Properties

Label 1680.4.a.s
Level $1680$
Weight $4$
Character orbit 1680.a
Self dual yes
Analytic conductor $99.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 5 q^{5} - 7 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} + 5 q^{5} - 7 q^{7} + 9 q^{9} - 42 q^{11} + 20 q^{13} + 15 q^{15} + 66 q^{17} - 38 q^{19} - 21 q^{21} - 12 q^{23} + 25 q^{25} + 27 q^{27} - 258 q^{29} - 146 q^{31} - 126 q^{33} - 35 q^{35} + 434 q^{37} + 60 q^{39} - 282 q^{41} - 20 q^{43} + 45 q^{45} + 72 q^{47} + 49 q^{49} + 198 q^{51} + 336 q^{53} - 210 q^{55} - 114 q^{57} + 360 q^{59} - 682 q^{61} - 63 q^{63} + 100 q^{65} - 812 q^{67} - 36 q^{69} - 810 q^{71} - 124 q^{73} + 75 q^{75} + 294 q^{77} - 1136 q^{79} + 81 q^{81} - 156 q^{83} + 330 q^{85} - 774 q^{87} - 1038 q^{89} - 140 q^{91} - 438 q^{93} - 190 q^{95} + 1208 q^{97} - 378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 5.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.4.a.s 1
4.b odd 2 1 105.4.a.a 1
12.b even 2 1 315.4.a.d 1
20.d odd 2 1 525.4.a.e 1
20.e even 4 2 525.4.d.f 2
28.d even 2 1 735.4.a.c 1
60.h even 2 1 1575.4.a.f 1
84.h odd 2 1 2205.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.a 1 4.b odd 2 1
315.4.a.d 1 12.b even 2 1
525.4.a.e 1 20.d odd 2 1
525.4.d.f 2 20.e even 4 2
735.4.a.c 1 28.d even 2 1
1575.4.a.f 1 60.h even 2 1
1680.4.a.s 1 1.a even 1 1 trivial
2205.4.a.o 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1680))\):

\( T_{11} + 42 \) Copy content Toggle raw display
\( T_{13} - 20 \) Copy content Toggle raw display
\( T_{17} - 66 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 42 \) Copy content Toggle raw display
$13$ \( T - 20 \) Copy content Toggle raw display
$17$ \( T - 66 \) Copy content Toggle raw display
$19$ \( T + 38 \) Copy content Toggle raw display
$23$ \( T + 12 \) Copy content Toggle raw display
$29$ \( T + 258 \) Copy content Toggle raw display
$31$ \( T + 146 \) Copy content Toggle raw display
$37$ \( T - 434 \) Copy content Toggle raw display
$41$ \( T + 282 \) Copy content Toggle raw display
$43$ \( T + 20 \) Copy content Toggle raw display
$47$ \( T - 72 \) Copy content Toggle raw display
$53$ \( T - 336 \) Copy content Toggle raw display
$59$ \( T - 360 \) Copy content Toggle raw display
$61$ \( T + 682 \) Copy content Toggle raw display
$67$ \( T + 812 \) Copy content Toggle raw display
$71$ \( T + 810 \) Copy content Toggle raw display
$73$ \( T + 124 \) Copy content Toggle raw display
$79$ \( T + 1136 \) Copy content Toggle raw display
$83$ \( T + 156 \) Copy content Toggle raw display
$89$ \( T + 1038 \) Copy content Toggle raw display
$97$ \( T - 1208 \) Copy content Toggle raw display
show more
show less