# Properties

 Label 1680.2.f.i Level $1680$ Weight $2$ Character orbit 1680.f Analytic conductor $13.415$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1680.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$13.4148675396$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{5})$$ Defining polynomial: $$x^{4} + 3 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\beta_{1} - \beta_{2} ) q^{3} + q^{5} + ( -1 - 2 \beta_{2} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{9} +O(q^{10})$$ $$q + ( -\beta_{1} - \beta_{2} ) q^{3} + q^{5} + ( -1 - 2 \beta_{2} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{9} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{11} + ( \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{13} + ( -\beta_{1} - \beta_{2} ) q^{15} + ( 2 - \beta_{1} + \beta_{3} ) q^{17} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{19} + ( -4 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{21} + 4 \beta_{2} q^{23} + q^{25} + ( 4 + 3 \beta_{2} - \beta_{3} ) q^{27} + ( 3 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} ) q^{29} + ( \beta_{1} + 6 \beta_{2} + \beta_{3} ) q^{31} + ( 6 + 2 \beta_{1} - 4 \beta_{2} ) q^{33} + ( -1 - 2 \beta_{2} - \beta_{3} ) q^{35} + ( 4 + \beta_{1} - \beta_{3} ) q^{37} + ( 4 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{39} + ( 4 + 2 \beta_{1} - 2 \beta_{3} ) q^{41} + ( -8 - 4 \beta_{1} + 4 \beta_{3} ) q^{43} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{45} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{47} + ( -3 - 3 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} ) q^{49} + ( 2 - 3 \beta_{1} + \beta_{3} ) q^{51} + ( -2 \beta_{1} - 6 \beta_{2} - 2 \beta_{3} ) q^{53} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{55} + ( 2 + 2 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{57} + ( 2 + 2 \beta_{1} - 2 \beta_{3} ) q^{59} + ( -\beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{61} + ( 3 + 5 \beta_{1} + 2 \beta_{2} ) q^{63} + ( \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{65} + 12 q^{67} + ( 4 - 4 \beta_{3} ) q^{69} + ( -\beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{71} + ( \beta_{1} - 8 \beta_{2} + \beta_{3} ) q^{73} + ( -\beta_{1} - \beta_{2} ) q^{75} + ( 8 + 2 \beta_{2} - 6 \beta_{3} ) q^{77} + ( -4 - 4 \beta_{1} + 4 \beta_{3} ) q^{79} + ( 1 - 4 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{81} + ( 8 + 7 \beta_{1} - 7 \beta_{3} ) q^{83} + ( 2 - \beta_{1} + \beta_{3} ) q^{85} + ( 8 + 3 \beta_{1} - 6 \beta_{2} + \beta_{3} ) q^{87} + ( -12 - 2 \beta_{1} + 2 \beta_{3} ) q^{89} + ( 6 + \beta_{1} - 3 \beta_{3} ) q^{91} + ( 8 + \beta_{1} - 2 \beta_{2} - 5 \beta_{3} ) q^{93} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{95} + ( \beta_{1} + 4 \beta_{2} + \beta_{3} ) q^{97} + ( -4 - 4 \beta_{1} - 10 \beta_{2} + 4 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{3} + 4q^{5} - 6q^{7} + O(q^{10})$$ $$4q + 2q^{3} + 4q^{5} - 6q^{7} + 2q^{15} + 12q^{17} - 16q^{21} + 4q^{25} + 14q^{27} + 20q^{33} - 6q^{35} + 12q^{37} + 12q^{39} + 8q^{41} - 16q^{43} + 8q^{47} + 16q^{51} + 12q^{57} + 2q^{63} + 48q^{67} + 8q^{69} + 2q^{75} + 20q^{77} + 4q^{81} + 4q^{83} + 12q^{85} + 28q^{87} - 40q^{89} + 16q^{91} + 20q^{93} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 3 x^{2} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{2} + \nu + 1$$ $$\beta_{2}$$ $$=$$ $$\nu^{3} + 2 \nu$$ $$\beta_{3}$$ $$=$$ $$-\nu^{2} + \nu - 1$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$-\beta_{3} + \beta_{1} - 2$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$-\beta_{3} + \beta_{2} - \beta_{1}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times$$.

 $$n$$ $$241$$ $$337$$ $$421$$ $$1121$$ $$1471$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
881.1
 0.618034i − 0.618034i 1.61803i − 1.61803i
0 −0.618034 1.61803i 0 1.00000 0 −0.381966 2.61803i 0 −2.23607 + 2.00000i 0
881.2 0 −0.618034 + 1.61803i 0 1.00000 0 −0.381966 + 2.61803i 0 −2.23607 2.00000i 0
881.3 0 1.61803 0.618034i 0 1.00000 0 −2.61803 + 0.381966i 0 2.23607 2.00000i 0
881.4 0 1.61803 + 0.618034i 0 1.00000 0 −2.61803 0.381966i 0 2.23607 + 2.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.f.i 4
3.b odd 2 1 1680.2.f.e 4
4.b odd 2 1 210.2.b.a 4
7.b odd 2 1 1680.2.f.e 4
12.b even 2 1 210.2.b.b yes 4
20.d odd 2 1 1050.2.b.c 4
20.e even 4 1 1050.2.d.c 4
20.e even 4 1 1050.2.d.d 4
21.c even 2 1 inner 1680.2.f.i 4
28.d even 2 1 210.2.b.b yes 4
60.h even 2 1 1050.2.b.a 4
60.l odd 4 1 1050.2.d.a 4
60.l odd 4 1 1050.2.d.f 4
84.h odd 2 1 210.2.b.a 4
140.c even 2 1 1050.2.b.a 4
140.j odd 4 1 1050.2.d.a 4
140.j odd 4 1 1050.2.d.f 4
420.o odd 2 1 1050.2.b.c 4
420.w even 4 1 1050.2.d.c 4
420.w even 4 1 1050.2.d.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.b.a 4 4.b odd 2 1
210.2.b.a 4 84.h odd 2 1
210.2.b.b yes 4 12.b even 2 1
210.2.b.b yes 4 28.d even 2 1
1050.2.b.a 4 60.h even 2 1
1050.2.b.a 4 140.c even 2 1
1050.2.b.c 4 20.d odd 2 1
1050.2.b.c 4 420.o odd 2 1
1050.2.d.a 4 60.l odd 4 1
1050.2.d.a 4 140.j odd 4 1
1050.2.d.c 4 20.e even 4 1
1050.2.d.c 4 420.w even 4 1
1050.2.d.d 4 20.e even 4 1
1050.2.d.d 4 420.w even 4 1
1050.2.d.f 4 60.l odd 4 1
1050.2.d.f 4 140.j odd 4 1
1680.2.f.e 4 3.b odd 2 1
1680.2.f.e 4 7.b odd 2 1
1680.2.f.i 4 1.a even 1 1 trivial
1680.2.f.i 4 21.c even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1680, [\chi])$$:

 $$T_{11}^{2} + 20$$ $$T_{17}^{2} - 6 T_{17} + 4$$ $$T_{41}^{2} - 4 T_{41} - 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$9 - 6 T + 2 T^{2} - 2 T^{3} + T^{4}$$
$5$ $$( -1 + T )^{4}$$
$7$ $$49 + 42 T + 18 T^{2} + 6 T^{3} + T^{4}$$
$11$ $$( 20 + T^{2} )^{2}$$
$13$ $$16 + 12 T^{2} + T^{4}$$
$17$ $$( 4 - 6 T + T^{2} )^{2}$$
$19$ $$16 + 72 T^{2} + T^{4}$$
$23$ $$( 16 + T^{2} )^{2}$$
$29$ $$1936 + 92 T^{2} + T^{4}$$
$31$ $$400 + 60 T^{2} + T^{4}$$
$37$ $$( 4 - 6 T + T^{2} )^{2}$$
$41$ $$( -16 - 4 T + T^{2} )^{2}$$
$43$ $$( -64 + 8 T + T^{2} )^{2}$$
$47$ $$( -16 - 4 T + T^{2} )^{2}$$
$53$ $$16 + 72 T^{2} + T^{4}$$
$59$ $$( -20 + T^{2} )^{2}$$
$61$ $$400 + 60 T^{2} + T^{4}$$
$67$ $$( -12 + T )^{4}$$
$71$ $$400 + 60 T^{2} + T^{4}$$
$73$ $$5776 + 172 T^{2} + T^{4}$$
$79$ $$( -80 + T^{2} )^{2}$$
$83$ $$( -244 - 2 T + T^{2} )^{2}$$
$89$ $$( 80 + 20 T + T^{2} )^{2}$$
$97$ $$16 + 28 T^{2} + T^{4}$$