Properties

Label 1680.2.t.k
Level 1680
Weight 2
Character orbit 1680.t
Analytic conductor 13.415
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1680.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{3} + \beta_{2} q^{5} + \beta_{1} q^{7} - q^{9} +O(q^{10})\) \( q -\beta_{1} q^{3} + \beta_{2} q^{5} + \beta_{1} q^{7} - q^{9} -2 q^{11} + ( 2 \beta_{1} - \beta_{2} - \beta_{5} ) q^{13} -\beta_{4} q^{15} + ( -\beta_{2} - \beta_{5} ) q^{17} + ( 2 - \beta_{3} - \beta_{4} ) q^{19} + q^{21} + ( 2 \beta_{1} + \beta_{3} - \beta_{4} ) q^{23} + ( -1 - 2 \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{5} ) q^{25} + \beta_{1} q^{27} + ( -2 + 2 \beta_{2} - 2 \beta_{5} ) q^{29} + ( -2 + 2 \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{5} ) q^{31} + 2 \beta_{1} q^{33} + \beta_{4} q^{35} + ( -2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{37} + ( 2 + \beta_{3} + \beta_{4} ) q^{39} + ( \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{41} + ( -2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{43} -\beta_{2} q^{45} + ( -4 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} ) q^{47} - q^{49} + ( \beta_{3} + \beta_{4} ) q^{51} + ( -6 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{53} -2 \beta_{2} q^{55} + ( -2 \beta_{1} - \beta_{2} - \beta_{5} ) q^{57} + ( 4 + 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{59} + ( -2 + 2 \beta_{3} + 2 \beta_{4} ) q^{61} -\beta_{1} q^{63} + ( 6 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{65} + ( -4 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} ) q^{67} + ( 2 - \beta_{2} + \beta_{5} ) q^{69} -2 q^{71} + ( 6 \beta_{1} + \beta_{2} + \beta_{5} ) q^{73} + ( -2 + \beta_{1} + \beta_{3} - \beta_{4} - 2 \beta_{5} ) q^{75} -2 \beta_{1} q^{77} + ( 4 - 2 \beta_{3} - 2 \beta_{4} ) q^{79} + q^{81} + ( 4 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{83} + ( 6 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{5} ) q^{85} + ( 2 \beta_{1} + 2 \beta_{3} - 2 \beta_{4} ) q^{87} + ( -4 - \beta_{2} + \beta_{5} ) q^{89} + ( -2 - \beta_{3} - \beta_{4} ) q^{91} + ( 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{93} + ( -2 + 6 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} ) q^{95} + ( -10 \beta_{1} + \beta_{2} - 4 \beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 2q^{5} - 6q^{9} + O(q^{10}) \) \( 6q + 2q^{5} - 6q^{9} - 12q^{11} + 12q^{19} + 6q^{21} - 2q^{25} - 4q^{29} - 4q^{31} + 12q^{39} + 4q^{41} - 2q^{45} - 6q^{49} - 4q^{55} + 32q^{59} - 12q^{61} + 32q^{65} + 8q^{69} - 12q^{71} - 8q^{75} + 24q^{79} + 6q^{81} + 32q^{85} - 28q^{89} - 12q^{91} - 4q^{95} + 12q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -7 \nu^{5} + 10 \nu^{4} - 5 \nu^{3} - 30 \nu^{2} - 32 \nu + 13 \)\()/23\)
\(\beta_{2}\)\(=\)\((\)\( -9 \nu^{5} + 3 \nu^{4} + 10 \nu^{3} - 32 \nu^{2} - 74 \nu - 3 \)\()/23\)
\(\beta_{3}\)\(=\)\((\)\( -10 \nu^{5} + 11 \nu^{4} - 17 \nu^{3} - 10 \nu^{2} - 72 \nu - 11 \)\()/23\)
\(\beta_{4}\)\(=\)\((\)\( 12 \nu^{5} - 27 \nu^{4} + 25 \nu^{3} + 12 \nu^{2} + 68 \nu - 65 \)\()/23\)
\(\beta_{5}\)\(=\)\((\)\( -19 \nu^{5} + 37 \nu^{4} - 30 \nu^{3} - 42 \nu^{2} - 54 \nu + 55 \)\()/23\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{5} + \beta_{4} - \beta_{1} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{5} + \beta_{2} - 4 \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{5} - \beta_{4} - 3 \beta_{3} + 3 \beta_{2} - 4 \beta_{1} - 4\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{5} - 5 \beta_{4} - 5 \beta_{3} + \beta_{2} - 14\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-11 \beta_{5} - 11 \beta_{4} - 5 \beta_{3} - 5 \beta_{2} + 18 \beta_{1} - 18\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
0.403032 0.403032i
1.45161 1.45161i
−0.854638 + 0.854638i
0.403032 + 0.403032i
1.45161 + 1.45161i
−0.854638 0.854638i
0 1.00000i 0 −1.48119 + 1.67513i 0 1.00000i 0 −1.00000 0
1009.2 0 1.00000i 0 0.311108 2.21432i 0 1.00000i 0 −1.00000 0
1009.3 0 1.00000i 0 2.17009 + 0.539189i 0 1.00000i 0 −1.00000 0
1009.4 0 1.00000i 0 −1.48119 1.67513i 0 1.00000i 0 −1.00000 0
1009.5 0 1.00000i 0 0.311108 + 2.21432i 0 1.00000i 0 −1.00000 0
1009.6 0 1.00000i 0 2.17009 0.539189i 0 1.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1009.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.t.k 6
3.b odd 2 1 5040.2.t.v 6
4.b odd 2 1 105.2.d.b 6
5.b even 2 1 inner 1680.2.t.k 6
5.c odd 4 1 8400.2.a.dg 3
5.c odd 4 1 8400.2.a.dj 3
12.b even 2 1 315.2.d.e 6
15.d odd 2 1 5040.2.t.v 6
20.d odd 2 1 105.2.d.b 6
20.e even 4 1 525.2.a.j 3
20.e even 4 1 525.2.a.k 3
28.d even 2 1 735.2.d.b 6
28.f even 6 2 735.2.q.f 12
28.g odd 6 2 735.2.q.e 12
60.h even 2 1 315.2.d.e 6
60.l odd 4 1 1575.2.a.w 3
60.l odd 4 1 1575.2.a.x 3
84.h odd 2 1 2205.2.d.l 6
140.c even 2 1 735.2.d.b 6
140.j odd 4 1 3675.2.a.bi 3
140.j odd 4 1 3675.2.a.bj 3
140.p odd 6 2 735.2.q.e 12
140.s even 6 2 735.2.q.f 12
420.o odd 2 1 2205.2.d.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 4.b odd 2 1
105.2.d.b 6 20.d odd 2 1
315.2.d.e 6 12.b even 2 1
315.2.d.e 6 60.h even 2 1
525.2.a.j 3 20.e even 4 1
525.2.a.k 3 20.e even 4 1
735.2.d.b 6 28.d even 2 1
735.2.d.b 6 140.c even 2 1
735.2.q.e 12 28.g odd 6 2
735.2.q.e 12 140.p odd 6 2
735.2.q.f 12 28.f even 6 2
735.2.q.f 12 140.s even 6 2
1575.2.a.w 3 60.l odd 4 1
1575.2.a.x 3 60.l odd 4 1
1680.2.t.k 6 1.a even 1 1 trivial
1680.2.t.k 6 5.b even 2 1 inner
2205.2.d.l 6 84.h odd 2 1
2205.2.d.l 6 420.o odd 2 1
3675.2.a.bi 3 140.j odd 4 1
3675.2.a.bj 3 140.j odd 4 1
5040.2.t.v 6 3.b odd 2 1
5040.2.t.v 6 15.d odd 2 1
8400.2.a.dg 3 5.c odd 4 1
8400.2.a.dj 3 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\):

\( T_{11} + 2 \)
\( T_{13}^{6} + 44 T_{13}^{4} + 112 T_{13}^{2} + 64 \)
\( T_{19}^{3} - 6 T_{19}^{2} - 4 T_{19} + 40 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + T^{2} )^{3} \)
$5$ \( 1 - 2 T + 3 T^{2} - 12 T^{3} + 15 T^{4} - 50 T^{5} + 125 T^{6} \)
$7$ \( ( 1 + T^{2} )^{3} \)
$11$ \( ( 1 + 2 T + 11 T^{2} )^{6} \)
$13$ \( 1 - 34 T^{2} + 359 T^{4} - 2172 T^{6} + 60671 T^{8} - 971074 T^{10} + 4826809 T^{12} \)
$17$ \( 1 - 70 T^{2} + 2415 T^{4} - 51220 T^{6} + 697935 T^{8} - 5846470 T^{10} + 24137569 T^{12} \)
$19$ \( ( 1 - 6 T + 53 T^{2} - 188 T^{3} + 1007 T^{4} - 2166 T^{5} + 6859 T^{6} )^{2} \)
$23$ \( 1 - 106 T^{2} + 5183 T^{4} - 150348 T^{6} + 2741807 T^{8} - 29663146 T^{10} + 148035889 T^{12} \)
$29$ \( ( 1 + 2 T + 35 T^{2} + 76 T^{3} + 1015 T^{4} + 1682 T^{5} + 24389 T^{6} )^{2} \)
$31$ \( ( 1 + 2 T + 41 T^{2} - 60 T^{3} + 1271 T^{4} + 1922 T^{5} + 29791 T^{6} )^{2} \)
$37$ \( 1 - 46 T^{2} + 1399 T^{4} - 74788 T^{6} + 1915231 T^{8} - 86211406 T^{10} + 2565726409 T^{12} \)
$41$ \( ( 1 - 2 T + 63 T^{2} + 36 T^{3} + 2583 T^{4} - 3362 T^{5} + 68921 T^{6} )^{2} \)
$43$ \( 1 + 46 T^{2} + 2839 T^{4} + 118948 T^{6} + 5249311 T^{8} + 157264846 T^{10} + 6321363049 T^{12} \)
$47$ \( 1 - 154 T^{2} + 12143 T^{4} - 652332 T^{6} + 26823887 T^{8} - 751470874 T^{10} + 10779215329 T^{12} \)
$53$ \( 1 - 146 T^{2} + 14103 T^{4} - 884828 T^{6} + 39615327 T^{8} - 1152010226 T^{10} + 22164361129 T^{12} \)
$59$ \( ( 1 - 16 T + 113 T^{2} - 608 T^{3} + 6667 T^{4} - 55696 T^{5} + 205379 T^{6} )^{2} \)
$61$ \( ( 1 + 6 T + 131 T^{2} + 484 T^{3} + 7991 T^{4} + 22326 T^{5} + 226981 T^{6} )^{2} \)
$67$ \( 1 - 274 T^{2} + 36103 T^{4} - 2962972 T^{6} + 162066367 T^{8} - 5521407154 T^{10} + 90458382169 T^{12} \)
$71$ \( ( 1 + 2 T + 71 T^{2} )^{6} \)
$73$ \( 1 - 298 T^{2} + 43775 T^{4} - 3982284 T^{6} + 233276975 T^{8} - 8462675818 T^{10} + 151334226289 T^{12} \)
$79$ \( ( 1 - 12 T + 221 T^{2} - 1576 T^{3} + 17459 T^{4} - 74892 T^{5} + 493039 T^{6} )^{2} \)
$83$ \( 1 - 306 T^{2} + 47783 T^{4} - 4793948 T^{6} + 329177087 T^{8} - 14522246226 T^{10} + 326940373369 T^{12} \)
$89$ \( ( 1 + 14 T + 319 T^{2} + 2532 T^{3} + 28391 T^{4} + 110894 T^{5} + 704969 T^{6} )^{2} \)
$97$ \( 1 - 26 T^{2} + 8719 T^{4} + 446932 T^{6} + 82037071 T^{8} - 2301761306 T^{10} + 832972004929 T^{12} \)
show more
show less