Properties

Label 1680.2.t.g.1009.1
Level $1680$
Weight $2$
Character 1680.1009
Analytic conductor $13.415$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1009
Dual form 1680.2.t.g.1009.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} -4.00000 q^{11} -2.00000i q^{13} +(-1.00000 - 2.00000i) q^{15} +2.00000i q^{17} -2.00000 q^{19} -1.00000 q^{21} -6.00000i q^{23} +(3.00000 - 4.00000i) q^{25} +1.00000i q^{27} -6.00000 q^{29} -6.00000 q^{31} +4.00000i q^{33} +(-1.00000 - 2.00000i) q^{35} -4.00000i q^{37} -2.00000 q^{39} -4.00000i q^{43} +(-2.00000 + 1.00000i) q^{45} -4.00000i q^{47} -1.00000 q^{49} +2.00000 q^{51} +2.00000i q^{53} +(-8.00000 + 4.00000i) q^{55} +2.00000i q^{57} +4.00000 q^{59} -2.00000 q^{61} +1.00000i q^{63} +(-2.00000 - 4.00000i) q^{65} +12.0000i q^{67} -6.00000 q^{69} +8.00000 q^{71} -14.0000i q^{73} +(-4.00000 - 3.00000i) q^{75} +4.00000i q^{77} +16.0000 q^{79} +1.00000 q^{81} +16.0000i q^{83} +(2.00000 + 4.00000i) q^{85} +6.00000i q^{87} -16.0000 q^{89} -2.00000 q^{91} +6.00000i q^{93} +(-4.00000 + 2.00000i) q^{95} -14.0000i q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{5} - 2q^{9} + O(q^{10}) \) \( 2q + 4q^{5} - 2q^{9} - 8q^{11} - 2q^{15} - 4q^{19} - 2q^{21} + 6q^{25} - 12q^{29} - 12q^{31} - 2q^{35} - 4q^{39} - 4q^{45} - 2q^{49} + 4q^{51} - 16q^{55} + 8q^{59} - 4q^{61} - 4q^{65} - 12q^{69} + 16q^{71} - 8q^{75} + 32q^{79} + 2q^{81} + 4q^{85} - 32q^{89} - 4q^{91} - 8q^{95} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) −1.00000 2.00000i −0.258199 0.516398i
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 4.00000i 0.696311i
\(34\) 0 0
\(35\) −1.00000 2.00000i −0.169031 0.338062i
\(36\) 0 0
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) −2.00000 + 1.00000i −0.298142 + 0.149071i
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) −8.00000 + 4.00000i −1.07872 + 0.539360i
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) −2.00000 4.00000i −0.248069 0.496139i
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) 0 0
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) 0 0
\(85\) 2.00000 + 4.00000i 0.216930 + 0.433861i
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 6.00000i 0.622171i
\(94\) 0 0
\(95\) −4.00000 + 2.00000i −0.410391 + 0.205196i
\(96\) 0 0
\(97\) 14.0000i 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −2.00000 + 1.00000i −0.195180 + 0.0975900i
\(106\) 0 0
\(107\) 18.0000i 1.74013i −0.492941 0.870063i \(-0.664078\pi\)
0.492941 0.870063i \(-0.335922\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) −6.00000 12.0000i −0.559503 1.11901i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 2.00000i 0.173422i
\(134\) 0 0
\(135\) 1.00000 + 2.00000i 0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) −12.0000 + 6.00000i −0.996546 + 0.498273i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) −12.0000 + 6.00000i −0.963863 + 0.481932i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 24.0000i 1.87983i −0.341415 0.939913i \(-0.610906\pi\)
0.341415 0.939913i \(-0.389094\pi\)
\(164\) 0 0
\(165\) 4.00000 + 8.00000i 0.311400 + 0.622799i
\(166\) 0 0
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 14.0000i 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) −4.00000 3.00000i −0.302372 0.226779i
\(176\) 0 0
\(177\) 4.00000i 0.300658i
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) −4.00000 8.00000i −0.294086 0.588172i
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 24.0000i 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) 0 0
\(195\) −4.00000 + 2.00000i −0.286446 + 0.143223i
\(196\) 0 0
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 8.00000i 0.548151i
\(214\) 0 0
\(215\) −4.00000 8.00000i −0.272798 0.545595i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 18.0000i 1.17922i 0.807688 + 0.589610i \(0.200718\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(234\) 0 0
\(235\) −4.00000 8.00000i −0.260931 0.521862i
\(236\) 0 0
\(237\) 16.0000i 1.03931i
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −2.00000 + 1.00000i −0.127775 + 0.0638877i
\(246\) 0 0
\(247\) 4.00000i 0.254514i
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 24.0000i 1.50887i
\(254\) 0 0
\(255\) 4.00000 2.00000i 0.250490 0.125245i
\(256\) 0 0
\(257\) 22.0000i 1.37232i 0.727450 + 0.686161i \(0.240706\pi\)
−0.727450 + 0.686161i \(0.759294\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 30.0000i 1.84988i 0.380114 + 0.924940i \(0.375885\pi\)
−0.380114 + 0.924940i \(0.624115\pi\)
\(264\) 0 0
\(265\) 2.00000 + 4.00000i 0.122859 + 0.245718i
\(266\) 0 0
\(267\) 16.0000i 0.979184i
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) −12.0000 + 16.0000i −0.723627 + 0.964836i
\(276\) 0 0
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) 0 0
\(285\) 2.00000 + 4.00000i 0.118470 + 0.236940i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) 8.00000 4.00000i 0.465778 0.232889i
\(296\) 0 0
\(297\) 4.00000i 0.232104i
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 8.00000i 0.459588i
\(304\) 0 0
\(305\) −4.00000 + 2.00000i −0.229039 + 0.114520i
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i −0.783210 0.621757i \(-0.786419\pi\)
0.783210 0.621757i \(-0.213581\pi\)
\(314\) 0 0
\(315\) 1.00000 + 2.00000i 0.0563436 + 0.112687i
\(316\) 0 0
\(317\) 26.0000i 1.46031i −0.683284 0.730153i \(-0.739449\pi\)
0.683284 0.730153i \(-0.260551\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 0 0
\(327\) 18.0000i 0.995402i
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 24.0000 1.31916 0.659580 0.751635i \(-0.270734\pi\)
0.659580 + 0.751635i \(0.270734\pi\)
\(332\) 0 0
\(333\) 4.00000i 0.219199i
\(334\) 0 0
\(335\) 12.0000 + 24.0000i 0.655630 + 1.31126i
\(336\) 0 0
\(337\) 8.00000i 0.435788i 0.975972 + 0.217894i \(0.0699187\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −12.0000 + 6.00000i −0.646058 + 0.323029i
\(346\) 0 0
\(347\) 10.0000i 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 30.0000i 1.59674i −0.602168 0.798369i \(-0.705696\pi\)
0.602168 0.798369i \(-0.294304\pi\)
\(354\) 0 0
\(355\) 16.0000 8.00000i 0.849192 0.424596i
\(356\) 0 0
\(357\) 2.00000i 0.105851i
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 5.00000i 0.262432i
\(364\) 0 0
\(365\) −14.0000 28.0000i −0.732793 1.46559i
\(366\) 0 0
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00000 0.103835
\(372\) 0 0
\(373\) 24.0000i 1.24267i 0.783544 + 0.621336i \(0.213410\pi\)
−0.783544 + 0.621336i \(0.786590\pi\)
\(374\) 0 0
\(375\) −11.0000 2.00000i −0.568038 0.103280i
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) 0 0
\(385\) 4.00000 + 8.00000i 0.203859 + 0.407718i
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 4.00000i 0.201773i
\(394\) 0 0
\(395\) 32.0000 16.0000i 1.61009 0.805047i
\(396\) 0 0
\(397\) 34.0000i 1.70641i −0.521575 0.853206i \(-0.674655\pi\)
0.521575 0.853206i \(-0.325345\pi\)
\(398\) 0 0
\(399\) 2.00000 0.100125
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 16.0000i 0.793091i
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 16.0000 + 32.0000i 0.785409 + 1.57082i
\(416\) 0 0
\(417\) 14.0000i 0.685583i
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 4.00000i 0.194487i
\(424\) 0 0
\(425\) 8.00000 + 6.00000i 0.388057 + 0.291043i
\(426\) 0 0
\(427\) 2.00000i 0.0967868i
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 6.00000 + 12.0000i 0.287678 + 0.575356i
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 6.00000i 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 0 0
\(445\) −32.0000 + 16.0000i −1.51695 + 0.758473i
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) −4.00000 + 2.00000i −0.187523 + 0.0937614i
\(456\) 0 0
\(457\) 28.0000i 1.30978i −0.755722 0.654892i \(-0.772714\pi\)
0.755722 0.654892i \(-0.227286\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 6.00000 + 12.0000i 0.278243 + 0.556487i
\(466\) 0 0
\(467\) 28.0000i 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) −6.00000 + 8.00000i −0.275299 + 0.367065i
\(476\) 0 0
\(477\) 2.00000i 0.0915737i
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 6.00000i 0.273009i
\(484\) 0 0
\(485\) −14.0000 28.0000i −0.635707 1.27141i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 8.00000 4.00000i 0.359573 0.179787i
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) 12.0000i 0.535054i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(504\) 0 0
\(505\) 16.0000 8.00000i 0.711991 0.355995i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) 28.0000 1.24108 0.620539 0.784176i \(-0.286914\pi\)
0.620539 + 0.784176i \(0.286914\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) 2.00000i 0.0883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 12.0000i 0.524723i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.964970 + 0.262362i \(0.915499\pi\)
\(524\) 0 0
\(525\) −3.00000 + 4.00000i −0.130931 + 0.174574i
\(526\) 0 0
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 36.0000i −0.778208 1.55642i
\(536\) 0 0
\(537\) 20.0000i 0.863064i
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 22.0000i 0.944110i
\(544\) 0 0
\(545\) −36.0000 + 18.0000i −1.54207 + 0.771035i
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) −8.00000 + 4.00000i −0.339581 + 0.169791i
\(556\) 0 0
\(557\) 30.0000i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 6.00000 + 12.0000i 0.252422 + 0.504844i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 0 0
\(575\) −24.0000 18.0000i −1.00087 0.750652i
\(576\) 0 0
\(577\) 18.0000i 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 0 0
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 8.00000i 0.331326i
\(584\) 0 0
\(585\) 2.00000 + 4.00000i 0.0826898 + 0.165380i
\(586\) 0 0
\(587\) 16.0000i 0.660391i −0.943913 0.330195i \(-0.892885\pi\)
0.943913 0.330195i \(-0.107115\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 4.00000 2.00000i 0.163984 0.0819920i
\(596\) 0 0
\(597\) 10.0000i 0.409273i
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 10.0000 5.00000i 0.406558 0.203279i
\(606\) 0 0
\(607\) 8.00000i 0.324710i −0.986732 0.162355i \(-0.948091\pi\)
0.986732 0.162355i \(-0.0519090\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 4.00000i 0.161558i 0.996732 + 0.0807792i \(0.0257409\pi\)
−0.996732 + 0.0807792i \(0.974259\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 0 0
\(619\) −30.0000 −1.20580 −0.602901 0.797816i \(-0.705989\pi\)
−0.602901 + 0.797816i \(0.705989\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) 16.0000i 0.641026i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 8.00000i 0.319489i
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 0 0
\(633\) 8.00000i 0.317971i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) −8.00000 + 4.00000i −0.315000 + 0.157500i
\(646\) 0 0
\(647\) 40.0000i 1.57256i −0.617869 0.786281i \(-0.712004\pi\)
0.617869 0.786281i \(-0.287996\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) 0 0
\(653\) 26.0000i 1.01746i 0.860927 + 0.508729i \(0.169885\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) −8.00000 + 4.00000i −0.312586 + 0.156293i
\(656\) 0 0
\(657\) 14.0000i 0.546192i
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 4.00000i 0.155347i
\(664\) 0 0
\(665\) 2.00000 + 4.00000i 0.0775567 + 0.155113i
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 12.0000i 0.462566i −0.972887 0.231283i \(-0.925708\pi\)
0.972887 0.231283i \(-0.0742923\pi\)
\(674\) 0 0
\(675\) 4.00000 + 3.00000i 0.153960 + 0.115470i
\(676\) 0 0
\(677\) 42.0000i 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 14.0000i 0.535695i −0.963461 0.267848i \(-0.913688\pi\)
0.963461 0.267848i \(-0.0863124\pi\)
\(684\) 0 0
\(685\) 10.0000 + 20.0000i 0.382080 + 0.764161i
\(686\) 0 0
\(687\) 2.00000i 0.0763048i
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) −22.0000 −0.836919 −0.418460 0.908235i \(-0.637430\pi\)
−0.418460 + 0.908235i \(0.637430\pi\)
\(692\) 0 0
\(693\) 4.00000i 0.151947i
\(694\) 0 0
\(695\) −28.0000 + 14.0000i −1.06210 + 0.531050i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) 0 0
\(705\) −8.00000 + 4.00000i −0.301297 + 0.150649i
\(706\) 0 0
\(707\) 8.00000i 0.300871i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) 36.0000i 1.34821i
\(714\) 0 0
\(715\) 8.00000 + 16.0000i 0.299183 + 0.598366i
\(716\) 0 0
\(717\) 8.00000i 0.298765i
\(718\) 0 0
\(719\) 28.0000 1.04422 0.522112 0.852877i \(-0.325144\pi\)
0.522112 + 0.852877i \(0.325144\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 26.0000i 0.966950i
\(724\) 0 0
\(725\) −18.0000 + 24.0000i −0.668503 + 0.891338i
\(726\) 0 0
\(727\) 16.0000i 0.593407i −0.954970 0.296704i \(-0.904113\pi\)
0.954970 0.296704i \(-0.0958873\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 42.0000i 1.55131i −0.631160 0.775653i \(-0.717421\pi\)
0.631160 0.775653i \(-0.282579\pi\)
\(734\) 0 0
\(735\) 1.00000 + 2.00000i 0.0368856 + 0.0737711i
\(736\) 0 0
\(737\) 48.0000i 1.76810i
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) 34.0000i 1.24734i 0.781688 + 0.623670i \(0.214359\pi\)
−0.781688 + 0.623670i \(0.785641\pi\)
\(744\) 0 0
\(745\) −12.0000 + 6.00000i −0.439646 + 0.219823i
\(746\) 0 0
\(747\) 16.0000i 0.585409i
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 32.0000 16.0000i 1.16460 0.582300i
\(756\) 0 0
\(757\) 8.00000i 0.290765i 0.989376 + 0.145382i \(0.0464413\pi\)
−0.989376 + 0.145382i \(0.953559\pi\)
\(758\) 0 0
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 18.0000i 0.651644i
\(764\) 0 0
\(765\) −2.00000 4.00000i −0.0723102 0.144620i
\(766\) 0 0
\(767\) 8.00000i 0.288863i
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) 0 0
\(773\) 10.0000i 0.359675i −0.983696 0.179838i \(-0.942443\pi\)
0.983696 0.179838i \(-0.0575572\pi\)
\(774\) 0 0
\(775\) −18.0000 + 24.0000i −0.646579 + 0.862105i
\(776\) 0 0
\(777\) 4.00000i 0.143499i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 2.00000 + 4.00000i 0.0713831 + 0.142766i
\(786\) 0 0
\(787\) 28.0000i 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) 0 0
\(789\) 30.0000 1.06803
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) 4.00000 2.00000i 0.141865 0.0709327i
\(796\) 0 0
\(797\) 18.0000i 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 16.0000 0.565332
\(802\) 0