Properties

Label 1680.2.fs
Level $1680$
Weight $2$
Character orbit 1680.fs
Rep. character $\chi_{1680}(67,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $768$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.fs (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 560 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).

Total New Old
Modular forms 1568 768 800
Cusp forms 1504 768 736
Eisenstein series 64 0 64

Trace form

\( 768 q - 24 q^{8} + 384 q^{9} - 48 q^{20} + 20 q^{28} + 16 q^{30} - 32 q^{34} + 24 q^{35} - 12 q^{38} - 20 q^{40} + 20 q^{42} + 48 q^{44} + 48 q^{47} + 32 q^{48} - 4 q^{52} - 40 q^{58} + 32 q^{59} + 144 q^{62}+ \cdots - 168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)