\(259\) 1022.00 0.245189
\(260\) 0 0
\(261\) −522.000 −0.123797
\(262\) 0 0
\(263\) −848.000 −0.198821 −0.0994105 0.995047i \(-0.531696\pi\)
−0.0994105 + 0.995047i \(0.531696\pi\)
\(264\) 0 0
\(265\) −3770.00 −0.873922
\(266\) 0 0
\(267\) −3114.00 −0.713759
\(268\) 0 0
\(269\) −1274.00 −0.288763 −0.144381 0.989522i \(-0.546119\pi\)
−0.144381 + 0.989522i \(0.546119\pi\)
\(270\) 0 0
\(271\) −864.000 −0.193669 −0.0968344 0.995301i \(-0.530872\pi\)
−0.0968344 + 0.995301i \(0.530872\pi\)
\(272\) 0 0
\(273\) −630.000 −0.139668
\(274\) 0 0
\(275\) −300.000 −0.0657843
\(276\) 0 0
\(277\) −8530.00 −1.85025 −0.925123 0.379668i \(-0.876038\pi\)
−0.925123 + 0.379668i \(0.876038\pi\)
\(278\) 0 0
\(279\) 2016.00 0.432598
\(280\) 0 0
\(281\) −5382.00 −1.14257 −0.571287 0.820750i \(-0.693556\pi\)
−0.571287 + 0.820750i \(0.693556\pi\)
\(282\) 0 0
\(283\) −6236.00 −1.30986 −0.654932 0.755687i \(-0.727303\pi\)
−0.654932 + 0.755687i \(0.727303\pi\)
\(284\) 0 0
\(285\) 1380.00 0.286822
\(286\) 0 0
\(287\) −126.000 −0.0259148
\(288\) 0 0
\(289\) 13043.0 2.65479
\(290\) 0 0
\(291\) −2106.00 −0.424247
\(292\) 0 0
\(293\) −818.000 −0.163099 −0.0815496 0.996669i \(-0.525987\pi\)
−0.0815496 + 0.996669i \(0.525987\pi\)
\(294\) 0 0
\(295\) −1900.00 −0.374991
\(296\) 0 0
\(297\) −324.000 −0.0633010
\(298\) 0 0
\(299\) −3360.00 −0.649879
\(300\) 0 0
\(301\) 2380.00 0.455751
\(302\) 0 0
\(303\) 138.000 0.0261647
\(304\) 0 0
\(305\) 3590.00 0.673976
\(306\) 0 0
\(307\) 2268.00 0.421634 0.210817 0.977526i \(-0.432388\pi\)
0.210817 + 0.977526i \(0.432388\pi\)
\(308\) 0 0
\(309\) −5640.00 −1.03834
\(310\) 0 0
\(311\) −6648.00 −1.21213 −0.606067 0.795414i \(-0.707254\pi\)
−0.606067 + 0.795414i \(0.707254\pi\)
\(312\) 0 0
\(313\) 9818.00 1.77299 0.886495 0.462737i \(-0.153133\pi\)
0.886495 + 0.462737i \(0.153133\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) 934.000 0.165485 0.0827424 0.996571i \(-0.473632\pi\)
0.0827424 + 0.996571i \(0.473632\pi\)
\(318\) 0 0
\(319\) 696.000 0.122158
\(320\) 0 0
\(321\) −2196.00 −0.381834
\(322\) 0 0
\(323\) −12328.0 −2.12368
\(324\) 0 0
\(325\) 750.000 0.128008
\(326\) 0 0
\(327\) −1134.00 −0.191775
\(328\) 0 0
\(329\) 1456.00 0.243987
\(330\) 0 0
\(331\) −2292.00 −0.380603 −0.190302 0.981726i \(-0.560947\pi\)
−0.190302 + 0.981726i \(0.560947\pi\)
\(332\) 0 0
\(333\) −1314.00 −0.216237
\(334\) 0 0
\(335\) −2060.00 −0.335970
\(336\) 0 0
\(337\) −6062.00 −0.979876 −0.489938 0.871757i \(-0.662981\pi\)
−0.489938 + 0.871757i \(0.662981\pi\)
\(338\) 0 0
\(339\) 4374.00 0.700776
\(340\) 0 0
\(341\) −2688.00 −0.426872
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −1680.00 −0.262169
\(346\) 0 0
\(347\) −1484.00 −0.229583 −0.114791 0.993390i \(-0.536620\pi\)
−0.114791 + 0.993390i \(0.536620\pi\)
\(348\) 0 0
\(349\) 254.000 0.0389579 0.0194790 0.999810i \(-0.493799\pi\)
0.0194790 + 0.999810i \(0.493799\pi\)
\(350\) 0 0
\(351\) 810.000 0.123176
\(352\) 0 0
\(353\) −10950.0 −1.65102 −0.825509 0.564388i \(-0.809112\pi\)
−0.825509 + 0.564388i \(0.809112\pi\)
\(354\) 0 0
\(355\) 4800.00 0.717627
\(356\) 0 0
\(357\) 2814.00 0.417178
\(358\) 0 0
\(359\) −11376.0 −1.67243 −0.836215 0.548402i \(-0.815236\pi\)
−0.836215 + 0.548402i \(0.815236\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) −3561.00 −0.514887
\(364\) 0 0
\(365\) 5330.00 0.764342
\(366\) 0 0
\(367\) 1136.00 0.161577 0.0807884 0.996731i \(-0.474256\pi\)
0.0807884 + 0.996731i \(0.474256\pi\)
\(368\) 0 0
\(369\) 162.000 0.0228547
\(370\) 0 0
\(371\) 5278.00 0.738599
\(372\) 0 0
\(373\) −8242.00 −1.14411 −0.572057 0.820214i \(-0.693854\pi\)
−0.572057 + 0.820214i \(0.693854\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −1740.00 −0.237704
\(378\) 0 0
\(379\) −3620.00 −0.490625 −0.245313 0.969444i \(-0.578891\pi\)
−0.245313 + 0.969444i \(0.578891\pi\)
\(380\) 0 0
\(381\) −1824.00 −0.245266
\(382\) 0 0
\(383\) 8464.00 1.12922 0.564609 0.825359i \(-0.309027\pi\)
0.564609 + 0.825359i \(0.309027\pi\)
\(384\) 0 0
\(385\) 420.000 0.0555979
\(386\) 0 0
\(387\) −3060.00 −0.401934
\(388\) 0 0
\(389\) 3678.00 0.479388 0.239694 0.970848i \(-0.422953\pi\)
0.239694 + 0.970848i \(0.422953\pi\)
\(390\) 0 0
\(391\) 15008.0 1.94114
\(392\) 0 0
\(393\) 2868.00 0.368121
\(394\) 0 0
\(395\) −4480.00 −0.570666
\(396\) 0 0
\(397\) 12590.0 1.59162 0.795811 0.605545i \(-0.207045\pi\)
0.795811 + 0.605545i \(0.207045\pi\)
\(398\) 0 0
\(399\) −1932.00 −0.242408
\(400\) 0 0
\(401\) 2850.00 0.354918 0.177459 0.984128i \(-0.443212\pi\)
0.177459 + 0.984128i \(0.443212\pi\)
\(402\) 0 0
\(403\) 6720.00 0.830638
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 1752.00 0.213374
\(408\) 0 0
\(409\) 1226.00 0.148220 0.0741098 0.997250i \(-0.476388\pi\)
0.0741098 + 0.997250i \(0.476388\pi\)
\(410\) 0 0
\(411\) −1122.00 −0.134657
\(412\) 0 0
\(413\) 2660.00 0.316925
\(414\) 0 0
\(415\) −2180.00 −0.257860
\(416\) 0 0
\(417\) −1188.00 −0.139512
\(418\) 0 0
\(419\) −612.000 −0.0713560 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(420\) 0 0
\(421\) 5182.00 0.599894 0.299947 0.953956i \(-0.403031\pi\)
0.299947 + 0.953956i \(0.403031\pi\)
\(422\) 0 0
\(423\) −1872.00 −0.215177
\(424\) 0 0
\(425\) −3350.00 −0.382350
\(426\) 0 0
\(427\) −5026.00 −0.569614
\(428\) 0 0
\(429\) −1080.00 −0.121545
\(430\) 0 0
\(431\) 4984.00 0.557009 0.278504 0.960435i \(-0.410161\pi\)
0.278504 + 0.960435i \(0.410161\pi\)
\(432\) 0 0
\(433\) −1694.00 −0.188010 −0.0940051 0.995572i \(-0.529967\pi\)
−0.0940051 + 0.995572i \(0.529967\pi\)
\(434\) 0 0
\(435\) −870.000 −0.0958927
\(436\) 0 0
\(437\) −10304.0 −1.12793
\(438\) 0 0
\(439\) −13864.0 −1.50727 −0.753636 0.657292i \(-0.771702\pi\)
−0.753636 + 0.657292i \(0.771702\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 4644.00 0.498066 0.249033 0.968495i \(-0.419887\pi\)
0.249033 + 0.968495i \(0.419887\pi\)
\(444\) 0 0
\(445\) −5190.00 −0.552875
\(446\) 0 0
\(447\) −5622.00 −0.594880
\(448\) 0 0
\(449\) −4926.00 −0.517756 −0.258878 0.965910i \(-0.583353\pi\)
−0.258878 + 0.965910i \(0.583353\pi\)
\(450\) 0 0
\(451\) −216.000 −0.0225522
\(452\) 0 0
\(453\) 3288.00 0.341024
\(454\) 0 0
\(455\) −1050.00 −0.108186
\(456\) 0 0
\(457\) −14694.0 −1.50406 −0.752031 0.659128i \(-0.770926\pi\)
−0.752031 + 0.659128i \(0.770926\pi\)
\(458\) 0 0
\(459\) −3618.00 −0.367917
\(460\) 0 0
\(461\) 2006.00 0.202665 0.101333 0.994853i \(-0.467689\pi\)
0.101333 + 0.994853i \(0.467689\pi\)
\(462\) 0 0
\(463\) −4896.00 −0.491439 −0.245720 0.969341i \(-0.579024\pi\)
−0.245720 + 0.969341i \(0.579024\pi\)
\(464\) 0 0
\(465\) 3360.00 0.335089
\(466\) 0 0
\(467\) −2660.00 −0.263576 −0.131788 0.991278i \(-0.542072\pi\)
−0.131788 + 0.991278i \(0.542072\pi\)
\(468\) 0 0
\(469\) 2884.00 0.283946
\(470\) 0 0
\(471\) 5754.00 0.562909
\(472\) 0 0
\(473\) 4080.00 0.396614
\(474\) 0 0
\(475\) 2300.00 0.222171
\(476\) 0 0
\(477\) −6786.00 −0.651383
\(478\) 0 0
\(479\) 5600.00 0.534176 0.267088 0.963672i \(-0.413938\pi\)
0.267088 + 0.963672i \(0.413938\pi\)
\(480\) 0 0
\(481\) −4380.00 −0.415199
\(482\) 0 0
\(483\) 2352.00 0.221573
\(484\) 0 0
\(485\) −3510.00 −0.328620
\(486\) 0 0
\(487\) 6424.00 0.597740 0.298870 0.954294i \(-0.403390\pi\)
0.298870 + 0.954294i \(0.403390\pi\)
\(488\) 0 0
\(489\) −6948.00 −0.642535
\(490\) 0 0
\(491\) 18900.0 1.73716 0.868579 0.495550i \(-0.165033\pi\)
0.868579 + 0.495550i \(0.165033\pi\)
\(492\) 0 0
\(493\) 7772.00 0.710007
\(494\) 0 0
\(495\) −540.000 −0.0490327
\(496\) 0 0
\(497\) −6720.00 −0.606505
\(498\) 0 0
\(499\) 15364.0 1.37833 0.689165 0.724604i \(-0.257977\pi\)
0.689165 + 0.724604i \(0.257977\pi\)
\(500\) 0 0
\(501\) 5208.00 0.464424
\(502\) 0 0
\(503\) −2216.00 −0.196435 −0.0982173 0.995165i \(-0.531314\pi\)
−0.0982173 + 0.995165i \(0.531314\pi\)
\(504\) 0 0
\(505\) 230.000 0.0202671
\(506\) 0 0
\(507\) −3891.00 −0.340839
\(508\) 0 0
\(509\) −3754.00 −0.326902 −0.163451 0.986551i \(-0.552263\pi\)
−0.163451 + 0.986551i \(0.552263\pi\)
\(510\) 0 0
\(511\) −7462.00 −0.645987
\(512\) 0 0
\(513\) 2484.00 0.213784
\(514\) 0 0
\(515\) −9400.00 −0.804298
\(516\) 0 0
\(517\) 2496.00 0.212329
\(518\) 0 0
\(519\) −7326.00 −0.619606
\(520\) 0 0
\(521\) −4702.00 −0.395390 −0.197695 0.980264i \(-0.563346\pi\)
−0.197695 + 0.980264i \(0.563346\pi\)
\(522\) 0 0
\(523\) 22660.0 1.89456 0.947278 0.320413i \(-0.103822\pi\)
0.947278 + 0.320413i \(0.103822\pi\)
\(524\) 0 0
\(525\) −525.000 −0.0436436
\(526\) 0 0
\(527\) −30016.0 −2.48106
\(528\) 0 0
\(529\) 377.000 0.0309855
\(530\) 0 0
\(531\) −3420.00 −0.279502
\(532\) 0 0
\(533\) 540.000 0.0438837
\(534\) 0 0
\(535\) −3660.00 −0.295767
\(536\) 0 0
\(537\) 12276.0 0.986496
\(538\) 0 0
\(539\) −588.000 −0.0469888
\(540\) 0 0
\(541\) −8634.00 −0.686145 −0.343073 0.939309i \(-0.611468\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(542\) 0 0
\(543\) 3810.00 0.301110
\(544\) 0 0
\(545\) −1890.00 −0.148548
\(546\) 0 0
\(547\) 19284.0 1.50736 0.753679 0.657243i \(-0.228278\pi\)
0.753679 + 0.657243i \(0.228278\pi\)
\(548\) 0 0
\(549\) 6462.00 0.502352
\(550\) 0 0
\(551\) −5336.00 −0.412561
\(552\) 0 0
\(553\) 6272.00 0.482301
\(554\) 0 0
\(555\) −2190.00 −0.167496
\(556\) 0 0
\(557\) −19658.0 −1.49540 −0.747699 0.664038i \(-0.768841\pi\)
−0.747699 + 0.664038i \(0.768841\pi\)
\(558\) 0 0
\(559\) −10200.0 −0.771760
\(560\) 0 0
\(561\) 4824.00 0.363047
\(562\) 0 0
\(563\) 25612.0 1.91726 0.958630 0.284656i \(-0.0918793\pi\)
0.958630 + 0.284656i \(0.0918793\pi\)
\(564\) 0 0
\(565\) 7290.00 0.542819
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 7002.00 0.515886 0.257943 0.966160i \(-0.416955\pi\)
0.257943 + 0.966160i \(0.416955\pi\)
\(570\) 0 0
\(571\) 4524.00 0.331565 0.165782 0.986162i \(-0.446985\pi\)
0.165782 + 0.986162i \(0.446985\pi\)
\(572\) 0 0
\(573\) −14712.0 −1.07260
\(574\) 0 0
\(575\) −2800.00 −0.203075
\(576\) 0 0
\(577\) −6014.00 −0.433910 −0.216955 0.976182i \(-0.569612\pi\)
−0.216955 + 0.976182i \(0.569612\pi\)
\(578\) 0 0
\(579\) 6534.00 0.468988
\(580\) 0 0
\(581\) 3052.00 0.217932
\(582\) 0 0
\(583\) 9048.00 0.642761
\(584\) 0 0
\(585\) 1350.00 0.0954113
\(586\) 0 0
\(587\) 11748.0 0.826051 0.413025 0.910719i \(-0.364472\pi\)
0.413025 + 0.910719i \(0.364472\pi\)
\(588\) 0 0
\(589\) 20608.0 1.44166
\(590\) 0 0
\(591\) −8550.00 −0.595093
\(592\) 0 0
\(593\) −9462.00 −0.655241 −0.327620 0.944809i \(-0.606247\pi\)
−0.327620 + 0.944809i \(0.606247\pi\)
\(594\) 0 0
\(595\) 4690.00 0.323145
\(596\) 0 0
\(597\) 3432.00 0.235280
\(598\) 0 0
\(599\) −2320.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(600\) 0 0
\(601\) 4650.00 0.315603 0.157802 0.987471i \(-0.449559\pi\)
0.157802 + 0.987471i \(0.449559\pi\)
\(602\) 0 0
\(603\) −3708.00 −0.250417
\(604\) 0 0
\(605\) −5935.00 −0.398830
\(606\) 0 0
\(607\) 14656.0 0.980014 0.490007 0.871718i \(-0.336994\pi\)
0.490007 + 0.871718i \(0.336994\pi\)
\(608\) 0 0
\(609\) 1218.00 0.0810441
\(610\) 0 0
\(611\) −6240.00 −0.413164
\(612\) 0 0
\(613\) 29166.0 1.92170 0.960851 0.277065i \(-0.0893616\pi\)
0.960851 + 0.277065i \(0.0893616\pi\)
\(614\) 0 0
\(615\) 270.000 0.0177032
\(616\) 0 0
\(617\) 28554.0 1.86311 0.931557 0.363597i \(-0.118451\pi\)
0.931557 + 0.363597i \(0.118451\pi\)
\(618\) 0 0
\(619\) 3876.00 0.251679 0.125840 0.992051i \(-0.459837\pi\)
0.125840 + 0.992051i \(0.459837\pi\)
\(620\) 0 0
\(621\) −3024.00 −0.195409
\(622\) 0 0
\(623\) 7266.00 0.467265
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −3312.00 −0.210955
\(628\) 0 0
\(629\) 19564.0 1.24017
\(630\) 0 0
\(631\) −2904.00 −0.183211 −0.0916057 0.995795i \(-0.529200\pi\)
−0.0916057 + 0.995795i \(0.529200\pi\)
\(632\) 0 0
\(633\) −1236.00 −0.0776091
\(634\) 0 0
\(635\) −3040.00 −0.189982
\(636\) 0 0
\(637\) 1470.00 0.0914341
\(638\) 0 0
\(639\) 8640.00 0.534888
\(640\) 0 0
\(641\) 9330.00 0.574903 0.287452 0.957795i \(-0.407192\pi\)
0.287452 + 0.957795i \(0.407192\pi\)
\(642\) 0 0
\(643\) 18332.0 1.12433 0.562164 0.827025i \(-0.309969\pi\)
0.562164 + 0.827025i \(0.309969\pi\)
\(644\) 0 0
\(645\) −5100.00 −0.311337
\(646\) 0 0
\(647\) 2088.00 0.126874 0.0634372 0.997986i \(-0.479794\pi\)
0.0634372 + 0.997986i \(0.479794\pi\)
\(648\) 0 0
\(649\) 4560.00 0.275802
\(650\) 0 0
\(651\) −4704.00 −0.283202
\(652\) 0 0
\(653\) 22.0000 0.00131842 0.000659209 1.00000i \(-0.499790\pi\)
0.000659209 1.00000i \(0.499790\pi\)
\(654\) 0 0
\(655\) 4780.00 0.285145
\(656\) 0 0
\(657\) 9594.00 0.569707
\(658\) 0 0
\(659\) −16260.0 −0.961153 −0.480576 0.876953i \(-0.659573\pi\)
−0.480576 + 0.876953i \(0.659573\pi\)
\(660\) 0 0
\(661\) −23818.0 −1.40153 −0.700766 0.713391i \(-0.747158\pi\)
−0.700766 + 0.713391i \(0.747158\pi\)
\(662\) 0 0
\(663\) −12060.0 −0.706443
\(664\) 0 0
\(665\) −3220.00 −0.187769
\(666\) 0 0
\(667\) 6496.00 0.377101
\(668\) 0 0
\(669\) 4896.00 0.282945
\(670\) 0 0
\(671\) −8616.00 −0.495703
\(672\) 0 0
\(673\) 31106.0 1.78165 0.890823 0.454350i \(-0.150128\pi\)
0.890823 + 0.454350i \(0.150128\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) −1090.00 −0.0618790 −0.0309395 0.999521i \(-0.509850\pi\)
−0.0309395 + 0.999521i \(0.509850\pi\)
\(678\) 0 0
\(679\) 4914.00 0.277735
\(680\) 0 0
\(681\) −12252.0 −0.689424
\(682\) 0 0
\(683\) 12372.0 0.693121 0.346560 0.938028i \(-0.387350\pi\)
0.346560 + 0.938028i \(0.387350\pi\)
\(684\) 0 0
\(685\) −1870.00 −0.104305
\(686\) 0 0
\(687\) −10158.0 −0.564122
\(688\) 0 0
\(689\) −22620.0 −1.25073
\(690\) 0 0
\(691\) −3252.00 −0.179033 −0.0895166 0.995985i \(-0.528532\pi\)
−0.0895166 + 0.995985i \(0.528532\pi\)
\(692\) 0 0
\(693\) 756.000 0.0414402
\(694\) 0 0
\(695\) −1980.00 −0.108066
\(696\) 0 0
\(697\) −2412.00 −0.131077
\(698\) 0 0
\(699\) 15966.0 0.863934
\(700\) 0 0
\(701\) −5434.00 −0.292781 −0.146390 0.989227i \(-0.546766\pi\)
−0.146390 + 0.989227i \(0.546766\pi\)
\(702\) 0 0
\(703\) −13432.0 −0.720622
\(704\) 0 0
\(705\) −3120.00 −0.166675
\(706\) 0 0
\(707\) −322.000 −0.0171288
\(708\) 0 0
\(709\) −5330.00 −0.282331 −0.141165 0.989986i \(-0.545085\pi\)
−0.141165 + 0.989986i \(0.545085\pi\)
\(710\) 0 0
\(711\) −8064.00 −0.425350
\(712\) 0 0
\(713\) −25088.0 −1.31775
\(714\) 0 0
\(715\) −1800.00 −0.0941485
\(716\) 0 0
\(717\) −11208.0 −0.583780
\(718\) 0 0
\(719\) 7520.00 0.390054 0.195027 0.980798i \(-0.437521\pi\)
0.195027 + 0.980798i \(0.437521\pi\)
\(720\) 0 0
\(721\) 13160.0 0.679756
\(722\) 0 0
\(723\) 630.000 0.0324066
\(724\) 0 0
\(725\) −1450.00 −0.0742781
\(726\) 0 0
\(727\) −19336.0 −0.986427 −0.493214 0.869908i \(-0.664178\pi\)
−0.493214 + 0.869908i \(0.664178\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 45560.0 2.30519
\(732\) 0 0
\(733\) −22498.0 −1.13367 −0.566837 0.823830i \(-0.691833\pi\)
−0.566837 + 0.823830i \(0.691833\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) 4944.00 0.247103
\(738\) 0 0
\(739\) 18292.0 0.910531 0.455265 0.890356i \(-0.349544\pi\)
0.455265 + 0.890356i \(0.349544\pi\)
\(740\) 0 0
\(741\) 8280.00 0.410490
\(742\) 0 0
\(743\) −17904.0 −0.884030 −0.442015 0.897008i \(-0.645736\pi\)
−0.442015 + 0.897008i \(0.645736\pi\)
\(744\) 0 0
\(745\) −9370.00 −0.460792
\(746\) 0 0
\(747\) −3924.00 −0.192198
\(748\) 0 0
\(749\) 5124.00 0.249969
\(750\) 0 0
\(751\) −5408.00 −0.262771 −0.131385 0.991331i \(-0.541943\pi\)
−0.131385 + 0.991331i \(0.541943\pi\)
\(752\) 0 0
\(753\) 12636.0 0.611529
\(754\) 0 0
\(755\) 5480.00 0.264156
\(756\) 0 0
\(757\) 8318.00 0.399370 0.199685 0.979860i \(-0.436008\pi\)
0.199685 + 0.979860i \(0.436008\pi\)
\(758\) 0 0
\(759\) 4032.00 0.192823
\(760\) 0 0
\(761\) 6690.00 0.318676 0.159338 0.987224i \(-0.449064\pi\)
0.159338 + 0.987224i \(0.449064\pi\)
\(762\) 0 0
\(763\) 2646.00 0.125546
\(764\) 0 0
\(765\) −6030.00 −0.284987
\(766\) 0 0
\(767\) −11400.0 −0.536676
\(768\) 0 0
\(769\) 9266.00 0.434513 0.217257 0.976115i \(-0.430289\pi\)
0.217257 + 0.976115i \(0.430289\pi\)
\(770\) 0 0
\(771\) 15390.0 0.718881
\(772\) 0 0
\(773\) 9678.00 0.450315 0.225157 0.974322i \(-0.427710\pi\)
0.225157 + 0.974322i \(0.427710\pi\)
\(774\) 0 0
\(775\) 5600.00 0.259559
\(776\) 0 0
\(777\) 3066.00 0.141560
\(778\) 0 0
\(779\) 1656.00 0.0761648
\(780\) 0 0
\(781\) −11520.0 −0.527808
\(782\) 0 0
\(783\) −1566.00 −0.0714742
\(784\) 0 0
\(785\) 9590.00 0.436028
\(786\) 0 0
\(787\) 6860.00 0.310715 0.155357 0.987858i \(-0.450347\pi\)
0.155357 + 0.987858i \(0.450347\pi\)
\(788\) 0 0
\(789\) −2544.00 −0.114789
\(790\) 0 0
\(791\) −10206.0 −0.458766
\(792\) 0 0
\(793\) 21540.0 0.964575
\(794\) 0 0
\(795\) −11310.0 −0.504559
\(796\) 0 0
\(797\) 10950.0 0.486661 0.243331 0.969943i \(-0.421760\pi\)
0.243331 + 0.969943i \(0.421760\pi\)
\(798\) 0 0
\(799\) 27872.0 1.23409
\(800\) 0 0
\(801\) −9342.00 −0.412089
\(802\) 0 0
\(803\) −12792.0 −0.562167
\(804\) 0 0
\(805\) 3920.00 0.171630
\(806\) 0 0
\(807\) −3822.00 −0.166717
\(808\) 0 0
\(809\) 26010.0 1.13036 0.565181 0.824967i \(-0.308806\pi\)
0.565181 + 0.824967i \(0.308806\pi\)
\(810\) 0 0
\(811\) 14628.0 0.633364 0.316682 0.948532i \(-0.397431\pi\)
0.316682 + 0.948532i \(0.397431\pi\)
\(812\) 0 0
\(813\) −2592.00 −0.111815
\(814\) 0 0
\(815\) −11580.0 −0.497705
\(816\) 0 0
\(817\) −31280.0 −1.33947
\(818\) 0 0
\(819\) −1890.00 −0.0806373
\(820\) 0 0
\(821\) 8718.00 0.370597 0.185299 0.982682i \(-0.440675\pi\)
0.185299 + 0.982682i \(0.440675\pi\)
\(822\) 0 0
\(823\) 7432.00 0.314779 0.157390 0.987537i \(-0.449692\pi\)
0.157390 + 0.987537i \(0.449692\pi\)
\(824\) 0 0
\(825\) −900.000 −0.0379806
\(826\) 0 0
\(827\) −17388.0 −0.731125 −0.365562 0.930787i \(-0.619123\pi\)
−0.365562 + 0.930787i \(0.619123\pi\)
\(828\) 0 0
\(829\) 7902.00 0.331059 0.165529 0.986205i \(-0.447067\pi\)
0.165529 + 0.986205i \(0.447067\pi\)
\(830\) 0 0
\(831\) −25590.0 −1.06824
\(832\) 0 0
\(833\) −6566.00 −0.273107
\(834\) 0 0
\(835\) 8680.00 0.359741
\(836\) 0 0
\(837\) 6048.00 0.249760
\(838\) 0 0
\(839\) 31848.0 1.31051 0.655253 0.755409i \(-0.272562\pi\)
0.655253 + 0.755409i \(0.272562\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) 0 0
\(843\) −16146.0 −0.659665
\(844\) 0 0
\(845\) −6485.00 −0.264013
\(846\) 0 0
\(847\) 8309.00 0.337073
\(848\) 0 0
\(849\) −18708.0 −0.756251
\(850\) 0 0
\(851\) 16352.0 0.658683
\(852\) 0 0
\(853\) 30150.0 1.21022 0.605109 0.796142i \(-0.293129\pi\)
0.605109 + 0.796142i \(0.293129\pi\)
\(854\) 0 0
\(855\) 4140.00 0.165597
\(856\) 0 0
\(857\) −4350.00 −0.173388 −0.0866938 0.996235i \(-0.527630\pi\)
−0.0866938 + 0.996235i \(0.527630\pi\)
\(858\) 0 0
\(859\) 30676.0 1.21845 0.609227 0.792996i \(-0.291480\pi\)
0.609227 + 0.792996i \(0.291480\pi\)
\(860\) 0 0
\(861\) −378.000 −0.0149619
\(862\) 0 0
\(863\) 23688.0 0.934356 0.467178 0.884163i \(-0.345271\pi\)
0.467178 + 0.884163i \(0.345271\pi\)
\(864\) 0 0
\(865\) −12210.0 −0.479945
\(866\) 0 0
\(867\) 39129.0 1.53275
\(868\) 0 0
\(869\) 10752.0 0.419720
\(870\) 0 0
\(871\) −12360.0 −0.480830
\(872\) 0 0
\(873\) −6318.00 −0.244939
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 31910.0 1.22865 0.614324 0.789054i \(-0.289429\pi\)
0.614324 + 0.789054i \(0.289429\pi\)
\(878\) 0 0
\(879\) −2454.00 −0.0941654
\(880\) 0 0
\(881\) 50250.0 1.92164 0.960820 0.277172i \(-0.0893971\pi\)
0.960820 + 0.277172i \(0.0893971\pi\)
\(882\) 0 0
\(883\) −5980.00 −0.227908 −0.113954 0.993486i \(-0.536352\pi\)
−0.113954 + 0.993486i \(0.536352\pi\)
\(884\) 0 0
\(885\) −5700.00 −0.216501
\(886\) 0 0
\(887\) 24568.0 0.930003 0.465002 0.885310i \(-0.346054\pi\)
0.465002 + 0.885310i \(0.346054\pi\)
\(888\) 0 0
\(889\) 4256.00 0.160564
\(890\) 0 0
\(891\) −972.000 −0.0365468
\(892\) 0 0
\(893\) −19136.0 −0.717091
\(894\) 0 0
\(895\) 20460.0 0.764137
\(896\) 0 0
\(897\) −10080.0 −0.375208
\(898\) 0 0
\(899\) −12992.0 −0.481988
\(900\) 0 0
\(901\) 101036. 3.73585
\(902\) 0 0
\(903\) 7140.00 0.263128
\(904\) 0 0
\(905\) 6350.00 0.233239
\(906\) 0 0
\(907\) −13252.0 −0.485144 −0.242572 0.970133i \(-0.577991\pi\)
−0.242572 + 0.970133i \(0.577991\pi\)
\(908\) 0 0
\(909\) 414.000 0.0151062
\(910\) 0 0
\(911\) 6744.00 0.245267 0.122634 0.992452i \(-0.460866\pi\)
0.122634 + 0.992452i \(0.460866\pi\)
\(912\) 0 0
\(913\) 5232.00 0.189654
\(914\) 0 0
\(915\) 10770.0 0.389120
\(916\) 0 0
\(917\) −6692.00 −0.240992
\(918\) 0 0
\(919\) 45336.0 1.62731 0.813654 0.581349i \(-0.197475\pi\)
0.813654 + 0.581349i \(0.197475\pi\)
\(920\) 0 0
\(921\) 6804.00 0.243430
\(922\) 0 0
\(923\) 28800.0 1.02705
\(924\) 0 0
\(925\) −3650.00 −0.129742
\(926\) 0 0
\(927\) −16920.0 −0.599488
\(928\) 0 0
\(929\) 30074.0 1.06211 0.531053 0.847339i \(-0.321797\pi\)
0.531053 + 0.847339i \(0.321797\pi\)
\(930\) 0 0
\(931\) 4508.00 0.158694
\(932\) 0 0
\(933\) −19944.0 −0.699826
\(934\) 0 0
\(935\) 8040.00 0.281215
\(936\) 0 0
\(937\) 21754.0 0.758455 0.379227 0.925303i \(-0.376190\pi\)
0.379227 + 0.925303i \(0.376190\pi\)
\(938\) 0 0
\(939\) 29454.0 1.02364
\(940\) 0 0
\(941\) 14550.0 0.504056 0.252028 0.967720i \(-0.418903\pi\)
0.252028 + 0.967720i \(0.418903\pi\)
\(942\) 0 0
\(943\) −2016.00 −0.0696182
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) −46660.0 −1.60110 −0.800552 0.599263i \(-0.795460\pi\)
−0.800552 + 0.599263i \(0.795460\pi\)
\(948\) 0 0
\(949\) 31980.0 1.09390
\(950\) 0 0
\(951\) 2802.00 0.0955427
\(952\) 0 0
\(953\) 20810.0 0.707347 0.353674 0.935369i \(-0.384932\pi\)
0.353674 + 0.935369i \(0.384932\pi\)
\(954\) 0 0
\(955\) −24520.0 −0.830836
\(956\) 0 0
\(957\) 2088.00 0.0705282
\(958\) 0 0
\(959\) 2618.00 0.0881539
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) −6588.00 −0.220452
\(964\) 0 0
\(965\) 10890.0 0.363276
\(966\) 0 0
\(967\) −2776.00 −0.0923166 −0.0461583 0.998934i \(-0.514698\pi\)
−0.0461583 + 0.998934i \(0.514698\pi\)
\(968\) 0 0
\(969\) −36984.0 −1.22611
\(970\) 0 0
\(971\) −27292.0 −0.902000 −0.451000 0.892524i \(-0.648933\pi\)
−0.451000 + 0.892524i \(0.648933\pi\)
\(972\) 0 0
\(973\) 2772.00 0.0913322
\(974\) 0 0
\(975\) 2250.00 0.0739053
\(976\) 0 0
\(977\) −62.0000 −0.00203025 −0.00101513 0.999999i \(-0.500323\pi\)
−0.00101513 + 0.999999i \(0.500323\pi\)
\(978\) 0 0
\(979\) 12456.0 0.406635
\(980\) 0 0
\(981\) −3402.00 −0.110721
\(982\) 0 0
\(983\) −37912.0 −1.23012 −0.615058 0.788481i \(-0.710868\pi\)
−0.615058 + 0.788481i \(0.710868\pi\)
\(984\) 0 0
\(985\) −14250.0 −0.460957
\(986\) 0 0
\(987\) 4368.00 0.140866
\(988\) 0 0
\(989\) 38080.0 1.22434
\(990\) 0 0
\(991\) −10656.0 −0.341573 −0.170787 0.985308i \(-0.554631\pi\)
−0.170787 + 0.985308i \(0.554631\pi\)
\(992\) 0 0
\(993\) −6876.00 −0.219741
\(994\) 0 0
\(995\) 5720.00 0.182247
\(996\) 0 0
\(997\) −29434.0 −0.934989 −0.467495 0.883996i \(-0.654843\pi\)
−0.467495 + 0.883996i \(0.654843\pi\)
\(998\) 0 0
\(999\) −3942.00 −0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.4.a.u.1.1 1
4.3 odd 2 105.4.a.b.1.1 1
12.11 even 2 315.4.a.a.1.1 1
20.3 even 4 525.4.d.a.274.1 2
20.7 even 4 525.4.d.a.274.2 2
20.19 odd 2 525.4.a.a.1.1 1
28.27 even 2 735.4.a.j.1.1 1
60.59 even 2 1575.4.a.l.1.1 1
84.83 odd 2 2205.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.b.1.1 1 4.3 odd 2
315.4.a.a.1.1 1 12.11 even 2
525.4.a.a.1.1 1 20.19 odd 2
525.4.d.a.274.1 2 20.3 even 4
525.4.d.a.274.2 2 20.7 even 4
735.4.a.j.1.1 1 28.27 even 2
1575.4.a.l.1.1 1 60.59 even 2
1680.4.a.u.1.1 1 1.1 even 1 trivial
2205.4.a.b.1.1 1 84.83 odd 2