Properties

Label 1680.4.a.s.1.1
Level $1680$
Weight $4$
Character 1680.1
Self dual yes
Analytic conductor $99.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} -42.0000 q^{11} +20.0000 q^{13} +15.0000 q^{15} +66.0000 q^{17} -38.0000 q^{19} -21.0000 q^{21} -12.0000 q^{23} +25.0000 q^{25} +27.0000 q^{27} -258.000 q^{29} -146.000 q^{31} -126.000 q^{33} -35.0000 q^{35} +434.000 q^{37} +60.0000 q^{39} -282.000 q^{41} -20.0000 q^{43} +45.0000 q^{45} +72.0000 q^{47} +49.0000 q^{49} +198.000 q^{51} +336.000 q^{53} -210.000 q^{55} -114.000 q^{57} +360.000 q^{59} -682.000 q^{61} -63.0000 q^{63} +100.000 q^{65} -812.000 q^{67} -36.0000 q^{69} -810.000 q^{71} -124.000 q^{73} +75.0000 q^{75} +294.000 q^{77} -1136.00 q^{79} +81.0000 q^{81} -156.000 q^{83} +330.000 q^{85} -774.000 q^{87} -1038.00 q^{89} -140.000 q^{91} -438.000 q^{93} -190.000 q^{95} +1208.00 q^{97} -378.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −42.0000 −1.15123 −0.575613 0.817723i \(-0.695236\pi\)
−0.575613 + 0.817723i \(0.695236\pi\)
\(12\) 0 0
\(13\) 20.0000 0.426692 0.213346 0.976977i \(-0.431564\pi\)
0.213346 + 0.976977i \(0.431564\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) −38.0000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) −12.0000 −0.108790 −0.0543951 0.998519i \(-0.517323\pi\)
−0.0543951 + 0.998519i \(0.517323\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −258.000 −1.65205 −0.826024 0.563635i \(-0.809403\pi\)
−0.826024 + 0.563635i \(0.809403\pi\)
\(30\) 0 0
\(31\) −146.000 −0.845883 −0.422942 0.906157i \(-0.639002\pi\)
−0.422942 + 0.906157i \(0.639002\pi\)
\(32\) 0 0
\(33\) −126.000 −0.664660
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 434.000 1.92836 0.964178 0.265257i \(-0.0854567\pi\)
0.964178 + 0.265257i \(0.0854567\pi\)
\(38\) 0 0
\(39\) 60.0000 0.246351
\(40\) 0 0
\(41\) −282.000 −1.07417 −0.537085 0.843528i \(-0.680475\pi\)
−0.537085 + 0.843528i \(0.680475\pi\)
\(42\) 0 0
\(43\) −20.0000 −0.0709296 −0.0354648 0.999371i \(-0.511291\pi\)
−0.0354648 + 0.999371i \(0.511291\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 72.0000 0.223453 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 198.000 0.543638
\(52\) 0 0
\(53\) 336.000 0.870814 0.435407 0.900234i \(-0.356604\pi\)
0.435407 + 0.900234i \(0.356604\pi\)
\(54\) 0 0
\(55\) −210.000 −0.514844
\(56\) 0 0
\(57\) −114.000 −0.264906
\(58\) 0 0
\(59\) 360.000 0.794373 0.397187 0.917738i \(-0.369987\pi\)
0.397187 + 0.917738i \(0.369987\pi\)
\(60\) 0 0
\(61\) −682.000 −1.43149 −0.715747 0.698360i \(-0.753914\pi\)
−0.715747 + 0.698360i \(0.753914\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 100.000 0.190823
\(66\) 0 0
\(67\) −812.000 −1.48062 −0.740310 0.672265i \(-0.765321\pi\)
−0.740310 + 0.672265i \(0.765321\pi\)
\(68\) 0 0
\(69\) −36.0000 −0.0628100
\(70\) 0 0
\(71\) −810.000 −1.35393 −0.676967 0.736013i \(-0.736706\pi\)
−0.676967 + 0.736013i \(0.736706\pi\)
\(72\) 0 0
\(73\) −124.000 −0.198810 −0.0994048 0.995047i \(-0.531694\pi\)
−0.0994048 + 0.995047i \(0.531694\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) 294.000 0.435122
\(78\) 0 0
\(79\) −1136.00 −1.61785 −0.808924 0.587913i \(-0.799950\pi\)
−0.808924 + 0.587913i \(0.799950\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −156.000 −0.206304 −0.103152 0.994666i \(-0.532893\pi\)
−0.103152 + 0.994666i \(0.532893\pi\)
\(84\) 0 0
\(85\) 330.000 0.421100
\(86\) 0 0
\(87\) −774.000 −0.953810
\(88\) 0 0
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 0 0
\(91\) −140.000 −0.161275
\(92\) 0 0
\(93\) −438.000 −0.488371
\(94\) 0 0
\(95\) −190.000 −0.205196
\(96\) 0 0
\(97\) 1208.00 1.26447 0.632236 0.774776i \(-0.282137\pi\)
0.632236 + 0.774776i \(0.282137\pi\)
\(98\) 0 0
\(99\) −378.000 −0.383742
\(100\) 0 0
\(101\) 546.000 0.537911 0.268956 0.963153i \(-0.413322\pi\)
0.268956 + 0.963153i \(0.413322\pi\)
\(102\) 0 0
\(103\) 520.000 0.497448 0.248724 0.968574i \(-0.419989\pi\)
0.248724 + 0.968574i \(0.419989\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −1212.00 −1.09503 −0.547516 0.836795i \(-0.684427\pi\)
−0.547516 + 0.836795i \(0.684427\pi\)
\(108\) 0 0
\(109\) −1078.00 −0.947281 −0.473641 0.880718i \(-0.657060\pi\)
−0.473641 + 0.880718i \(0.657060\pi\)
\(110\) 0 0
\(111\) 1302.00 1.11334
\(112\) 0 0
\(113\) −1452.00 −1.20878 −0.604392 0.796687i \(-0.706584\pi\)
−0.604392 + 0.796687i \(0.706584\pi\)
\(114\) 0 0
\(115\) −60.0000 −0.0486524
\(116\) 0 0
\(117\) 180.000 0.142231
\(118\) 0 0
\(119\) −462.000 −0.355895
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 0 0
\(123\) −846.000 −0.620173
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1312.00 0.916702 0.458351 0.888771i \(-0.348440\pi\)
0.458351 + 0.888771i \(0.348440\pi\)
\(128\) 0 0
\(129\) −60.0000 −0.0409512
\(130\) 0 0
\(131\) 1356.00 0.904384 0.452192 0.891921i \(-0.350642\pi\)
0.452192 + 0.891921i \(0.350642\pi\)
\(132\) 0 0
\(133\) 266.000 0.173422
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −984.000 −0.613641 −0.306820 0.951767i \(-0.599265\pi\)
−0.306820 + 0.951767i \(0.599265\pi\)
\(138\) 0 0
\(139\) 394.000 0.240422 0.120211 0.992748i \(-0.461643\pi\)
0.120211 + 0.992748i \(0.461643\pi\)
\(140\) 0 0
\(141\) 216.000 0.129011
\(142\) 0 0
\(143\) −840.000 −0.491219
\(144\) 0 0
\(145\) −1290.00 −0.738818
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −1014.00 −0.557518 −0.278759 0.960361i \(-0.589923\pi\)
−0.278759 + 0.960361i \(0.589923\pi\)
\(150\) 0 0
\(151\) 1996.00 1.07571 0.537855 0.843037i \(-0.319235\pi\)
0.537855 + 0.843037i \(0.319235\pi\)
\(152\) 0 0
\(153\) 594.000 0.313870
\(154\) 0 0
\(155\) −730.000 −0.378290
\(156\) 0 0
\(157\) −2392.00 −1.21594 −0.607969 0.793960i \(-0.708016\pi\)
−0.607969 + 0.793960i \(0.708016\pi\)
\(158\) 0 0
\(159\) 1008.00 0.502765
\(160\) 0 0
\(161\) 84.0000 0.0411188
\(162\) 0 0
\(163\) −2036.00 −0.978355 −0.489177 0.872184i \(-0.662703\pi\)
−0.489177 + 0.872184i \(0.662703\pi\)
\(164\) 0 0
\(165\) −630.000 −0.297245
\(166\) 0 0
\(167\) 3936.00 1.82381 0.911907 0.410398i \(-0.134610\pi\)
0.911907 + 0.410398i \(0.134610\pi\)
\(168\) 0 0
\(169\) −1797.00 −0.817934
\(170\) 0 0
\(171\) −342.000 −0.152944
\(172\) 0 0
\(173\) 378.000 0.166120 0.0830601 0.996545i \(-0.473531\pi\)
0.0830601 + 0.996545i \(0.473531\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 1080.00 0.458631
\(178\) 0 0
\(179\) 222.000 0.0926987 0.0463493 0.998925i \(-0.485241\pi\)
0.0463493 + 0.998925i \(0.485241\pi\)
\(180\) 0 0
\(181\) −2590.00 −1.06361 −0.531804 0.846867i \(-0.678486\pi\)
−0.531804 + 0.846867i \(0.678486\pi\)
\(182\) 0 0
\(183\) −2046.00 −0.826474
\(184\) 0 0
\(185\) 2170.00 0.862387
\(186\) 0 0
\(187\) −2772.00 −1.08400
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −2214.00 −0.838740 −0.419370 0.907815i \(-0.637749\pi\)
−0.419370 + 0.907815i \(0.637749\pi\)
\(192\) 0 0
\(193\) 4178.00 1.55823 0.779117 0.626879i \(-0.215668\pi\)
0.779117 + 0.626879i \(0.215668\pi\)
\(194\) 0 0
\(195\) 300.000 0.110172
\(196\) 0 0
\(197\) −3060.00 −1.10668 −0.553340 0.832955i \(-0.686647\pi\)
−0.553340 + 0.832955i \(0.686647\pi\)
\(198\) 0 0
\(199\) −2666.00 −0.949687 −0.474844 0.880070i \(-0.657495\pi\)
−0.474844 + 0.880070i \(0.657495\pi\)
\(200\) 0 0
\(201\) −2436.00 −0.854837
\(202\) 0 0
\(203\) 1806.00 0.624416
\(204\) 0 0
\(205\) −1410.00 −0.480384
\(206\) 0 0
\(207\) −108.000 −0.0362634
\(208\) 0 0
\(209\) 1596.00 0.528218
\(210\) 0 0
\(211\) 1348.00 0.439811 0.219906 0.975521i \(-0.429425\pi\)
0.219906 + 0.975521i \(0.429425\pi\)
\(212\) 0 0
\(213\) −2430.00 −0.781694
\(214\) 0 0
\(215\) −100.000 −0.0317207
\(216\) 0 0
\(217\) 1022.00 0.319714
\(218\) 0 0
\(219\) −372.000 −0.114783
\(220\) 0 0
\(221\) 1320.00 0.401777
\(222\) 0 0
\(223\) −3188.00 −0.957329 −0.478664 0.877998i \(-0.658879\pi\)
−0.478664 + 0.877998i \(0.658879\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 3396.00 0.992953 0.496477 0.868050i \(-0.334627\pi\)
0.496477 + 0.868050i \(0.334627\pi\)
\(228\) 0 0
\(229\) 5294.00 1.52767 0.763837 0.645409i \(-0.223313\pi\)
0.763837 + 0.645409i \(0.223313\pi\)
\(230\) 0 0
\(231\) 882.000 0.251218
\(232\) 0 0
\(233\) 852.000 0.239555 0.119778 0.992801i \(-0.461782\pi\)
0.119778 + 0.992801i \(0.461782\pi\)
\(234\) 0 0
\(235\) 360.000 0.0999311
\(236\) 0 0
\(237\) −3408.00 −0.934065
\(238\) 0 0
\(239\) −4866.00 −1.31697 −0.658484 0.752595i \(-0.728802\pi\)
−0.658484 + 0.752595i \(0.728802\pi\)
\(240\) 0 0
\(241\) −2050.00 −0.547934 −0.273967 0.961739i \(-0.588336\pi\)
−0.273967 + 0.961739i \(0.588336\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −760.000 −0.195780
\(248\) 0 0
\(249\) −468.000 −0.119110
\(250\) 0 0
\(251\) 1152.00 0.289696 0.144848 0.989454i \(-0.453731\pi\)
0.144848 + 0.989454i \(0.453731\pi\)
\(252\) 0 0
\(253\) 504.000 0.125242
\(254\) 0 0
\(255\) 990.000 0.243122
\(256\) 0 0
\(257\) −6450.00 −1.56553 −0.782763 0.622321i \(-0.786190\pi\)
−0.782763 + 0.622321i \(0.786190\pi\)
\(258\) 0 0
\(259\) −3038.00 −0.728850
\(260\) 0 0
\(261\) −2322.00 −0.550683
\(262\) 0 0
\(263\) −1968.00 −0.461415 −0.230707 0.973023i \(-0.574104\pi\)
−0.230707 + 0.973023i \(0.574104\pi\)
\(264\) 0 0
\(265\) 1680.00 0.389440
\(266\) 0 0
\(267\) −3114.00 −0.713759
\(268\) 0 0
\(269\) −3894.00 −0.882607 −0.441304 0.897358i \(-0.645484\pi\)
−0.441304 + 0.897358i \(0.645484\pi\)
\(270\) 0 0
\(271\) −7094.00 −1.59015 −0.795073 0.606513i \(-0.792568\pi\)
−0.795073 + 0.606513i \(0.792568\pi\)
\(272\) 0 0
\(273\) −420.000 −0.0931119
\(274\) 0 0
\(275\) −1050.00 −0.230245
\(276\) 0 0
\(277\) −3310.00 −0.717973 −0.358987 0.933343i \(-0.616878\pi\)
−0.358987 + 0.933343i \(0.616878\pi\)
\(278\) 0 0
\(279\) −1314.00 −0.281961
\(280\) 0 0
\(281\) 7158.00 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(282\) 0 0
\(283\) 5164.00 1.08469 0.542346 0.840155i \(-0.317536\pi\)
0.542346 + 0.840155i \(0.317536\pi\)
\(284\) 0 0
\(285\) −570.000 −0.118470
\(286\) 0 0
\(287\) 1974.00 0.405998
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) 3624.00 0.730043
\(292\) 0 0
\(293\) −8598.00 −1.71434 −0.857168 0.515037i \(-0.827778\pi\)
−0.857168 + 0.515037i \(0.827778\pi\)
\(294\) 0 0
\(295\) 1800.00 0.355254
\(296\) 0 0
\(297\) −1134.00 −0.221553
\(298\) 0 0
\(299\) −240.000 −0.0464199
\(300\) 0 0
\(301\) 140.000 0.0268089
\(302\) 0 0
\(303\) 1638.00 0.310563
\(304\) 0 0
\(305\) −3410.00 −0.640184
\(306\) 0 0
\(307\) 448.000 0.0832857 0.0416429 0.999133i \(-0.486741\pi\)
0.0416429 + 0.999133i \(0.486741\pi\)
\(308\) 0 0
\(309\) 1560.00 0.287202
\(310\) 0 0
\(311\) 5832.00 1.06335 0.531676 0.846948i \(-0.321562\pi\)
0.531676 + 0.846948i \(0.321562\pi\)
\(312\) 0 0
\(313\) 9848.00 1.77841 0.889204 0.457510i \(-0.151259\pi\)
0.889204 + 0.457510i \(0.151259\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) −5616.00 −0.995035 −0.497517 0.867454i \(-0.665755\pi\)
−0.497517 + 0.867454i \(0.665755\pi\)
\(318\) 0 0
\(319\) 10836.0 1.90188
\(320\) 0 0
\(321\) −3636.00 −0.632217
\(322\) 0 0
\(323\) −2508.00 −0.432040
\(324\) 0 0
\(325\) 500.000 0.0853385
\(326\) 0 0
\(327\) −3234.00 −0.546913
\(328\) 0 0
\(329\) −504.000 −0.0844572
\(330\) 0 0
\(331\) −452.000 −0.0750579 −0.0375290 0.999296i \(-0.511949\pi\)
−0.0375290 + 0.999296i \(0.511949\pi\)
\(332\) 0 0
\(333\) 3906.00 0.642785
\(334\) 0 0
\(335\) −4060.00 −0.662154
\(336\) 0 0
\(337\) −2302.00 −0.372101 −0.186050 0.982540i \(-0.559569\pi\)
−0.186050 + 0.982540i \(0.559569\pi\)
\(338\) 0 0
\(339\) −4356.00 −0.697892
\(340\) 0 0
\(341\) 6132.00 0.973802
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −180.000 −0.0280895
\(346\) 0 0
\(347\) −1584.00 −0.245054 −0.122527 0.992465i \(-0.539100\pi\)
−0.122527 + 0.992465i \(0.539100\pi\)
\(348\) 0 0
\(349\) 8174.00 1.25371 0.626854 0.779137i \(-0.284342\pi\)
0.626854 + 0.779137i \(0.284342\pi\)
\(350\) 0 0
\(351\) 540.000 0.0821170
\(352\) 0 0
\(353\) 8610.00 1.29820 0.649099 0.760704i \(-0.275146\pi\)
0.649099 + 0.760704i \(0.275146\pi\)
\(354\) 0 0
\(355\) −4050.00 −0.605498
\(356\) 0 0
\(357\) −1386.00 −0.205476
\(358\) 0 0
\(359\) 2154.00 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −5415.00 −0.789474
\(362\) 0 0
\(363\) 1299.00 0.187823
\(364\) 0 0
\(365\) −620.000 −0.0889104
\(366\) 0 0
\(367\) −6644.00 −0.944997 −0.472499 0.881331i \(-0.656648\pi\)
−0.472499 + 0.881331i \(0.656648\pi\)
\(368\) 0 0
\(369\) −2538.00 −0.358057
\(370\) 0 0
\(371\) −2352.00 −0.329137
\(372\) 0 0
\(373\) 7958.00 1.10469 0.552345 0.833615i \(-0.313733\pi\)
0.552345 + 0.833615i \(0.313733\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −5160.00 −0.704917
\(378\) 0 0
\(379\) −3440.00 −0.466229 −0.233115 0.972449i \(-0.574892\pi\)
−0.233115 + 0.972449i \(0.574892\pi\)
\(380\) 0 0
\(381\) 3936.00 0.529258
\(382\) 0 0
\(383\) −12936.0 −1.72585 −0.862923 0.505336i \(-0.831369\pi\)
−0.862923 + 0.505336i \(0.831369\pi\)
\(384\) 0 0
\(385\) 1470.00 0.194593
\(386\) 0 0
\(387\) −180.000 −0.0236432
\(388\) 0 0
\(389\) −14862.0 −1.93710 −0.968552 0.248812i \(-0.919960\pi\)
−0.968552 + 0.248812i \(0.919960\pi\)
\(390\) 0 0
\(391\) −792.000 −0.102438
\(392\) 0 0
\(393\) 4068.00 0.522146
\(394\) 0 0
\(395\) −5680.00 −0.723524
\(396\) 0 0
\(397\) 10460.0 1.32235 0.661174 0.750232i \(-0.270058\pi\)
0.661174 + 0.750232i \(0.270058\pi\)
\(398\) 0 0
\(399\) 798.000 0.100125
\(400\) 0 0
\(401\) −9150.00 −1.13947 −0.569737 0.821827i \(-0.692955\pi\)
−0.569737 + 0.821827i \(0.692955\pi\)
\(402\) 0 0
\(403\) −2920.00 −0.360932
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −18228.0 −2.21997
\(408\) 0 0
\(409\) −4894.00 −0.591669 −0.295835 0.955239i \(-0.595598\pi\)
−0.295835 + 0.955239i \(0.595598\pi\)
\(410\) 0 0
\(411\) −2952.00 −0.354286
\(412\) 0 0
\(413\) −2520.00 −0.300245
\(414\) 0 0
\(415\) −780.000 −0.0922619
\(416\) 0 0
\(417\) 1182.00 0.138808
\(418\) 0 0
\(419\) 1668.00 0.194480 0.0972400 0.995261i \(-0.468999\pi\)
0.0972400 + 0.995261i \(0.468999\pi\)
\(420\) 0 0
\(421\) −12418.0 −1.43757 −0.718784 0.695233i \(-0.755301\pi\)
−0.718784 + 0.695233i \(0.755301\pi\)
\(422\) 0 0
\(423\) 648.000 0.0744843
\(424\) 0 0
\(425\) 1650.00 0.188322
\(426\) 0 0
\(427\) 4774.00 0.541054
\(428\) 0 0
\(429\) −2520.00 −0.283605
\(430\) 0 0
\(431\) −15186.0 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(432\) 0 0
\(433\) −5704.00 −0.633064 −0.316532 0.948582i \(-0.602518\pi\)
−0.316532 + 0.948582i \(0.602518\pi\)
\(434\) 0 0
\(435\) −3870.00 −0.426557
\(436\) 0 0
\(437\) 456.000 0.0499163
\(438\) 0 0
\(439\) 17206.0 1.87061 0.935305 0.353843i \(-0.115125\pi\)
0.935305 + 0.353843i \(0.115125\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −3456.00 −0.370654 −0.185327 0.982677i \(-0.559334\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(444\) 0 0
\(445\) −5190.00 −0.552875
\(446\) 0 0
\(447\) −3042.00 −0.321883
\(448\) 0 0
\(449\) 16074.0 1.68949 0.844743 0.535173i \(-0.179753\pi\)
0.844743 + 0.535173i \(0.179753\pi\)
\(450\) 0 0
\(451\) 11844.0 1.23661
\(452\) 0 0
\(453\) 5988.00 0.621061
\(454\) 0 0
\(455\) −700.000 −0.0721242
\(456\) 0 0
\(457\) 7526.00 0.770353 0.385177 0.922843i \(-0.374141\pi\)
0.385177 + 0.922843i \(0.374141\pi\)
\(458\) 0 0
\(459\) 1782.00 0.181213
\(460\) 0 0
\(461\) −2274.00 −0.229741 −0.114871 0.993380i \(-0.536645\pi\)
−0.114871 + 0.993380i \(0.536645\pi\)
\(462\) 0 0
\(463\) 10024.0 1.00617 0.503083 0.864238i \(-0.332199\pi\)
0.503083 + 0.864238i \(0.332199\pi\)
\(464\) 0 0
\(465\) −2190.00 −0.218406
\(466\) 0 0
\(467\) 2460.00 0.243759 0.121879 0.992545i \(-0.461108\pi\)
0.121879 + 0.992545i \(0.461108\pi\)
\(468\) 0 0
\(469\) 5684.00 0.559622
\(470\) 0 0
\(471\) −7176.00 −0.702023
\(472\) 0 0
\(473\) 840.000 0.0816559
\(474\) 0 0
\(475\) −950.000 −0.0917663
\(476\) 0 0
\(477\) 3024.00 0.290271
\(478\) 0 0
\(479\) −19320.0 −1.84291 −0.921454 0.388486i \(-0.872998\pi\)
−0.921454 + 0.388486i \(0.872998\pi\)
\(480\) 0 0
\(481\) 8680.00 0.822815
\(482\) 0 0
\(483\) 252.000 0.0237400
\(484\) 0 0
\(485\) 6040.00 0.565489
\(486\) 0 0
\(487\) 12544.0 1.16719 0.583596 0.812044i \(-0.301645\pi\)
0.583596 + 0.812044i \(0.301645\pi\)
\(488\) 0 0
\(489\) −6108.00 −0.564853
\(490\) 0 0
\(491\) 15510.0 1.42557 0.712787 0.701381i \(-0.247433\pi\)
0.712787 + 0.701381i \(0.247433\pi\)
\(492\) 0 0
\(493\) −17028.0 −1.55558
\(494\) 0 0
\(495\) −1890.00 −0.171615
\(496\) 0 0
\(497\) 5670.00 0.511739
\(498\) 0 0
\(499\) 14344.0 1.28682 0.643412 0.765520i \(-0.277518\pi\)
0.643412 + 0.765520i \(0.277518\pi\)
\(500\) 0 0
\(501\) 11808.0 1.05298
\(502\) 0 0
\(503\) 21384.0 1.89556 0.947779 0.318929i \(-0.103323\pi\)
0.947779 + 0.318929i \(0.103323\pi\)
\(504\) 0 0
\(505\) 2730.00 0.240561
\(506\) 0 0
\(507\) −5391.00 −0.472234
\(508\) 0 0
\(509\) −7134.00 −0.621236 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(510\) 0 0
\(511\) 868.000 0.0751430
\(512\) 0 0
\(513\) −1026.00 −0.0883022
\(514\) 0 0
\(515\) 2600.00 0.222465
\(516\) 0 0
\(517\) −3024.00 −0.257244
\(518\) 0 0
\(519\) 1134.00 0.0959096
\(520\) 0 0
\(521\) −19122.0 −1.60797 −0.803983 0.594653i \(-0.797290\pi\)
−0.803983 + 0.594653i \(0.797290\pi\)
\(522\) 0 0
\(523\) 15640.0 1.30763 0.653814 0.756655i \(-0.273168\pi\)
0.653814 + 0.756655i \(0.273168\pi\)
\(524\) 0 0
\(525\) −525.000 −0.0436436
\(526\) 0 0
\(527\) −9636.00 −0.796491
\(528\) 0 0
\(529\) −12023.0 −0.988165
\(530\) 0 0
\(531\) 3240.00 0.264791
\(532\) 0 0
\(533\) −5640.00 −0.458341
\(534\) 0 0
\(535\) −6060.00 −0.489713
\(536\) 0 0
\(537\) 666.000 0.0535196
\(538\) 0 0
\(539\) −2058.00 −0.164461
\(540\) 0 0
\(541\) 2846.00 0.226172 0.113086 0.993585i \(-0.463926\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(542\) 0 0
\(543\) −7770.00 −0.614075
\(544\) 0 0
\(545\) −5390.00 −0.423637
\(546\) 0 0
\(547\) 4444.00 0.347371 0.173685 0.984801i \(-0.444432\pi\)
0.173685 + 0.984801i \(0.444432\pi\)
\(548\) 0 0
\(549\) −6138.00 −0.477165
\(550\) 0 0
\(551\) 9804.00 0.758012
\(552\) 0 0
\(553\) 7952.00 0.611489
\(554\) 0 0
\(555\) 6510.00 0.497899
\(556\) 0 0
\(557\) 18552.0 1.41126 0.705631 0.708579i \(-0.250663\pi\)
0.705631 + 0.708579i \(0.250663\pi\)
\(558\) 0 0
\(559\) −400.000 −0.0302651
\(560\) 0 0
\(561\) −8316.00 −0.625850
\(562\) 0 0
\(563\) 16452.0 1.23156 0.615781 0.787918i \(-0.288841\pi\)
0.615781 + 0.787918i \(0.288841\pi\)
\(564\) 0 0
\(565\) −7260.00 −0.540585
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 7722.00 0.568933 0.284467 0.958686i \(-0.408183\pi\)
0.284467 + 0.958686i \(0.408183\pi\)
\(570\) 0 0
\(571\) −2576.00 −0.188796 −0.0943978 0.995535i \(-0.530093\pi\)
−0.0943978 + 0.995535i \(0.530093\pi\)
\(572\) 0 0
\(573\) −6642.00 −0.484247
\(574\) 0 0
\(575\) −300.000 −0.0217580
\(576\) 0 0
\(577\) −2464.00 −0.177778 −0.0888888 0.996042i \(-0.528332\pi\)
−0.0888888 + 0.996042i \(0.528332\pi\)
\(578\) 0 0
\(579\) 12534.0 0.899646
\(580\) 0 0
\(581\) 1092.00 0.0779755
\(582\) 0 0
\(583\) −14112.0 −1.00250
\(584\) 0 0
\(585\) 900.000 0.0636076
\(586\) 0 0
\(587\) −1452.00 −0.102096 −0.0510481 0.998696i \(-0.516256\pi\)
−0.0510481 + 0.998696i \(0.516256\pi\)
\(588\) 0 0
\(589\) 5548.00 0.388118
\(590\) 0 0
\(591\) −9180.00 −0.638942
\(592\) 0 0
\(593\) 10698.0 0.740833 0.370417 0.928866i \(-0.379215\pi\)
0.370417 + 0.928866i \(0.379215\pi\)
\(594\) 0 0
\(595\) −2310.00 −0.159161
\(596\) 0 0
\(597\) −7998.00 −0.548302
\(598\) 0 0
\(599\) 8730.00 0.595489 0.297745 0.954646i \(-0.403766\pi\)
0.297745 + 0.954646i \(0.403766\pi\)
\(600\) 0 0
\(601\) 1910.00 0.129635 0.0648174 0.997897i \(-0.479354\pi\)
0.0648174 + 0.997897i \(0.479354\pi\)
\(602\) 0 0
\(603\) −7308.00 −0.493540
\(604\) 0 0
\(605\) 2165.00 0.145487
\(606\) 0 0
\(607\) 5596.00 0.374192 0.187096 0.982342i \(-0.440092\pi\)
0.187096 + 0.982342i \(0.440092\pi\)
\(608\) 0 0
\(609\) 5418.00 0.360506
\(610\) 0 0
\(611\) 1440.00 0.0953456
\(612\) 0 0
\(613\) 28586.0 1.88349 0.941744 0.336332i \(-0.109186\pi\)
0.941744 + 0.336332i \(0.109186\pi\)
\(614\) 0 0
\(615\) −4230.00 −0.277350
\(616\) 0 0
\(617\) −19236.0 −1.25513 −0.627563 0.778566i \(-0.715947\pi\)
−0.627563 + 0.778566i \(0.715947\pi\)
\(618\) 0 0
\(619\) −6734.00 −0.437257 −0.218629 0.975808i \(-0.570158\pi\)
−0.218629 + 0.975808i \(0.570158\pi\)
\(620\) 0 0
\(621\) −324.000 −0.0209367
\(622\) 0 0
\(623\) 7266.00 0.467265
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 4788.00 0.304967
\(628\) 0 0
\(629\) 28644.0 1.81576
\(630\) 0 0
\(631\) −7184.00 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(632\) 0 0
\(633\) 4044.00 0.253925
\(634\) 0 0
\(635\) 6560.00 0.409962
\(636\) 0 0
\(637\) 980.000 0.0609561
\(638\) 0 0
\(639\) −7290.00 −0.451311
\(640\) 0 0
\(641\) 510.000 0.0314256 0.0157128 0.999877i \(-0.494998\pi\)
0.0157128 + 0.999877i \(0.494998\pi\)
\(642\) 0 0
\(643\) 20752.0 1.27275 0.636376 0.771379i \(-0.280433\pi\)
0.636376 + 0.771379i \(0.280433\pi\)
\(644\) 0 0
\(645\) −300.000 −0.0183139
\(646\) 0 0
\(647\) −21072.0 −1.28041 −0.640205 0.768204i \(-0.721151\pi\)
−0.640205 + 0.768204i \(0.721151\pi\)
\(648\) 0 0
\(649\) −15120.0 −0.914502
\(650\) 0 0
\(651\) 3066.00 0.184587
\(652\) 0 0
\(653\) 2892.00 0.173312 0.0866560 0.996238i \(-0.472382\pi\)
0.0866560 + 0.996238i \(0.472382\pi\)
\(654\) 0 0
\(655\) 6780.00 0.404453
\(656\) 0 0
\(657\) −1116.00 −0.0662699
\(658\) 0 0
\(659\) −750.000 −0.0443336 −0.0221668 0.999754i \(-0.507056\pi\)
−0.0221668 + 0.999754i \(0.507056\pi\)
\(660\) 0 0
\(661\) 30062.0 1.76895 0.884475 0.466587i \(-0.154517\pi\)
0.884475 + 0.466587i \(0.154517\pi\)
\(662\) 0 0
\(663\) 3960.00 0.231966
\(664\) 0 0
\(665\) 1330.00 0.0775567
\(666\) 0 0
\(667\) 3096.00 0.179727
\(668\) 0 0
\(669\) −9564.00 −0.552714
\(670\) 0 0
\(671\) 28644.0 1.64797
\(672\) 0 0
\(673\) 15446.0 0.884695 0.442347 0.896844i \(-0.354146\pi\)
0.442347 + 0.896844i \(0.354146\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) −25110.0 −1.42549 −0.712744 0.701424i \(-0.752548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(678\) 0 0
\(679\) −8456.00 −0.477926
\(680\) 0 0
\(681\) 10188.0 0.573282
\(682\) 0 0
\(683\) −7968.00 −0.446394 −0.223197 0.974773i \(-0.571649\pi\)
−0.223197 + 0.974773i \(0.571649\pi\)
\(684\) 0 0
\(685\) −4920.00 −0.274429
\(686\) 0 0
\(687\) 15882.0 0.882003
\(688\) 0 0
\(689\) 6720.00 0.371570
\(690\) 0 0
\(691\) 14398.0 0.792657 0.396328 0.918109i \(-0.370284\pi\)
0.396328 + 0.918109i \(0.370284\pi\)
\(692\) 0 0
\(693\) 2646.00 0.145041
\(694\) 0 0
\(695\) 1970.00 0.107520
\(696\) 0 0
\(697\) −18612.0 −1.01145
\(698\) 0 0
\(699\) 2556.00 0.138307
\(700\) 0 0
\(701\) −9234.00 −0.497523 −0.248761 0.968565i \(-0.580023\pi\)
−0.248761 + 0.968565i \(0.580023\pi\)
\(702\) 0 0
\(703\) −16492.0 −0.884790
\(704\) 0 0
\(705\) 1080.00 0.0576953
\(706\) 0 0
\(707\) −3822.00 −0.203311
\(708\) 0 0
\(709\) 8030.00 0.425350 0.212675 0.977123i \(-0.431782\pi\)
0.212675 + 0.977123i \(0.431782\pi\)
\(710\) 0 0
\(711\) −10224.0 −0.539283
\(712\) 0 0
\(713\) 1752.00 0.0920237
\(714\) 0 0
\(715\) −4200.00 −0.219680
\(716\) 0 0
\(717\) −14598.0 −0.760352
\(718\) 0 0
\(719\) −27060.0 −1.40357 −0.701786 0.712388i \(-0.747614\pi\)
−0.701786 + 0.712388i \(0.747614\pi\)
\(720\) 0 0
\(721\) −3640.00 −0.188018
\(722\) 0 0
\(723\) −6150.00 −0.316350
\(724\) 0 0
\(725\) −6450.00 −0.330410
\(726\) 0 0
\(727\) 3724.00 0.189980 0.0949900 0.995478i \(-0.469718\pi\)
0.0949900 + 0.995478i \(0.469718\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −1320.00 −0.0667879
\(732\) 0 0
\(733\) −5668.00 −0.285610 −0.142805 0.989751i \(-0.545612\pi\)
−0.142805 + 0.989751i \(0.545612\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) 34104.0 1.70453
\(738\) 0 0
\(739\) 16072.0 0.800024 0.400012 0.916510i \(-0.369006\pi\)
0.400012 + 0.916510i \(0.369006\pi\)
\(740\) 0 0
\(741\) −2280.00 −0.113034
\(742\) 0 0
\(743\) 8256.00 0.407649 0.203825 0.979007i \(-0.434663\pi\)
0.203825 + 0.979007i \(0.434663\pi\)
\(744\) 0 0
\(745\) −5070.00 −0.249329
\(746\) 0 0
\(747\) −1404.00 −0.0687680
\(748\) 0 0
\(749\) 8484.00 0.413883
\(750\) 0 0
\(751\) 6352.00 0.308639 0.154319 0.988021i \(-0.450682\pi\)
0.154319 + 0.988021i \(0.450682\pi\)
\(752\) 0 0
\(753\) 3456.00 0.167256
\(754\) 0 0
\(755\) 9980.00 0.481072
\(756\) 0 0
\(757\) 11558.0 0.554931 0.277465 0.960736i \(-0.410506\pi\)
0.277465 + 0.960736i \(0.410506\pi\)
\(758\) 0 0
\(759\) 1512.00 0.0723085
\(760\) 0 0
\(761\) 7770.00 0.370121 0.185061 0.982727i \(-0.440752\pi\)
0.185061 + 0.982727i \(0.440752\pi\)
\(762\) 0 0
\(763\) 7546.00 0.358039
\(764\) 0 0
\(765\) 2970.00 0.140367
\(766\) 0 0
\(767\) 7200.00 0.338953
\(768\) 0 0
\(769\) 22646.0 1.06194 0.530972 0.847389i \(-0.321827\pi\)
0.530972 + 0.847389i \(0.321827\pi\)
\(770\) 0 0
\(771\) −19350.0 −0.903856
\(772\) 0 0
\(773\) −35502.0 −1.65190 −0.825950 0.563744i \(-0.809361\pi\)
−0.825950 + 0.563744i \(0.809361\pi\)
\(774\) 0 0
\(775\) −3650.00 −0.169177
\(776\) 0 0
\(777\) −9114.00 −0.420802
\(778\) 0 0
\(779\) 10716.0 0.492863
\(780\) 0 0
\(781\) 34020.0 1.55868
\(782\) 0 0
\(783\) −6966.00 −0.317937
\(784\) 0 0
\(785\) −11960.0 −0.543784
\(786\) 0 0
\(787\) 17080.0 0.773617 0.386808 0.922160i \(-0.373578\pi\)
0.386808 + 0.922160i \(0.373578\pi\)
\(788\) 0 0
\(789\) −5904.00 −0.266398
\(790\) 0 0
\(791\) 10164.0 0.456878
\(792\) 0 0
\(793\) −13640.0 −0.610808
\(794\) 0 0
\(795\) 5040.00 0.224843
\(796\) 0 0
\(797\) 5730.00 0.254664 0.127332 0.991860i \(-0.459359\pi\)
0.127332 + 0.991860i \(0.459359\pi\)
\(798\) 0 0
\(799\) 4752.00 0.210405
\(800\) 0 0
\(801\) −9342.00 −0.412089
\(802\) 0 0
\(803\) 5208.00 0.228875
\(804\) 0 0
\(805\) 420.000 0.0183889
\(806\) 0 0
\(807\) −11682.0 −0.509574
\(808\) 0 0
\(809\) 2550.00 0.110820 0.0554099 0.998464i \(-0.482353\pi\)
0.0554099 + 0.998464i \(0.482353\pi\)
\(810\) 0 0
\(811\) 27538.0 1.19234 0.596171 0.802857i \(-0.296688\pi\)
0.596171 + 0.802857i \(0.296688\pi\)
\(812\) 0 0
\(813\) −21282.0 −0.918072
\(814\) 0 0
\(815\) −10180.0 −0.437534
\(816\) 0 0
\(817\) 760.000 0.0325447
\(818\) 0 0
\(819\) −1260.00 −0.0537582
\(820\) 0 0
\(821\) −19242.0 −0.817966 −0.408983 0.912542i \(-0.634117\pi\)
−0.408983 + 0.912542i \(0.634117\pi\)
\(822\) 0 0
\(823\) 11752.0 0.497751 0.248875 0.968536i \(-0.419939\pi\)
0.248875 + 0.968536i \(0.419939\pi\)
\(824\) 0 0
\(825\) −3150.00 −0.132932
\(826\) 0 0
\(827\) 28692.0 1.20643 0.603216 0.797578i \(-0.293886\pi\)
0.603216 + 0.797578i \(0.293886\pi\)
\(828\) 0 0
\(829\) 28442.0 1.19159 0.595797 0.803135i \(-0.296836\pi\)
0.595797 + 0.803135i \(0.296836\pi\)
\(830\) 0 0
\(831\) −9930.00 −0.414522
\(832\) 0 0
\(833\) 3234.00 0.134516
\(834\) 0 0
\(835\) 19680.0 0.815634
\(836\) 0 0
\(837\) −3942.00 −0.162790
\(838\) 0 0
\(839\) −20172.0 −0.830053 −0.415027 0.909809i \(-0.636228\pi\)
−0.415027 + 0.909809i \(0.636228\pi\)
\(840\) 0 0
\(841\) 42175.0 1.72926
\(842\) 0 0
\(843\) 21474.0 0.877347
\(844\) 0 0
\(845\) −8985.00 −0.365791
\(846\) 0 0
\(847\) −3031.00 −0.122959
\(848\) 0 0
\(849\) 15492.0 0.626247
\(850\) 0 0
\(851\) −5208.00 −0.209786
\(852\) 0 0
\(853\) 19820.0 0.795573 0.397787 0.917478i \(-0.369778\pi\)
0.397787 + 0.917478i \(0.369778\pi\)
\(854\) 0 0
\(855\) −1710.00 −0.0683986
\(856\) 0 0
\(857\) −10290.0 −0.410151 −0.205076 0.978746i \(-0.565744\pi\)
−0.205076 + 0.978746i \(0.565744\pi\)
\(858\) 0 0
\(859\) 31606.0 1.25539 0.627697 0.778458i \(-0.283998\pi\)
0.627697 + 0.778458i \(0.283998\pi\)
\(860\) 0 0
\(861\) 5922.00 0.234403
\(862\) 0 0
\(863\) −23172.0 −0.914002 −0.457001 0.889466i \(-0.651076\pi\)
−0.457001 + 0.889466i \(0.651076\pi\)
\(864\) 0 0
\(865\) 1890.00 0.0742912
\(866\) 0 0
\(867\) −1671.00 −0.0654558
\(868\) 0 0
\(869\) 47712.0 1.86251
\(870\) 0 0
\(871\) −16240.0 −0.631770
\(872\) 0 0
\(873\) 10872.0 0.421491
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −15550.0 −0.598730 −0.299365 0.954139i \(-0.596775\pi\)
−0.299365 + 0.954139i \(0.596775\pi\)
\(878\) 0 0
\(879\) −25794.0 −0.989772
\(880\) 0 0
\(881\) 28530.0 1.09103 0.545517 0.838100i \(-0.316334\pi\)
0.545517 + 0.838100i \(0.316334\pi\)
\(882\) 0 0
\(883\) 28780.0 1.09686 0.548428 0.836198i \(-0.315226\pi\)
0.548428 + 0.836198i \(0.315226\pi\)
\(884\) 0 0
\(885\) 5400.00 0.205106
\(886\) 0 0
\(887\) −22872.0 −0.865802 −0.432901 0.901441i \(-0.642510\pi\)
−0.432901 + 0.901441i \(0.642510\pi\)
\(888\) 0 0
\(889\) −9184.00 −0.346481
\(890\) 0 0
\(891\) −3402.00 −0.127914
\(892\) 0 0
\(893\) −2736.00 −0.102527
\(894\) 0 0
\(895\) 1110.00 0.0414561
\(896\) 0 0
\(897\) −720.000 −0.0268006
\(898\) 0 0
\(899\) 37668.0 1.39744
\(900\) 0 0
\(901\) 22176.0 0.819966
\(902\) 0 0
\(903\) 420.000 0.0154781
\(904\) 0 0
\(905\) −12950.0 −0.475660
\(906\) 0 0
\(907\) 10708.0 0.392010 0.196005 0.980603i \(-0.437203\pi\)
0.196005 + 0.980603i \(0.437203\pi\)
\(908\) 0 0
\(909\) 4914.00 0.179304
\(910\) 0 0
\(911\) −1326.00 −0.0482243 −0.0241122 0.999709i \(-0.507676\pi\)
−0.0241122 + 0.999709i \(0.507676\pi\)
\(912\) 0 0
\(913\) 6552.00 0.237502
\(914\) 0 0
\(915\) −10230.0 −0.369610
\(916\) 0 0
\(917\) −9492.00 −0.341825
\(918\) 0 0
\(919\) 13696.0 0.491610 0.245805 0.969319i \(-0.420948\pi\)
0.245805 + 0.969319i \(0.420948\pi\)
\(920\) 0 0
\(921\) 1344.00 0.0480850
\(922\) 0 0
\(923\) −16200.0 −0.577713
\(924\) 0 0
\(925\) 10850.0 0.385671
\(926\) 0 0
\(927\) 4680.00 0.165816
\(928\) 0 0
\(929\) 42354.0 1.49579 0.747895 0.663817i \(-0.231064\pi\)
0.747895 + 0.663817i \(0.231064\pi\)
\(930\) 0 0
\(931\) −1862.00 −0.0655474
\(932\) 0 0
\(933\) 17496.0 0.613926
\(934\) 0 0
\(935\) −13860.0 −0.484781
\(936\) 0 0
\(937\) 6644.00 0.231644 0.115822 0.993270i \(-0.463050\pi\)
0.115822 + 0.993270i \(0.463050\pi\)
\(938\) 0 0
\(939\) 29544.0 1.02676
\(940\) 0 0
\(941\) 1350.00 0.0467681 0.0233840 0.999727i \(-0.492556\pi\)
0.0233840 + 0.999727i \(0.492556\pi\)
\(942\) 0 0
\(943\) 3384.00 0.116859
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) −49320.0 −1.69238 −0.846190 0.532881i \(-0.821109\pi\)
−0.846190 + 0.532881i \(0.821109\pi\)
\(948\) 0 0
\(949\) −2480.00 −0.0848306
\(950\) 0 0
\(951\) −16848.0 −0.574484
\(952\) 0 0
\(953\) 5940.00 0.201905 0.100953 0.994891i \(-0.467811\pi\)
0.100953 + 0.994891i \(0.467811\pi\)
\(954\) 0 0
\(955\) −11070.0 −0.375096
\(956\) 0 0
\(957\) 32508.0 1.09805
\(958\) 0 0
\(959\) 6888.00 0.231934
\(960\) 0 0
\(961\) −8475.00 −0.284482
\(962\) 0 0
\(963\) −10908.0 −0.365011
\(964\) 0 0
\(965\) 20890.0 0.696863
\(966\) 0 0
\(967\) −47216.0 −1.57018 −0.785090 0.619382i \(-0.787383\pi\)
−0.785090 + 0.619382i \(0.787383\pi\)
\(968\) 0 0
\(969\) −7524.00 −0.249438
\(970\) 0 0
\(971\) −12552.0 −0.414843 −0.207422 0.978252i \(-0.566507\pi\)
−0.207422 + 0.978252i \(0.566507\pi\)
\(972\) 0 0
\(973\) −2758.00 −0.0908709
\(974\) 0 0
\(975\) 1500.00 0.0492702
\(976\) 0 0
\(977\) 46908.0 1.53605 0.768025 0.640420i \(-0.221240\pi\)
0.768025 + 0.640420i \(0.221240\pi\)
\(978\) 0 0
\(979\) 43596.0 1.42322
\(980\) 0 0
\(981\) −9702.00 −0.315760
\(982\) 0 0
\(983\) 46128.0 1.49670 0.748349 0.663305i \(-0.230847\pi\)
0.748349 + 0.663305i \(0.230847\pi\)
\(984\) 0 0
\(985\) −15300.0 −0.494922
\(986\) 0 0
\(987\) −1512.00 −0.0487614
\(988\) 0 0
\(989\) 240.000 0.00771644
\(990\) 0 0
\(991\) 12184.0 0.390552 0.195276 0.980748i \(-0.437440\pi\)
0.195276 + 0.980748i \(0.437440\pi\)
\(992\) 0 0
\(993\) −1356.00 −0.0433347
\(994\) 0 0
\(995\) −13330.0 −0.424713
\(996\) 0 0
\(997\) −5164.00 −0.164038 −0.0820188 0.996631i \(-0.526137\pi\)
−0.0820188 + 0.996631i \(0.526137\pi\)
\(998\) 0 0
\(999\) 11718.0 0.371112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.4.a.s.1.1 1
4.3 odd 2 105.4.a.a.1.1 1
12.11 even 2 315.4.a.d.1.1 1
20.3 even 4 525.4.d.f.274.1 2
20.7 even 4 525.4.d.f.274.2 2
20.19 odd 2 525.4.a.e.1.1 1
28.27 even 2 735.4.a.c.1.1 1
60.59 even 2 1575.4.a.f.1.1 1
84.83 odd 2 2205.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.a.1.1 1 4.3 odd 2
315.4.a.d.1.1 1 12.11 even 2
525.4.a.e.1.1 1 20.19 odd 2
525.4.d.f.274.1 2 20.3 even 4
525.4.d.f.274.2 2 20.7 even 4
735.4.a.c.1.1 1 28.27 even 2
1575.4.a.f.1.1 1 60.59 even 2
1680.4.a.s.1.1 1 1.1 even 1 trivial
2205.4.a.o.1.1 1 84.83 odd 2