Properties

Label 1680.4.a
Level $1680$
Weight $4$
Character orbit 1680.a
Rep. character $\chi_{1680}(1,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $46$
Sturm bound $1536$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(1536\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1680))\).

Total New Old
Modular forms 1176 72 1104
Cusp forms 1128 72 1056
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(5\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(6\)
Plus space\(+\)\(40\)
Minus space\(-\)\(32\)

Trace form

\( 72 q + 28 q^{7} + 648 q^{9} + O(q^{10}) \) \( 72 q + 28 q^{7} + 648 q^{9} - 40 q^{11} + 60 q^{15} + 24 q^{19} - 328 q^{23} + 1800 q^{25} - 400 q^{29} - 264 q^{31} - 16 q^{37} - 1840 q^{43} - 1488 q^{47} + 3528 q^{49} - 744 q^{51} + 752 q^{53} + 240 q^{59} - 912 q^{61} + 252 q^{63} - 1200 q^{67} - 528 q^{69} - 4120 q^{71} + 1904 q^{77} + 1824 q^{79} + 5832 q^{81} - 912 q^{83} + 240 q^{85} + 2720 q^{89} + 1952 q^{97} - 360 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1680))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
1680.4.a.a 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.e \(0\) \(-3\) \(-5\) \(-7\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-7q^{7}+9q^{9}+26q^{13}+\cdots\)
1680.4.a.b 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.c \(0\) \(-3\) \(-5\) \(-7\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-7q^{7}+9q^{9}+6^{2}q^{11}+\cdots\)
1680.4.a.c 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.j \(0\) \(-3\) \(-5\) \(7\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}-56q^{11}+\cdots\)
1680.4.a.d 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.d \(0\) \(-3\) \(-5\) \(7\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}-28q^{11}+\cdots\)
1680.4.a.e 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.f \(0\) \(-3\) \(5\) \(-7\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-7q^{7}+9q^{9}-6^{2}q^{11}+\cdots\)
1680.4.a.f 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.f \(0\) \(-3\) \(5\) \(-7\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-7q^{7}+9q^{9}+2^{4}q^{11}+\cdots\)
1680.4.a.g 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.e \(0\) \(-3\) \(5\) \(-7\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-7q^{7}+9q^{9}+2^{4}q^{11}+\cdots\)
1680.4.a.h 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.f \(0\) \(-3\) \(5\) \(7\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}-28q^{11}+\cdots\)
1680.4.a.i 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.e \(0\) \(-3\) \(5\) \(7\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}-22q^{11}+\cdots\)
1680.4.a.j 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.d \(0\) \(-3\) \(5\) \(7\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}-20q^{11}+\cdots\)
1680.4.a.k 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.d \(0\) \(-3\) \(5\) \(7\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}+44q^{11}+\cdots\)
1680.4.a.l 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.c \(0\) \(-3\) \(5\) \(7\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}+44q^{11}+\cdots\)
1680.4.a.m 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.h \(0\) \(3\) \(-5\) \(-7\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}-7q^{7}+9q^{9}-24q^{11}+\cdots\)
1680.4.a.n 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.a \(0\) \(3\) \(-5\) \(-7\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}-7q^{7}+9q^{9}-12q^{11}+\cdots\)
1680.4.a.o 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.a \(0\) \(3\) \(-5\) \(7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}-2^{5}q^{11}+\cdots\)
1680.4.a.p 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.b \(0\) \(3\) \(-5\) \(7\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}-54q^{13}+\cdots\)
1680.4.a.q 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.g \(0\) \(3\) \(-5\) \(7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}+4q^{11}+\cdots\)
1680.4.a.r 1680.a 1.a $1$ $99.123$ \(\Q\) None 840.4.a.a \(0\) \(3\) \(-5\) \(7\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}+58q^{11}+\cdots\)
1680.4.a.s 1680.a 1.a $1$ $99.123$ \(\Q\) None 105.4.a.a \(0\) \(3\) \(5\) \(-7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}-42q^{11}+\cdots\)
1680.4.a.t 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.c \(0\) \(3\) \(5\) \(-7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}-12q^{11}+\cdots\)
1680.4.a.u 1680.a 1.a $1$ $99.123$ \(\Q\) None 105.4.a.b \(0\) \(3\) \(5\) \(-7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}-12q^{11}+\cdots\)
1680.4.a.v 1680.a 1.a $1$ $99.123$ \(\Q\) None 420.4.a.b \(0\) \(3\) \(5\) \(-7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}+6^{2}q^{11}+\cdots\)
1680.4.a.w 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.i \(0\) \(3\) \(5\) \(7\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}-2^{4}q^{11}+\cdots\)
1680.4.a.x 1680.a 1.a $1$ $99.123$ \(\Q\) None 210.4.a.b \(0\) \(3\) \(5\) \(7\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}+44q^{11}+\cdots\)
1680.4.a.y 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{41}) \) None 105.4.a.g \(0\) \(-6\) \(-10\) \(-14\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-7q^{7}+9q^{9}+(-31+\cdots)q^{11}+\cdots\)
1680.4.a.z 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{193}) \) None 840.4.a.n \(0\) \(-6\) \(-10\) \(-14\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-7q^{7}+9q^{9}+(17-3\beta )q^{11}+\cdots\)
1680.4.a.ba 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{21}) \) None 840.4.a.m \(0\) \(-6\) \(-10\) \(14\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}+(-14+\cdots)q^{11}+\cdots\)
1680.4.a.bb 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{309}) \) None 840.4.a.l \(0\) \(-6\) \(-10\) \(14\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}+(2+\beta )q^{11}+\cdots\)
1680.4.a.bc 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{421}) \) None 420.4.a.i \(0\) \(-6\) \(-10\) \(14\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}+(6+\beta )q^{11}+\cdots\)
1680.4.a.bd 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{5}) \) None 105.4.a.d \(0\) \(-6\) \(-10\) \(14\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+7q^{7}+9q^{9}+(46-\beta )q^{11}+\cdots\)
1680.4.a.be 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{106}) \) None 210.4.a.k \(0\) \(-6\) \(10\) \(-14\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-7q^{7}+9q^{9}+(-2^{4}+\cdots)q^{11}+\cdots\)
1680.4.a.bf 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{2881}) \) None 840.4.a.o \(0\) \(-6\) \(10\) \(14\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}+(11-\beta )q^{11}+\cdots\)
1680.4.a.bg 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{65}) \) None 105.4.a.f \(0\) \(-6\) \(10\) \(14\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+7q^{7}+9q^{9}+(11-\beta )q^{11}+\cdots\)
1680.4.a.bh 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{61}) \) None 840.4.a.h \(0\) \(6\) \(-10\) \(-14\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}-7q^{7}+9q^{9}+(-26+\cdots)q^{11}+\cdots\)
1680.4.a.bi 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{109}) \) None 420.4.a.g \(0\) \(6\) \(-10\) \(-14\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}-7q^{7}+9q^{9}+(-6+\cdots)q^{11}+\cdots\)
1680.4.a.bj 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{29}) \) None 840.4.a.g \(0\) \(6\) \(-10\) \(-14\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}-7q^{7}+9q^{9}+(14-\beta )q^{11}+\cdots\)
1680.4.a.bk 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{17}) \) None 105.4.a.c \(0\) \(6\) \(-10\) \(14\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}+(13+5\beta )q^{11}+\cdots\)
1680.4.a.bl 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{401}) \) None 840.4.a.k \(0\) \(6\) \(10\) \(-14\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}+(13-\beta )q^{11}+\cdots\)
1680.4.a.bm 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{22}) \) None 840.4.a.j \(0\) \(6\) \(10\) \(14\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}+(-24+\cdots)q^{11}+\cdots\)
1680.4.a.bn 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{6}) \) None 840.4.a.i \(0\) \(6\) \(10\) \(14\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}+(-8+\cdots)q^{11}+\cdots\)
1680.4.a.bo 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{2}) \) None 105.4.a.e \(0\) \(6\) \(10\) \(14\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}+(8+10\beta )q^{11}+\cdots\)
1680.4.a.bp 1680.a 1.a $2$ $99.123$ \(\Q(\sqrt{130}) \) None 420.4.a.h \(0\) \(6\) \(10\) \(14\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+7q^{7}+9q^{9}+8q^{11}+\cdots\)
1680.4.a.bq 1680.a 1.a $3$ $99.123$ 3.3.851417.1 None 840.4.a.r \(0\) \(-9\) \(-15\) \(-21\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-7q^{7}+9q^{9}+(-5+\cdots)q^{11}+\cdots\)
1680.4.a.br 1680.a 1.a $3$ $99.123$ 3.3.79853.1 None 840.4.a.s \(0\) \(-9\) \(15\) \(-21\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-7q^{7}+9q^{9}+(-12+\cdots)q^{11}+\cdots\)
1680.4.a.bs 1680.a 1.a $3$ $99.123$ 3.3.821313.1 None 840.4.a.p \(0\) \(9\) \(-15\) \(21\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+7q^{7}+9q^{9}+(2+\beta _{2})q^{11}+\cdots\)
1680.4.a.bt 1680.a 1.a $3$ $99.123$ 3.3.661769.1 None 840.4.a.q \(0\) \(9\) \(15\) \(-21\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-7q^{7}+9q^{9}+(-1+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1680))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1680)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(840))\)\(^{\oplus 2}\)