Properties

Label 1680.2.di.a.289.1
Level $1680$
Weight $2$
Character 1680.289
Analytic conductor $13.415$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.di (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1680.289
Dual form 1680.2.di.a.529.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(-0.133975 + 2.23205i) q^{5} +(-1.73205 + 2.00000i) q^{7} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{3} +(-0.133975 + 2.23205i) q^{5} +(-1.73205 + 2.00000i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-2.50000 - 4.33013i) q^{11} +1.00000i q^{13} +(-1.00000 - 2.00000i) q^{15} +(1.73205 - 1.00000i) q^{17} +(-3.50000 + 6.06218i) q^{19} +(0.500000 - 2.59808i) q^{21} +(2.59808 + 1.50000i) q^{23} +(-4.96410 - 0.598076i) q^{25} +1.00000i q^{27} +(-3.00000 - 5.19615i) q^{31} +(4.33013 + 2.50000i) q^{33} +(-4.23205 - 4.13397i) q^{35} +(-4.33013 - 2.50000i) q^{37} +(-0.500000 - 0.866025i) q^{39} -9.00000 q^{41} -10.0000i q^{43} +(1.86603 + 1.23205i) q^{45} +(11.2583 + 6.50000i) q^{47} +(-1.00000 - 6.92820i) q^{49} +(-1.00000 + 1.73205i) q^{51} +(-0.866025 + 0.500000i) q^{53} +(10.0000 - 5.00000i) q^{55} -7.00000i q^{57} +(-2.00000 - 3.46410i) q^{59} +(1.00000 - 1.73205i) q^{61} +(0.866025 + 2.50000i) q^{63} +(-2.23205 - 0.133975i) q^{65} +(5.19615 - 3.00000i) q^{67} -3.00000 q^{69} +2.00000 q^{71} +(3.46410 - 2.00000i) q^{73} +(4.59808 - 1.96410i) q^{75} +(12.9904 + 2.50000i) q^{77} +(7.00000 - 12.1244i) q^{79} +(-0.500000 - 0.866025i) q^{81} +10.0000i q^{83} +(2.00000 + 4.00000i) q^{85} +(5.00000 - 8.66025i) q^{89} +(-2.00000 - 1.73205i) q^{91} +(5.19615 + 3.00000i) q^{93} +(-13.0622 - 8.62436i) q^{95} -8.00000i q^{97} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{5} + 2q^{9} + O(q^{10}) \) \( 4q - 4q^{5} + 2q^{9} - 10q^{11} - 4q^{15} - 14q^{19} + 2q^{21} - 6q^{25} - 12q^{31} - 10q^{35} - 2q^{39} - 36q^{41} + 4q^{45} - 4q^{49} - 4q^{51} + 40q^{55} - 8q^{59} + 4q^{61} - 2q^{65} - 12q^{69} + 8q^{71} + 8q^{75} + 28q^{79} - 2q^{81} + 8q^{85} + 20q^{89} - 8q^{91} - 28q^{95} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) −0.133975 + 2.23205i −0.0599153 + 0.998203i
\(6\) 0 0
\(7\) −1.73205 + 2.00000i −0.654654 + 0.755929i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.50000 4.33013i −0.753778 1.30558i −0.945979 0.324227i \(-0.894896\pi\)
0.192201 0.981356i \(-0.438437\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 0 0
\(15\) −1.00000 2.00000i −0.258199 0.516398i
\(16\) 0 0
\(17\) 1.73205 1.00000i 0.420084 0.242536i −0.275029 0.961436i \(-0.588688\pi\)
0.695113 + 0.718900i \(0.255354\pi\)
\(18\) 0 0
\(19\) −3.50000 + 6.06218i −0.802955 + 1.39076i 0.114708 + 0.993399i \(0.463407\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0.500000 2.59808i 0.109109 0.566947i
\(22\) 0 0
\(23\) 2.59808 + 1.50000i 0.541736 + 0.312772i 0.745782 0.666190i \(-0.232076\pi\)
−0.204046 + 0.978961i \(0.565409\pi\)
\(24\) 0 0
\(25\) −4.96410 0.598076i −0.992820 0.119615i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) 0 0
\(33\) 4.33013 + 2.50000i 0.753778 + 0.435194i
\(34\) 0 0
\(35\) −4.23205 4.13397i −0.715347 0.698769i
\(36\) 0 0
\(37\) −4.33013 2.50000i −0.711868 0.410997i 0.0998840 0.994999i \(-0.468153\pi\)
−0.811752 + 0.584002i \(0.801486\pi\)
\(38\) 0 0
\(39\) −0.500000 0.866025i −0.0800641 0.138675i
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 0 0
\(45\) 1.86603 + 1.23205i 0.278171 + 0.183663i
\(46\) 0 0
\(47\) 11.2583 + 6.50000i 1.64220 + 0.948122i 0.980051 + 0.198747i \(0.0636872\pi\)
0.662145 + 0.749375i \(0.269646\pi\)
\(48\) 0 0
\(49\) −1.00000 6.92820i −0.142857 0.989743i
\(50\) 0 0
\(51\) −1.00000 + 1.73205i −0.140028 + 0.242536i
\(52\) 0 0
\(53\) −0.866025 + 0.500000i −0.118958 + 0.0686803i −0.558298 0.829640i \(-0.688546\pi\)
0.439340 + 0.898321i \(0.355212\pi\)
\(54\) 0 0
\(55\) 10.0000 5.00000i 1.34840 0.674200i
\(56\) 0 0
\(57\) 7.00000i 0.927173i
\(58\) 0 0
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) 0.866025 + 2.50000i 0.109109 + 0.314970i
\(64\) 0 0
\(65\) −2.23205 0.133975i −0.276852 0.0166175i
\(66\) 0 0
\(67\) 5.19615 3.00000i 0.634811 0.366508i −0.147802 0.989017i \(-0.547220\pi\)
0.782613 + 0.622509i \(0.213886\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 3.46410 2.00000i 0.405442 0.234082i −0.283387 0.959006i \(-0.591458\pi\)
0.688830 + 0.724923i \(0.258125\pi\)
\(74\) 0 0
\(75\) 4.59808 1.96410i 0.530940 0.226795i
\(76\) 0 0
\(77\) 12.9904 + 2.50000i 1.48039 + 0.284901i
\(78\) 0 0
\(79\) 7.00000 12.1244i 0.787562 1.36410i −0.139895 0.990166i \(-0.544677\pi\)
0.927457 0.373930i \(-0.121990\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 10.0000i 1.09764i 0.835940 + 0.548821i \(0.184923\pi\)
−0.835940 + 0.548821i \(0.815077\pi\)
\(84\) 0 0
\(85\) 2.00000 + 4.00000i 0.216930 + 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.00000 8.66025i 0.529999 0.917985i −0.469389 0.882992i \(-0.655526\pi\)
0.999388 0.0349934i \(-0.0111410\pi\)
\(90\) 0 0
\(91\) −2.00000 1.73205i −0.209657 0.181568i
\(92\) 0 0
\(93\) 5.19615 + 3.00000i 0.538816 + 0.311086i
\(94\) 0 0
\(95\) −13.0622 8.62436i −1.34015 0.884840i
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i \(-0.296967\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 5.73205 + 1.46410i 0.559391 + 0.142882i
\(106\) 0 0
\(107\) −10.3923 6.00000i −1.00466 0.580042i −0.0950377 0.995474i \(-0.530297\pi\)
−0.909624 + 0.415432i \(0.863630\pi\)
\(108\) 0 0
\(109\) −9.00000 15.5885i −0.862044 1.49310i −0.869953 0.493135i \(-0.835851\pi\)
0.00790932 0.999969i \(-0.497482\pi\)
\(110\) 0 0
\(111\) 5.00000 0.474579
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) −3.69615 + 5.59808i −0.344668 + 0.522023i
\(116\) 0 0
\(117\) 0.866025 + 0.500000i 0.0800641 + 0.0462250i
\(118\) 0 0
\(119\) −1.00000 + 5.19615i −0.0916698 + 0.476331i
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 0 0
\(123\) 7.79423 4.50000i 0.702782 0.405751i
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 9.00000i 0.798621i 0.916816 + 0.399310i \(0.130750\pi\)
−0.916816 + 0.399310i \(0.869250\pi\)
\(128\) 0 0
\(129\) 5.00000 + 8.66025i 0.440225 + 0.762493i
\(130\) 0 0
\(131\) −8.50000 + 14.7224i −0.742648 + 1.28630i 0.208637 + 0.977993i \(0.433097\pi\)
−0.951285 + 0.308312i \(0.900236\pi\)
\(132\) 0 0
\(133\) −6.06218 17.5000i −0.525657 1.51744i
\(134\) 0 0
\(135\) −2.23205 0.133975i −0.192104 0.0115307i
\(136\) 0 0
\(137\) 3.46410 2.00000i 0.295958 0.170872i −0.344668 0.938725i \(-0.612008\pi\)
0.640626 + 0.767853i \(0.278675\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) −13.0000 −1.09480
\(142\) 0 0
\(143\) 4.33013 2.50000i 0.362103 0.209061i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.33013 + 5.50000i 0.357143 + 0.453632i
\(148\) 0 0
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) −11.0000 19.0526i −0.895167 1.55048i −0.833597 0.552372i \(-0.813723\pi\)
−0.0615699 0.998103i \(-0.519611\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 12.0000 6.00000i 0.963863 0.481932i
\(156\) 0 0
\(157\) −11.2583 + 6.50000i −0.898513 + 0.518756i −0.876717 0.481006i \(-0.840272\pi\)
−0.0217953 + 0.999762i \(0.506938\pi\)
\(158\) 0 0
\(159\) 0.500000 0.866025i 0.0396526 0.0686803i
\(160\) 0 0
\(161\) −7.50000 + 2.59808i −0.591083 + 0.204757i
\(162\) 0 0
\(163\) −10.3923 6.00000i −0.813988 0.469956i 0.0343508 0.999410i \(-0.489064\pi\)
−0.848339 + 0.529454i \(0.822397\pi\)
\(164\) 0 0
\(165\) −6.16025 + 9.33013i −0.479575 + 0.726349i
\(166\) 0 0
\(167\) 19.0000i 1.47026i −0.677924 0.735132i \(-0.737120\pi\)
0.677924 0.735132i \(-0.262880\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 3.50000 + 6.06218i 0.267652 + 0.463586i
\(172\) 0 0
\(173\) −6.06218 3.50000i −0.460899 0.266100i 0.251523 0.967851i \(-0.419068\pi\)
−0.712422 + 0.701751i \(0.752402\pi\)
\(174\) 0 0
\(175\) 9.79423 8.89230i 0.740374 0.672195i
\(176\) 0 0
\(177\) 3.46410 + 2.00000i 0.260378 + 0.150329i
\(178\) 0 0
\(179\) 5.50000 + 9.52628i 0.411089 + 0.712028i 0.995009 0.0997838i \(-0.0318151\pi\)
−0.583920 + 0.811811i \(0.698482\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) 6.16025 9.33013i 0.452911 0.685965i
\(186\) 0 0
\(187\) −8.66025 5.00000i −0.633300 0.365636i
\(188\) 0 0
\(189\) −2.00000 1.73205i −0.145479 0.125988i
\(190\) 0 0
\(191\) −8.00000 + 13.8564i −0.578860 + 1.00261i 0.416751 + 0.909021i \(0.363169\pi\)
−0.995610 + 0.0935936i \(0.970165\pi\)
\(192\) 0 0
\(193\) −15.5885 + 9.00000i −1.12208 + 0.647834i −0.941932 0.335805i \(-0.890992\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) 0 0
\(195\) 2.00000 1.00000i 0.143223 0.0716115i
\(196\) 0 0
\(197\) 27.0000i 1.92367i 0.273629 + 0.961835i \(0.411776\pi\)
−0.273629 + 0.961835i \(0.588224\pi\)
\(198\) 0 0
\(199\) 7.00000 + 12.1244i 0.496217 + 0.859473i 0.999990 0.00436292i \(-0.00138876\pi\)
−0.503774 + 0.863836i \(0.668055\pi\)
\(200\) 0 0
\(201\) −3.00000 + 5.19615i −0.211604 + 0.366508i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.20577 20.0885i 0.0842147 1.40304i
\(206\) 0 0
\(207\) 2.59808 1.50000i 0.180579 0.104257i
\(208\) 0 0
\(209\) 35.0000 2.42100
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 0 0
\(213\) −1.73205 + 1.00000i −0.118678 + 0.0685189i
\(214\) 0 0
\(215\) 22.3205 + 1.33975i 1.52225 + 0.0913699i
\(216\) 0 0
\(217\) 15.5885 + 3.00000i 1.05821 + 0.203653i
\(218\) 0 0
\(219\) −2.00000 + 3.46410i −0.135147 + 0.234082i
\(220\) 0 0
\(221\) 1.00000 + 1.73205i 0.0672673 + 0.116510i
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) 12.1244 7.00000i 0.804722 0.464606i −0.0403978 0.999184i \(-0.512863\pi\)
0.845120 + 0.534577i \(0.179529\pi\)
\(228\) 0 0
\(229\) −2.00000 + 3.46410i −0.132164 + 0.228914i −0.924510 0.381157i \(-0.875526\pi\)
0.792347 + 0.610071i \(0.208859\pi\)
\(230\) 0 0
\(231\) −12.5000 + 4.33013i −0.822440 + 0.284901i
\(232\) 0 0
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) −16.0167 + 24.2583i −1.04481 + 1.58244i
\(236\) 0 0
\(237\) 14.0000i 0.909398i
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i \(-0.156413\pi\)
−0.849472 + 0.527633i \(0.823079\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 15.5981 1.30385i 0.996525 0.0832998i
\(246\) 0 0
\(247\) −6.06218 3.50000i −0.385727 0.222700i
\(248\) 0 0
\(249\) −5.00000 8.66025i −0.316862 0.548821i
\(250\) 0 0
\(251\) 3.00000 0.189358 0.0946792 0.995508i \(-0.469817\pi\)
0.0946792 + 0.995508i \(0.469817\pi\)
\(252\) 0 0
\(253\) 15.0000i 0.943042i
\(254\) 0 0
\(255\) −3.73205 2.46410i −0.233710 0.154308i
\(256\) 0 0
\(257\) −8.66025 5.00000i −0.540212 0.311891i 0.204953 0.978772i \(-0.434296\pi\)
−0.745165 + 0.666880i \(0.767629\pi\)
\(258\) 0 0
\(259\) 12.5000 4.33013i 0.776712 0.269061i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −20.7846 + 12.0000i −1.28163 + 0.739952i −0.977147 0.212565i \(-0.931818\pi\)
−0.304487 + 0.952517i \(0.598485\pi\)
\(264\) 0 0
\(265\) −1.00000 2.00000i −0.0614295 0.122859i
\(266\) 0 0
\(267\) 10.0000i 0.611990i
\(268\) 0 0
\(269\) 7.00000 + 12.1244i 0.426798 + 0.739235i 0.996586 0.0825561i \(-0.0263084\pi\)
−0.569789 + 0.821791i \(0.692975\pi\)
\(270\) 0 0
\(271\) 4.00000 6.92820i 0.242983 0.420858i −0.718580 0.695444i \(-0.755208\pi\)
0.961563 + 0.274586i \(0.0885408\pi\)
\(272\) 0 0
\(273\) 2.59808 + 0.500000i 0.157243 + 0.0302614i
\(274\) 0 0
\(275\) 9.82051 + 22.9904i 0.592199 + 1.38637i
\(276\) 0 0
\(277\) −1.73205 + 1.00000i −0.104069 + 0.0600842i −0.551131 0.834419i \(-0.685804\pi\)
0.447062 + 0.894503i \(0.352470\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) −11.0000 −0.656205 −0.328102 0.944642i \(-0.606409\pi\)
−0.328102 + 0.944642i \(0.606409\pi\)
\(282\) 0 0
\(283\) −22.5167 + 13.0000i −1.33848 + 0.772770i −0.986581 0.163270i \(-0.947796\pi\)
−0.351895 + 0.936039i \(0.614463\pi\)
\(284\) 0 0
\(285\) 15.6244 + 0.937822i 0.925507 + 0.0555518i
\(286\) 0 0
\(287\) 15.5885 18.0000i 0.920158 1.06251i
\(288\) 0 0
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) 0 0
\(291\) 4.00000 + 6.92820i 0.234484 + 0.406138i
\(292\) 0 0
\(293\) 1.00000i 0.0584206i 0.999573 + 0.0292103i \(0.00929925\pi\)
−0.999573 + 0.0292103i \(0.990701\pi\)
\(294\) 0 0
\(295\) 8.00000 4.00000i 0.465778 0.232889i
\(296\) 0 0
\(297\) 4.33013 2.50000i 0.251259 0.145065i
\(298\) 0 0
\(299\) −1.50000 + 2.59808i −0.0867472 + 0.150251i
\(300\) 0 0
\(301\) 20.0000 + 17.3205i 1.15278 + 0.998337i
\(302\) 0 0
\(303\) 6.92820 + 4.00000i 0.398015 + 0.229794i
\(304\) 0 0
\(305\) 3.73205 + 2.46410i 0.213697 + 0.141094i
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.0000 22.5167i −0.737162 1.27680i −0.953768 0.300544i \(-0.902832\pi\)
0.216606 0.976259i \(-0.430501\pi\)
\(312\) 0 0
\(313\) 8.66025 + 5.00000i 0.489506 + 0.282617i 0.724370 0.689412i \(-0.242131\pi\)
−0.234863 + 0.972028i \(0.575464\pi\)
\(314\) 0 0
\(315\) −5.69615 + 1.59808i −0.320942 + 0.0900414i
\(316\) 0 0
\(317\) 1.73205 + 1.00000i 0.0972817 + 0.0561656i 0.547852 0.836576i \(-0.315446\pi\)
−0.450570 + 0.892741i \(0.648779\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 14.0000i 0.778981i
\(324\) 0 0
\(325\) 0.598076 4.96410i 0.0331753 0.275359i
\(326\) 0 0
\(327\) 15.5885 + 9.00000i 0.862044 + 0.497701i
\(328\) 0 0
\(329\) −32.5000 + 11.2583i −1.79178 + 0.620692i
\(330\) 0 0
\(331\) −7.50000 + 12.9904i −0.412237 + 0.714016i −0.995134 0.0985303i \(-0.968586\pi\)
0.582897 + 0.812546i \(0.301919\pi\)
\(332\) 0 0
\(333\) −4.33013 + 2.50000i −0.237289 + 0.136999i
\(334\) 0 0
\(335\) 6.00000 + 12.0000i 0.327815 + 0.655630i
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 0 0
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 0 0
\(341\) −15.0000 + 25.9808i −0.812296 + 1.40694i
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0.401924 6.69615i 0.0216388 0.360509i
\(346\) 0 0
\(347\) −13.8564 + 8.00000i −0.743851 + 0.429463i −0.823468 0.567363i \(-0.807964\pi\)
0.0796169 + 0.996826i \(0.474630\pi\)
\(348\) 0 0
\(349\) 24.0000 1.28469 0.642345 0.766415i \(-0.277962\pi\)
0.642345 + 0.766415i \(0.277962\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) −0.267949 + 4.46410i −0.0142213 + 0.236930i
\(356\) 0 0
\(357\) −1.73205 5.00000i −0.0916698 0.264628i
\(358\) 0 0
\(359\) 14.0000 24.2487i 0.738892 1.27980i −0.214103 0.976811i \(-0.568683\pi\)
0.952995 0.302987i \(-0.0979839\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 14.0000i 0.734809i
\(364\) 0 0
\(365\) 4.00000 + 8.00000i 0.209370 + 0.418739i
\(366\) 0 0
\(367\) −32.0429 + 18.5000i −1.67263 + 0.965692i −0.706469 + 0.707744i \(0.749713\pi\)
−0.966159 + 0.257948i \(0.916954\pi\)
\(368\) 0 0
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 0 0
\(371\) 0.500000 2.59808i 0.0259587 0.134885i
\(372\) 0 0
\(373\) −5.19615 3.00000i −0.269047 0.155334i 0.359408 0.933181i \(-0.382979\pi\)
−0.628454 + 0.777847i \(0.716312\pi\)
\(374\) 0 0
\(375\) 3.76795 + 10.5263i 0.194576 + 0.543575i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 −0.0513665 −0.0256833 0.999670i \(-0.508176\pi\)
−0.0256833 + 0.999670i \(0.508176\pi\)
\(380\) 0 0
\(381\) −4.50000 7.79423i −0.230542 0.399310i
\(382\) 0 0
\(383\) −7.79423 4.50000i −0.398266 0.229939i 0.287469 0.957790i \(-0.407186\pi\)
−0.685736 + 0.727851i \(0.740519\pi\)
\(384\) 0 0
\(385\) −7.32051 + 28.6603i −0.373088 + 1.46066i
\(386\) 0 0
\(387\) −8.66025 5.00000i −0.440225 0.254164i
\(388\) 0 0
\(389\) 3.00000 + 5.19615i 0.152106 + 0.263455i 0.932002 0.362454i \(-0.118061\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 17.0000i 0.857537i
\(394\) 0 0
\(395\) 26.1244 + 17.2487i 1.31446 + 0.867877i
\(396\) 0 0
\(397\) −1.73205 1.00000i −0.0869291 0.0501886i 0.455905 0.890028i \(-0.349316\pi\)
−0.542834 + 0.839840i \(0.682649\pi\)
\(398\) 0 0
\(399\) 14.0000 + 12.1244i 0.700877 + 0.606977i
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) 5.19615 3.00000i 0.258839 0.149441i
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 25.0000i 1.23920i
\(408\) 0 0
\(409\) 5.00000 + 8.66025i 0.247234 + 0.428222i 0.962757 0.270367i \(-0.0871450\pi\)
−0.715523 + 0.698589i \(0.753812\pi\)
\(410\) 0 0
\(411\) −2.00000 + 3.46410i −0.0986527 + 0.170872i
\(412\) 0 0
\(413\) 10.3923 + 2.00000i 0.511372 + 0.0984136i
\(414\) 0 0
\(415\) −22.3205 1.33975i −1.09567 0.0657655i
\(416\) 0 0
\(417\) 6.92820 4.00000i 0.339276 0.195881i
\(418\) 0 0
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) 11.2583 6.50000i 0.547399 0.316041i
\(424\) 0 0
\(425\) −9.19615 + 3.92820i −0.446079 + 0.190546i
\(426\) 0 0
\(427\) 1.73205 + 5.00000i 0.0838198 + 0.241967i
\(428\) 0 0
\(429\) −2.50000 + 4.33013i −0.120701 + 0.209061i
\(430\) 0 0
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i 0.995370 + 0.0961139i \(0.0306413\pi\)
−0.995370 + 0.0961139i \(0.969359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.1865 + 10.5000i −0.869980 + 0.502283i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) −6.50000 2.59808i −0.309524 0.123718i
\(442\) 0 0
\(443\) −5.19615 3.00000i −0.246877 0.142534i 0.371457 0.928450i \(-0.378858\pi\)
−0.618333 + 0.785916i \(0.712192\pi\)
\(444\) 0 0
\(445\) 18.6603 + 12.3205i 0.884581 + 0.584048i
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 22.5000 + 38.9711i 1.05948 + 1.83508i
\(452\) 0 0
\(453\) 19.0526 + 11.0000i 0.895167 + 0.516825i
\(454\) 0 0
\(455\) 4.13397 4.23205i 0.193804 0.198402i
\(456\) 0 0
\(457\) −32.9090 19.0000i −1.53942 0.888783i −0.998873 0.0474665i \(-0.984885\pi\)
−0.540544 0.841316i \(-0.681781\pi\)
\(458\) 0 0
\(459\) 1.00000 + 1.73205i 0.0466760 + 0.0808452i
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 15.0000i 0.697109i 0.937288 + 0.348555i \(0.113327\pi\)
−0.937288 + 0.348555i \(0.886673\pi\)
\(464\) 0 0
\(465\) −7.39230 + 11.1962i −0.342810 + 0.519209i
\(466\) 0 0
\(467\) −1.73205 1.00000i −0.0801498 0.0462745i 0.459390 0.888235i \(-0.348068\pi\)
−0.539539 + 0.841960i \(0.681402\pi\)
\(468\) 0 0
\(469\) −3.00000 + 15.5885i −0.138527 + 0.719808i
\(470\) 0 0
\(471\) 6.50000 11.2583i 0.299504 0.518756i
\(472\) 0 0
\(473\) −43.3013 + 25.0000i −1.99099 + 1.14950i
\(474\) 0 0
\(475\) 21.0000 28.0000i 0.963546 1.28473i
\(476\) 0 0
\(477\) 1.00000i 0.0457869i
\(478\) 0 0
\(479\) −4.00000 6.92820i −0.182765 0.316558i 0.760056 0.649857i \(-0.225171\pi\)
−0.942821 + 0.333300i \(0.891838\pi\)
\(480\) 0 0
\(481\) 2.50000 4.33013i 0.113990 0.197437i
\(482\) 0 0
\(483\) 5.19615 6.00000i 0.236433 0.273009i
\(484\) 0 0
\(485\) 17.8564 + 1.07180i 0.810818 + 0.0486678i
\(486\) 0 0
\(487\) 20.7846 12.0000i 0.941841 0.543772i 0.0513038 0.998683i \(-0.483662\pi\)
0.890537 + 0.454911i \(0.150329\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.669873 11.1603i 0.0301086 0.501616i
\(496\) 0 0
\(497\) −3.46410 + 4.00000i −0.155386 + 0.179425i
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 0 0
\(501\) 9.50000 + 16.4545i 0.424429 + 0.735132i
\(502\) 0 0
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 16.0000 8.00000i 0.711991 0.355995i
\(506\) 0 0
\(507\) −10.3923 + 6.00000i −0.461538 + 0.266469i
\(508\) 0 0
\(509\) 7.00000 12.1244i 0.310270 0.537403i −0.668151 0.744026i \(-0.732914\pi\)
0.978421 + 0.206623i \(0.0662474\pi\)
\(510\) 0 0
\(511\) −2.00000 + 10.3923i −0.0884748 + 0.459728i
\(512\) 0 0
\(513\) −6.06218 3.50000i −0.267652 0.154529i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 65.0000i 2.85870i
\(518\) 0 0
\(519\) 7.00000 0.307266
\(520\) 0 0
\(521\) 7.50000 + 12.9904i 0.328581 + 0.569119i 0.982231 0.187678i \(-0.0600963\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(522\) 0 0
\(523\) 10.3923 + 6.00000i 0.454424 + 0.262362i 0.709697 0.704507i \(-0.248832\pi\)
−0.255273 + 0.966869i \(0.582165\pi\)
\(524\) 0 0
\(525\) −4.03590 + 12.5981i −0.176141 + 0.549825i
\(526\) 0 0
\(527\) −10.3923 6.00000i −0.452696 0.261364i
\(528\) 0 0
\(529\) −7.00000 12.1244i −0.304348 0.527146i
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 9.00000i 0.389833i
\(534\) 0 0
\(535\) 14.7846 22.3923i 0.639194 0.968104i
\(536\) 0 0
\(537\) −9.52628 5.50000i −0.411089 0.237343i
\(538\) 0 0
\(539\) −27.5000 + 21.6506i −1.18451 + 0.932559i
\(540\) 0 0
\(541\) −2.00000 + 3.46410i −0.0859867 + 0.148933i −0.905811 0.423681i \(-0.860738\pi\)
0.819825 + 0.572615i \(0.194071\pi\)
\(542\) 0 0
\(543\) 1.73205 1.00000i 0.0743294 0.0429141i
\(544\) 0 0
\(545\) 36.0000 18.0000i 1.54207 0.771035i
\(546\) 0 0
\(547\) 14.0000i 0.598597i −0.954160 0.299298i \(-0.903247\pi\)
0.954160 0.299298i \(-0.0967526\pi\)
\(548\) 0 0
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 12.1244 + 35.0000i 0.515580 + 1.48835i
\(554\) 0 0
\(555\) −0.669873 + 11.1603i −0.0284345 + 0.473726i
\(556\) 0 0
\(557\) 33.7750 19.5000i 1.43109 0.826242i 0.433888 0.900967i \(-0.357141\pi\)
0.997204 + 0.0747252i \(0.0238080\pi\)
\(558\) 0 0
\(559\) 10.0000 0.422955
\(560\) 0 0
\(561\) 10.0000 0.422200
\(562\) 0 0
\(563\) −25.9808 + 15.0000i −1.09496 + 0.632175i −0.934892 0.354932i \(-0.884504\pi\)
−0.160066 + 0.987106i \(0.551171\pi\)
\(564\) 0 0
\(565\) −13.3923 0.803848i −0.563418 0.0338181i
\(566\) 0 0
\(567\) 2.59808 + 0.500000i 0.109109 + 0.0209980i
\(568\) 0 0
\(569\) −1.50000 + 2.59808i −0.0628833 + 0.108917i −0.895753 0.444552i \(-0.853363\pi\)
0.832870 + 0.553469i \(0.186696\pi\)
\(570\) 0 0
\(571\) −4.00000 6.92820i −0.167395 0.289936i 0.770108 0.637913i \(-0.220202\pi\)
−0.937503 + 0.347977i \(0.886869\pi\)
\(572\) 0 0
\(573\) 16.0000i 0.668410i
\(574\) 0 0
\(575\) −12.0000 9.00000i −0.500435 0.375326i
\(576\) 0 0
\(577\) −20.7846 + 12.0000i −0.865275 + 0.499567i −0.865775 0.500433i \(-0.833174\pi\)
0.000500448 1.00000i \(0.499841\pi\)
\(578\) 0 0
\(579\) 9.00000 15.5885i 0.374027 0.647834i
\(580\) 0 0
\(581\) −20.0000 17.3205i −0.829740 0.718576i
\(582\) 0 0
\(583\) 4.33013 + 2.50000i 0.179336 + 0.103539i
\(584\) 0 0
\(585\) −1.23205 + 1.86603i −0.0509390 + 0.0771507i
\(586\) 0 0
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) 42.0000 1.73058
\(590\) 0 0
\(591\) −13.5000 23.3827i −0.555316 0.961835i
\(592\) 0 0
\(593\) 29.4449 + 17.0000i 1.20916 + 0.698106i 0.962575 0.271016i \(-0.0873596\pi\)
0.246581 + 0.969122i \(0.420693\pi\)
\(594\) 0 0
\(595\) −11.4641 2.92820i −0.469982 0.120045i
\(596\) 0 0
\(597\) −12.1244 7.00000i −0.496217 0.286491i
\(598\) 0 0
\(599\) 14.0000 + 24.2487i 0.572024 + 0.990775i 0.996358 + 0.0852695i \(0.0271751\pi\)
−0.424333 + 0.905506i \(0.639492\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) 0 0
\(605\) −26.1244 17.2487i −1.06211 0.701260i
\(606\) 0 0
\(607\) −11.2583 6.50000i −0.456962 0.263827i 0.253804 0.967256i \(-0.418318\pi\)
−0.710766 + 0.703429i \(0.751651\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.50000 + 11.2583i −0.262962 + 0.455463i
\(612\) 0 0
\(613\) 16.4545 9.50000i 0.664590 0.383701i −0.129433 0.991588i \(-0.541316\pi\)
0.794024 + 0.607887i \(0.207983\pi\)
\(614\) 0 0
\(615\) 9.00000 + 18.0000i 0.362915 + 0.725830i
\(616\) 0 0
\(617\) 30.0000i 1.20775i −0.797077 0.603877i \(-0.793622\pi\)
0.797077 0.603877i \(-0.206378\pi\)
\(618\) 0 0
\(619\) −7.50000 12.9904i −0.301450 0.522127i 0.675014 0.737805i \(-0.264137\pi\)
−0.976465 + 0.215677i \(0.930804\pi\)
\(620\) 0 0
\(621\) −1.50000 + 2.59808i −0.0601929 + 0.104257i
\(622\) 0 0
\(623\) 8.66025 + 25.0000i 0.346966 + 1.00160i
\(624\) 0 0
\(625\) 24.2846 + 5.93782i 0.971384 + 0.237513i
\(626\) 0 0
\(627\) −30.3109 + 17.5000i −1.21050 + 0.698883i
\(628\) 0 0
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) 0 0
\(633\) 16.4545 9.50000i 0.654007 0.377591i
\(634\) 0 0
\(635\) −20.0885 1.20577i −0.797186 0.0478496i
\(636\) 0 0
\(637\) 6.92820 1.00000i 0.274505 0.0396214i
\(638\) 0 0
\(639\) 1.00000 1.73205i 0.0395594 0.0685189i
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) 38.0000i 1.49857i −0.662246 0.749287i \(-0.730396\pi\)
0.662246 0.749287i \(-0.269604\pi\)
\(644\) 0 0
\(645\) −20.0000 + 10.0000i −0.787499 + 0.393750i
\(646\) 0 0
\(647\) −0.866025 + 0.500000i −0.0340470 + 0.0196570i −0.516927 0.856030i \(-0.672924\pi\)
0.482880 + 0.875687i \(0.339591\pi\)
\(648\) 0 0
\(649\) −10.0000 + 17.3205i −0.392534 + 0.679889i
\(650\) 0 0
\(651\) −15.0000 + 5.19615i −0.587896 + 0.203653i
\(652\) 0 0
\(653\) −4.33013 2.50000i −0.169451 0.0978326i 0.412876 0.910787i \(-0.364524\pi\)
−0.582327 + 0.812955i \(0.697858\pi\)
\(654\) 0 0
\(655\) −31.7224 20.9449i −1.23950 0.818384i
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −20.0000 34.6410i −0.777910 1.34738i −0.933144 0.359502i \(-0.882947\pi\)
0.155235 0.987878i \(-0.450387\pi\)
\(662\) 0 0
\(663\) −1.73205 1.00000i −0.0672673 0.0388368i
\(664\) 0 0
\(665\) 39.8731 11.1865i 1.54621 0.433795i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 8.00000 + 13.8564i 0.309298 + 0.535720i
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 36.0000i 1.38770i 0.720121 + 0.693849i \(0.244086\pi\)
−0.720121 + 0.693849i \(0.755914\pi\)
\(674\) 0 0
\(675\) 0.598076 4.96410i 0.0230200 0.191068i
\(676\) 0 0
\(677\) 28.5788 + 16.5000i 1.09837 + 0.634147i 0.935793 0.352549i \(-0.114685\pi\)
0.162581 + 0.986695i \(0.448018\pi\)
\(678\) 0 0
\(679\) 16.0000 + 13.8564i 0.614024 + 0.531760i
\(680\) 0 0
\(681\) −7.00000 + 12.1244i −0.268241 + 0.464606i
\(682\) 0 0
\(683\) 3.46410 2.00000i 0.132550 0.0765279i −0.432259 0.901750i \(-0.642283\pi\)
0.564809 + 0.825222i \(0.308950\pi\)
\(684\) 0 0
\(685\) 4.00000 + 8.00000i 0.152832 + 0.305664i
\(686\) 0 0
\(687\) 4.00000i 0.152610i
\(688\) 0 0
\(689\) −0.500000 0.866025i −0.0190485 0.0329929i
\(690\) 0 0
\(691\) −10.0000 + 17.3205i −0.380418 + 0.658903i −0.991122 0.132956i \(-0.957553\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(692\) 0 0
\(693\) 8.66025 10.0000i 0.328976 0.379869i
\(694\) 0 0
\(695\) 1.07180 17.8564i 0.0406556 0.677332i
\(696\) 0 0
\(697\) −15.5885 + 9.00000i −0.590455 + 0.340899i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 30.3109 17.5000i 1.14320 0.660025i
\(704\) 0 0
\(705\) 1.74167 29.0167i 0.0655951 1.09283i
\(706\) 0 0
\(707\) 20.7846 + 4.00000i 0.781686 + 0.150435i
\(708\) 0 0
\(709\) 8.00000 13.8564i 0.300446 0.520388i −0.675791 0.737093i \(-0.736198\pi\)
0.976237 + 0.216705i \(0.0695310\pi\)
\(710\) 0 0
\(711\) −7.00000 12.1244i −0.262521 0.454699i
\(712\) 0 0
\(713\) 18.0000i 0.674105i
\(714\) 0 0
\(715\) 5.00000 + 10.0000i 0.186989 + 0.373979i
\(716\) 0 0
\(717\) −17.3205 + 10.0000i −0.646846 + 0.373457i
\(718\) 0 0
\(719\) 1.00000 1.73205i 0.0372937 0.0645946i −0.846776 0.531949i \(-0.821460\pi\)
0.884070 + 0.467355i \(0.154793\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −0.866025 0.500000i −0.0322078 0.0185952i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 53.0000i 1.96566i 0.184510 + 0.982831i \(0.440930\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −10.0000 17.3205i −0.369863 0.640622i
\(732\) 0 0
\(733\) 18.1865 + 10.5000i 0.671735 + 0.387826i 0.796734 0.604331i \(-0.206559\pi\)
−0.124999 + 0.992157i \(0.539893\pi\)
\(734\) 0 0
\(735\) −12.8564 + 8.92820i −0.474216 + 0.329322i
\(736\) 0 0
\(737\) −25.9808 15.0000i −0.957014 0.552532i
\(738\) 0 0
\(739\) −23.5000 40.7032i −0.864461 1.49729i −0.867581 0.497296i \(-0.834326\pi\)
0.00311943 0.999995i \(-0.499007\pi\)
\(740\) 0 0
\(741\) 7.00000 0.257151
\(742\) 0 0
\(743\) 31.0000i 1.13728i 0.822587 + 0.568640i \(0.192530\pi\)
−0.822587 + 0.568640i \(0.807470\pi\)
\(744\) 0 0
\(745\) −11.1962 7.39230i −0.410195 0.270833i
\(746\) 0 0
\(747\) 8.66025 + 5.00000i 0.316862 + 0.182940i
\(748\) 0 0
\(749\) 30.0000 10.3923i 1.09618 0.379727i
\(750\) 0 0
\(751\) 2.00000 3.46410i 0.0729810 0.126407i −0.827225 0.561870i \(-0.810082\pi\)
0.900207 + 0.435463i \(0.143415\pi\)
\(752\) 0 0
\(753\) −2.59808 + 1.50000i −0.0946792 + 0.0546630i
\(754\) 0 0
\(755\) 44.0000 22.0000i 1.60132 0.800662i
\(756\) 0 0
\(757\) 26.0000i 0.944986i 0.881334 + 0.472493i \(0.156646\pi\)
−0.881334 + 0.472493i \(0.843354\pi\)
\(758\) 0 0
\(759\) 7.50000 + 12.9904i 0.272233 + 0.471521i
\(760\) 0 0
\(761\) 1.50000 2.59808i 0.0543750 0.0941802i −0.837557 0.546350i \(-0.816017\pi\)
0.891932 + 0.452170i \(0.149350\pi\)
\(762\) 0 0
\(763\) 46.7654 + 9.00000i 1.69302 + 0.325822i
\(764\) 0 0
\(765\) 4.46410 + 0.267949i 0.161400 + 0.00968772i
\(766\) 0 0
\(767\) 3.46410 2.00000i 0.125081 0.0722158i
\(768\) 0 0
\(769\) −51.0000 −1.83911 −0.919554 0.392965i \(-0.871449\pi\)
−0.919554 + 0.392965i \(0.871449\pi\)
\(770\) 0 0
\(771\) 10.0000 0.360141
\(772\) 0 0
\(773\) −32.0429 + 18.5000i −1.15250 + 0.665399i −0.949496 0.313778i \(-0.898405\pi\)
−0.203008 + 0.979177i \(0.565072\pi\)
\(774\) 0 0
\(775\) 11.7846 + 27.5885i 0.423316 + 0.991007i
\(776\) 0 0
\(777\) −8.66025 + 10.0000i −0.310685 + 0.358748i
\(778\) 0 0
\(779\) 31.5000 54.5596i 1.12860 1.95480i
\(780\) 0 0
\(781\) −5.00000 8.66025i −0.178914 0.309888i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.0000 26.0000i −0.463990 0.927980i
\(786\) 0 0
\(787\) 32.9090 19.0000i 1.17308 0.677277i 0.218675 0.975798i \(-0.429827\pi\)
0.954403 + 0.298521i \(0.0964933\pi\)
\(788\) 0 0
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) −12.0000 10.3923i −0.426671 0.369508i
\(792\) 0 0
\(793\) 1.73205 + 1.00000i 0.0615069 + 0.0355110i
\(794\) 0 0
\(795\) 1.86603 + 1.23205i 0.0661811 + 0.0436963i
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 26.0000 0.919814
\(800\) 0 0
\(801\) −5.00000 8.66025i −0.176666 0.305995i
\(802\) 0 0
\(803\) −17.3205 10.0000i −0.611227 0.352892i
\(804\) 0