Properties

Label 1680.2.t.d.1009.2
Level $1680$
Weight $2$
Character 1680.1009
Analytic conductor $13.415$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1009
Dual form 1680.2.t.d.1009.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.00000 - 2.00000i) q^{5} +1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +(-1.00000 - 2.00000i) q^{5} +1.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} +2.00000i q^{13} +(2.00000 - 1.00000i) q^{15} -8.00000i q^{17} -2.00000 q^{19} -1.00000 q^{21} +(-3.00000 + 4.00000i) q^{25} -1.00000i q^{27} +6.00000 q^{29} -6.00000 q^{31} +2.00000i q^{33} +(2.00000 - 1.00000i) q^{35} -8.00000i q^{37} -2.00000 q^{39} +6.00000 q^{41} -8.00000i q^{43} +(1.00000 + 2.00000i) q^{45} +4.00000i q^{47} -1.00000 q^{49} +8.00000 q^{51} -2.00000i q^{53} +(-2.00000 - 4.00000i) q^{55} -2.00000i q^{57} -8.00000 q^{59} +10.0000 q^{61} -1.00000i q^{63} +(4.00000 - 2.00000i) q^{65} -12.0000i q^{67} +14.0000 q^{71} -10.0000i q^{73} +(-4.00000 - 3.00000i) q^{75} +2.00000i q^{77} +4.00000 q^{79} +1.00000 q^{81} -16.0000i q^{83} +(-16.0000 + 8.00000i) q^{85} +6.00000i q^{87} -10.0000 q^{89} -2.00000 q^{91} -6.00000i q^{93} +(2.00000 + 4.00000i) q^{95} -10.0000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{9} + O(q^{10}) \) \( 2 q - 2 q^{5} - 2 q^{9} + 4 q^{11} + 4 q^{15} - 4 q^{19} - 2 q^{21} - 6 q^{25} + 12 q^{29} - 12 q^{31} + 4 q^{35} - 4 q^{39} + 12 q^{41} + 2 q^{45} - 2 q^{49} + 16 q^{51} - 4 q^{55} - 16 q^{59} + 20 q^{61} + 8 q^{65} + 28 q^{71} - 8 q^{75} + 8 q^{79} + 2 q^{81} - 32 q^{85} - 20 q^{89} - 4 q^{91} + 4 q^{95} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 2.00000 1.00000i 0.516398 0.258199i
\(16\) 0 0
\(17\) 8.00000i 1.94029i −0.242536 0.970143i \(-0.577979\pi\)
0.242536 0.970143i \(-0.422021\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 2.00000 1.00000i 0.338062 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 8.00000 1.12022
\(52\) 0 0
\(53\) 2.00000i 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) −2.00000 4.00000i −0.269680 0.539360i
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 4.00000 2.00000i 0.496139 0.248069i
\(66\) 0 0
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0000 1.66149 0.830747 0.556650i \(-0.187914\pi\)
0.830747 + 0.556650i \(0.187914\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) −16.0000 + 8.00000i −1.73544 + 0.867722i
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 6.00000i 0.622171i
\(94\) 0 0
\(95\) 2.00000 + 4.00000i 0.205196 + 0.410391i
\(96\) 0 0
\(97\) 10.0000i 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 1.00000 + 2.00000i 0.0975900 + 0.195180i
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) 2.00000i 0.173422i
\(134\) 0 0
\(135\) −2.00000 + 1.00000i −0.172133 + 0.0860663i
\(136\) 0 0
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) −6.00000 12.0000i −0.498273 0.996546i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 8.00000i 0.646762i
\(154\) 0 0
\(155\) 6.00000 + 12.0000i 0.481932 + 0.963863i
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) 0 0
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 4.00000 2.00000i 0.311400 0.155700i
\(166\) 0 0
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 16.0000i 1.21646i −0.793762 0.608229i \(-0.791880\pi\)
0.793762 0.608229i \(-0.208120\pi\)
\(174\) 0 0
\(175\) −4.00000 3.00000i −0.302372 0.226779i
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 0 0
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) −16.0000 + 8.00000i −1.17634 + 0.588172i
\(186\) 0 0
\(187\) 16.0000i 1.17004i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 2.00000 + 4.00000i 0.143223 + 0.286446i
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) −26.0000 −1.84309 −0.921546 0.388270i \(-0.873073\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 0 0
\(205\) −6.00000 12.0000i −0.419058 0.838116i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 14.0000i 0.959264i
\(214\) 0 0
\(215\) −16.0000 + 8.00000i −1.09119 + 0.545595i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 0 0
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 0 0
\(227\) 8.00000i 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 8.00000 4.00000i 0.521862 0.260931i
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) −22.0000 −1.42306 −0.711531 0.702655i \(-0.751998\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 1.00000 + 2.00000i 0.0638877 + 0.127775i
\(246\) 0 0
\(247\) 4.00000i 0.254514i
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.00000 16.0000i −0.500979 1.00196i
\(256\) 0 0
\(257\) 20.0000i 1.24757i 0.781598 + 0.623783i \(0.214405\pi\)
−0.781598 + 0.623783i \(0.785595\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) 0 0
\(265\) −4.00000 + 2.00000i −0.245718 + 0.122859i
\(266\) 0 0
\(267\) 10.0000i 0.611990i
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) −6.00000 + 8.00000i −0.361814 + 0.482418i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) −4.00000 + 2.00000i −0.236940 + 0.118470i
\(286\) 0 0
\(287\) 6.00000i 0.354169i
\(288\) 0 0
\(289\) −47.0000 −2.76471
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) 16.0000i 0.934730i −0.884064 0.467365i \(-0.845203\pi\)
0.884064 0.467365i \(-0.154797\pi\)
\(294\) 0 0
\(295\) 8.00000 + 16.0000i 0.465778 + 0.931556i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 10.0000i 0.574485i
\(304\) 0 0
\(305\) −10.0000 20.0000i −0.572598 1.14520i
\(306\) 0 0
\(307\) 28.0000i 1.59804i 0.601302 + 0.799022i \(0.294649\pi\)
−0.601302 + 0.799022i \(0.705351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 0 0
\(315\) −2.00000 + 1.00000i −0.112687 + 0.0563436i
\(316\) 0 0
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 16.0000i 0.890264i
\(324\) 0 0
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 0 0
\(327\) 6.00000i 0.331801i
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) −24.0000 + 12.0000i −1.31126 + 0.655630i
\(336\) 0 0
\(337\) 32.0000i 1.74315i −0.490261 0.871576i \(-0.663099\pi\)
0.490261 0.871576i \(-0.336901\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −14.0000 28.0000i −0.743043 1.48609i
\(356\) 0 0
\(357\) 8.00000i 0.423405i
\(358\) 0 0
\(359\) 14.0000 0.738892 0.369446 0.929252i \(-0.379548\pi\)
0.369446 + 0.929252i \(0.379548\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) −20.0000 + 10.0000i −1.04685 + 0.523424i
\(366\) 0 0
\(367\) 32.0000i 1.67039i −0.549957 0.835193i \(-0.685356\pi\)
0.549957 0.835193i \(-0.314644\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 2.00000 0.103835
\(372\) 0 0
\(373\) 36.0000i 1.86401i 0.362446 + 0.932005i \(0.381942\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) −2.00000 + 11.0000i −0.103280 + 0.568038i
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 4.00000 2.00000i 0.203859 0.101929i
\(386\) 0 0
\(387\) 8.00000i 0.406663i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 20.0000i 1.00887i
\(394\) 0 0
\(395\) −4.00000 8.00000i −0.201262 0.402524i
\(396\) 0 0
\(397\) 2.00000i 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 2.00000 0.100125
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) −1.00000 2.00000i −0.0496904 0.0993808i
\(406\) 0 0
\(407\) 16.0000i 0.793091i
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) −32.0000 + 16.0000i −1.57082 + 0.785409i
\(416\) 0 0
\(417\) 2.00000i 0.0979404i
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 4.00000i 0.194487i
\(424\) 0 0
\(425\) 32.0000 + 24.0000i 1.55223 + 1.16417i
\(426\) 0 0
\(427\) 10.0000i 0.483934i
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) 12.0000 6.00000i 0.575356 0.287678i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 36.0000i 1.71041i −0.518289 0.855206i \(-0.673431\pi\)
0.518289 0.855206i \(-0.326569\pi\)
\(444\) 0 0
\(445\) 10.0000 + 20.0000i 0.474045 + 0.948091i
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 8.00000i 0.375873i
\(454\) 0 0
\(455\) 2.00000 + 4.00000i 0.0937614 + 0.187523i
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i 0.960337 + 0.278844i \(0.0899511\pi\)
−0.960337 + 0.278844i \(0.910049\pi\)
\(464\) 0 0
\(465\) −12.0000 + 6.00000i −0.556487 + 0.278243i
\(466\) 0 0
\(467\) 16.0000i 0.740392i 0.928954 + 0.370196i \(0.120709\pi\)
−0.928954 + 0.370196i \(0.879291\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 6.00000 8.00000i 0.275299 0.367065i
\(476\) 0 0
\(477\) 2.00000i 0.0915737i
\(478\) 0 0
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.0000 + 10.0000i −0.908153 + 0.454077i
\(486\) 0 0
\(487\) 36.0000i 1.63132i 0.578535 + 0.815658i \(0.303625\pi\)
−0.578535 + 0.815658i \(0.696375\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) 0 0
\(493\) 48.0000i 2.16181i
\(494\) 0 0
\(495\) 2.00000 + 4.00000i 0.0898933 + 0.179787i
\(496\) 0 0
\(497\) 14.0000i 0.627986i
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 10.0000 + 20.0000i 0.444994 + 0.889988i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 0 0
\(513\) 2.00000i 0.0883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000i 0.351840i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 12.0000i 0.524723i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.964970 + 0.262362i \(0.915499\pi\)
\(524\) 0 0
\(525\) 3.00000 4.00000i 0.130931 0.174574i
\(526\) 0 0
\(527\) 48.0000i 2.09091i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) −24.0000 + 12.0000i −1.03761 + 0.518805i
\(536\) 0 0
\(537\) 2.00000i 0.0863064i
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 22.0000i 0.944110i
\(544\) 0 0
\(545\) −6.00000 12.0000i −0.257012 0.514024i
\(546\) 0 0
\(547\) 20.0000i 0.855138i 0.903983 + 0.427569i \(0.140630\pi\)
−0.903983 + 0.427569i \(0.859370\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) 0 0
\(555\) −8.00000 16.0000i −0.339581 0.679162i
\(556\) 0 0
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 16.0000 0.675521
\(562\) 0 0
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 0 0
\(565\) 12.0000 6.00000i 0.504844 0.252422i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) 14.0000i 0.584858i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000i 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 4.00000i 0.165663i
\(584\) 0 0
\(585\) −4.00000 + 2.00000i −0.165380 + 0.0826898i
\(586\) 0 0
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 32.0000i 1.31408i −0.753855 0.657041i \(-0.771808\pi\)
0.753855 0.657041i \(-0.228192\pi\)
\(594\) 0 0
\(595\) −8.00000 16.0000i −0.327968 0.655936i
\(596\) 0 0
\(597\) 26.0000i 1.06411i
\(598\) 0 0
\(599\) 14.0000 0.572024 0.286012 0.958226i \(-0.407670\pi\)
0.286012 + 0.958226i \(0.407670\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 7.00000 + 14.0000i 0.284590 + 0.569181i
\(606\) 0 0
\(607\) 16.0000i 0.649420i −0.945814 0.324710i \(-0.894733\pi\)
0.945814 0.324710i \(-0.105267\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 32.0000i 1.29247i 0.763139 + 0.646234i \(0.223657\pi\)
−0.763139 + 0.646234i \(0.776343\pi\)
\(614\) 0 0
\(615\) 12.0000 6.00000i 0.483887 0.241943i
\(616\) 0 0
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) −18.0000 −0.723481 −0.361741 0.932279i \(-0.617817\pi\)
−0.361741 + 0.932279i \(0.617817\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.0000i 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 4.00000i 0.159745i
\(628\) 0 0
\(629\) −64.0000 −2.55185
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) 0 0
\(633\) 8.00000i 0.317971i
\(634\) 0 0
\(635\) 24.0000 12.0000i 0.952411 0.476205i
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) −14.0000 −0.553831
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 20.0000i 0.788723i 0.918955 + 0.394362i \(0.129034\pi\)
−0.918955 + 0.394362i \(0.870966\pi\)
\(644\) 0 0
\(645\) −8.00000 16.0000i −0.315000 0.629999i
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) 0 0
\(653\) 14.0000i 0.547862i −0.961749 0.273931i \(-0.911676\pi\)
0.961749 0.273931i \(-0.0883240\pi\)
\(654\) 0 0
\(655\) −20.0000 40.0000i −0.781465 1.56293i
\(656\) 0 0
\(657\) 10.0000i 0.390137i
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 16.0000i 0.621389i
\(664\) 0 0
\(665\) −4.00000 + 2.00000i −0.155113 + 0.0775567i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 20.0000 0.772091
\(672\) 0 0
\(673\) 12.0000i 0.462566i 0.972887 + 0.231283i \(0.0742923\pi\)
−0.972887 + 0.231283i \(0.925708\pi\)
\(674\) 0 0
\(675\) 4.00000 + 3.00000i 0.153960 + 0.115470i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 28.0000i 1.07139i −0.844411 0.535695i \(-0.820050\pi\)
0.844411 0.535695i \(-0.179950\pi\)
\(684\) 0 0
\(685\) 28.0000 14.0000i 1.06983 0.534913i
\(686\) 0 0
\(687\) 26.0000i 0.991962i
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 14.0000 0.532585 0.266293 0.963892i \(-0.414201\pi\)
0.266293 + 0.963892i \(0.414201\pi\)
\(692\) 0 0
\(693\) 2.00000i 0.0759737i
\(694\) 0 0
\(695\) 2.00000 + 4.00000i 0.0758643 + 0.151729i
\(696\) 0 0
\(697\) 48.0000i 1.81813i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 16.0000i 0.603451i
\(704\) 0 0
\(705\) 4.00000 + 8.00000i 0.150649 + 0.301297i
\(706\) 0 0
\(707\) 10.0000i 0.376089i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 8.00000 4.00000i 0.299183 0.149592i
\(716\) 0 0
\(717\) 22.0000i 0.821605i
\(718\) 0 0
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 0 0
\(725\) −18.0000 + 24.0000i −0.668503 + 0.891338i
\(726\) 0 0
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −64.0000 −2.36713
\(732\) 0 0
\(733\) 30.0000i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 0 0
\(735\) −2.00000 + 1.00000i −0.0737711 + 0.0368856i
\(736\) 0 0
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) 16.0000i 0.586983i −0.955962 0.293492i \(-0.905183\pi\)
0.955962 0.293492i \(-0.0948173\pi\)
\(744\) 0 0
\(745\) −18.0000 36.0000i −0.659469 1.31894i
\(746\) 0 0
\(747\) 16.0000i 0.585409i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.00000 + 16.0000i 0.291150 + 0.582300i
\(756\) 0 0
\(757\) 4.00000i 0.145382i 0.997354 + 0.0726912i \(0.0231588\pi\)
−0.997354 + 0.0726912i \(0.976841\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 6.00000i 0.217215i
\(764\) 0 0
\(765\) 16.0000 8.00000i 0.578481 0.289241i
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) 42.0000 1.51456 0.757279 0.653091i \(-0.226528\pi\)
0.757279 + 0.653091i \(0.226528\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) 0 0
\(773\) 32.0000i 1.15096i −0.817816 0.575480i \(-0.804815\pi\)
0.817816 0.575480i \(-0.195185\pi\)
\(774\) 0 0
\(775\) 18.0000 24.0000i 0.646579 0.862105i
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 20.0000 10.0000i 0.713831 0.356915i
\(786\) 0 0
\(787\) 44.0000i 1.56843i −0.620489 0.784215i \(-0.713066\pi\)
0.620489 0.784215i \(-0.286934\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 20.0000i 0.710221i
\(794\) 0 0
\(795\) −2.00000 4.00000i −0.0709327 0.141865i
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 20.0000i <