# Properties

 Label 1680.2.cz.d Level 1680 Weight 2 Character orbit 1680.cz Analytic conductor 13.415 Analytic rank 0 Dimension 16 CM no Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1680.cz (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$13.4148675396$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: no (minimal twist has level 105) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{15}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{10} q^{3} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{11} - \beta_{15} ) q^{5} -\beta_{13} q^{7} + \beta_{9} q^{9} +O(q^{10})$$ $$q + \beta_{10} q^{3} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{11} - \beta_{15} ) q^{5} -\beta_{13} q^{7} + \beta_{9} q^{9} + ( 2 + \beta_{4} + \beta_{5} - \beta_{8} - \beta_{9} + \beta_{12} ) q^{11} + ( \beta_{8} + \beta_{9} + \beta_{11} - \beta_{12} - \beta_{14} - \beta_{15} ) q^{13} + \beta_{12} q^{15} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{7} + \beta_{11} + \beta_{14} + \beta_{15} ) q^{17} + ( 2 \beta_{3} + \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} + \beta_{12} - 3 \beta_{13} + 2 \beta_{14} - \beta_{15} ) q^{19} + ( 2 + \beta_{1} - \beta_{2} + \beta_{4} + \beta_{5} - \beta_{8} - \beta_{9} + \beta_{10} - \beta_{11} + \beta_{12} ) q^{21} + ( 3 + \beta_{1} - \beta_{6} - 2 \beta_{9} ) q^{23} + ( -1 - \beta_{5} + 2 \beta_{8} - \beta_{12} ) q^{25} -\beta_{2} q^{27} + ( 1 + \beta_{1} - \beta_{4} - \beta_{8} + \beta_{9} + \beta_{12} ) q^{29} + ( -1 - \beta_{1} + 2 \beta_{2} - \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{12} + \beta_{13} - \beta_{15} ) q^{31} + ( 1 + \beta_{1} + \beta_{3} + \beta_{4} + \beta_{7} + \beta_{8} + \beta_{9} - \beta_{12} - 2 \beta_{15} ) q^{33} + ( 2 + 2 \beta_{1} - 2 \beta_{2} - \beta_{4} - \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} + \beta_{13} + \beta_{14} - \beta_{15} ) q^{35} + ( 3 + \beta_{5} - \beta_{6} - \beta_{8} + 2 \beta_{9} + \beta_{12} ) q^{37} + ( -\beta_{6} - \beta_{8} + \beta_{9} ) q^{39} + ( 3 + 3 \beta_{1} + \beta_{2} + 3 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} - 4 \beta_{11} - \beta_{12} + 3 \beta_{13} - 3 \beta_{15} ) q^{41} + ( 2 + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{9} ) q^{43} + ( 1 + \beta_{1} + \beta_{4} + \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} - \beta_{12} + \beta_{13} - \beta_{14} - \beta_{15} ) q^{45} + ( 2 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{11} - \beta_{12} + 2 \beta_{13} - 2 \beta_{14} - 2 \beta_{15} ) q^{47} + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{4} - 2 \beta_{6} - \beta_{8} - 2 \beta_{10} + \beta_{12} - 2 \beta_{13} + 2 \beta_{14} ) q^{49} + ( -1 - \beta_{1} - 2 \beta_{5} - \beta_{12} ) q^{51} + ( 3 + \beta_{1} - 2 \beta_{4} + \beta_{6} + 2 \beta_{8} + 2 \beta_{12} ) q^{53} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{4} - \beta_{5} + \beta_{6} + 4 \beta_{10} - 3 \beta_{11} + 3 \beta_{13} - \beta_{14} ) q^{55} + ( 3 + 2 \beta_{1} + \beta_{4} + \beta_{5} - 2 \beta_{8} - \beta_{9} + 2 \beta_{12} ) q^{57} + ( -2 - 2 \beta_{1} - 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{13} + 2 \beta_{15} ) q^{59} + ( -1 - \beta_{1} - \beta_{4} - 4 \beta_{7} - 3 \beta_{8} - 3 \beta_{9} - 2 \beta_{11} + 3 \beta_{12} - 2 \beta_{13} + 2 \beta_{15} ) q^{61} + ( \beta_{6} + \beta_{8} + \beta_{9} - \beta_{15} ) q^{63} + ( 2 - 2 \beta_{1} - \beta_{4} + \beta_{6} + \beta_{8} - \beta_{9} + \beta_{12} ) q^{65} + ( 4 + 2 \beta_{1} + \beta_{5} + \beta_{6} - \beta_{8} + \beta_{9} + \beta_{12} ) q^{67} + ( -1 - \beta_{1} + 3 \beta_{2} - 2 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} + 3 \beta_{10} + \beta_{13} + \beta_{15} ) q^{69} + ( -3 - \beta_{1} - 2 \beta_{4} + \beta_{5} + 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{12} ) q^{71} + ( -4 - 4 \beta_{1} - 4 \beta_{3} - 4 \beta_{4} - 4 \beta_{5} + 4 \beta_{6} - 4 \beta_{7} - \beta_{8} - \beta_{9} - 4 \beta_{10} - \beta_{11} + \beta_{12} + \beta_{14} + \beta_{15} ) q^{73} + ( -2 \beta_{3} - \beta_{8} - \beta_{9} + \beta_{10} - \beta_{11} + \beta_{12} - \beta_{14} + \beta_{15} ) q^{75} + ( 1 + 3 \beta_{1} + 4 \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} + 2 \beta_{6} + \beta_{7} - 2 \beta_{9} - \beta_{11} + 2 \beta_{13} - \beta_{14} - \beta_{15} ) q^{77} + ( 2 + 2 \beta_{1} + 2 \beta_{4} - 4 \beta_{6} - 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{12} ) q^{79} - q^{81} + ( -3 \beta_{5} + 3 \beta_{6} + 3 \beta_{8} + 3 \beta_{9} - 6 \beta_{10} - 3 \beta_{12} - 6 \beta_{15} ) q^{83} + ( 1 - 2 \beta_{1} + 4 \beta_{4} - \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{12} ) q^{85} + ( -\beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - \beta_{12} + 2 \beta_{13} ) q^{87} + ( 1 + \beta_{1} - 3 \beta_{2} + \beta_{4} + \beta_{8} + \beta_{9} - 3 \beta_{10} - \beta_{12} - \beta_{13} - 2 \beta_{14} - 3 \beta_{15} ) q^{89} + ( 4 + 2 \beta_{2} + \beta_{6} - 2 \beta_{7} - \beta_{8} - \beta_{9} - 2 \beta_{10} - 2 \beta_{11} + 2 \beta_{12} ) q^{91} + ( -\beta_{1} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{9} ) q^{93} + ( 1 - \beta_{1} - 3 \beta_{4} - 5 \beta_{5} + \beta_{6} + 3 \beta_{8} + 7 \beta_{9} - \beta_{12} ) q^{95} + ( -3 - 3 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} - 3 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 3 \beta_{11} + 2 \beta_{12} - 4 \beta_{13} + 3 \beta_{14} + 3 \beta_{15} ) q^{97} + ( 1 + \beta_{1} - \beta_{6} - \beta_{8} + \beta_{9} + \beta_{12} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q + 8q^{7} + O(q^{10})$$ $$16q + 8q^{7} + 16q^{11} - 8q^{15} + 8q^{21} + 40q^{23} + 8q^{35} + 32q^{37} + 16q^{43} + 16q^{51} + 24q^{53} + 8q^{57} - 8q^{63} + 40q^{65} + 32q^{67} - 64q^{71} - 24q^{77} - 16q^{81} + 48q^{85} + 48q^{91} + 24q^{93} + 72q^{95} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{16} - 4 x^{14} + 6 x^{12} - 12 x^{10} + 33 x^{8} - 48 x^{6} + 96 x^{4} - 256 x^{2} + 256$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-7 \nu^{14} + 72 \nu^{12} + 54 \nu^{10} + 156 \nu^{8} + 297 \nu^{6} + 252 \nu^{4} - 3216 \nu^{2} + 64$$$$)/3840$$ $$\beta_{2}$$ $$=$$ $$($$$$-29 \nu^{15} + 144 \nu^{13} + 18 \nu^{11} + 132 \nu^{9} - 621 \nu^{7} + 204 \nu^{5} - 1392 \nu^{3} + 4928 \nu$$$$)/7680$$ $$\beta_{3}$$ $$=$$ $$($$$$-8 \nu^{15} + 17 \nu^{14} - 12 \nu^{13} - 72 \nu^{12} + 96 \nu^{11} + 6 \nu^{10} + 24 \nu^{9} - 36 \nu^{8} - 312 \nu^{7} + 513 \nu^{6} + 468 \nu^{5} - 1332 \nu^{4} - 864 \nu^{3} + 3696 \nu^{2} - 64 \nu - 4544$$$$)/3840$$ $$\beta_{4}$$ $$=$$ $$($$$$-7 \nu^{14} - 42 \nu^{10} + 108 \nu^{8} + 9 \nu^{6} + 180 \nu^{4} - 1296 \nu^{2} + 448$$$$)/768$$ $$\beta_{5}$$ $$=$$ $$($$$$-53 \nu^{14} + 48 \nu^{12} + 66 \nu^{10} - 156 \nu^{8} - 837 \nu^{6} + 588 \nu^{4} - 624 \nu^{2} + 1856$$$$)/3840$$ $$\beta_{6}$$ $$=$$ $$($$$$-61 \nu^{14} - 24 \nu^{12} - 78 \nu^{10} + 468 \nu^{8} + 531 \nu^{6} - 924 \nu^{4} - 2928 \nu^{2} - 1088$$$$)/3840$$ $$\beta_{7}$$ $$=$$ $$($$$$30 \nu^{15} + 17 \nu^{14} - 120 \nu^{13} - 72 \nu^{12} + 180 \nu^{11} + 6 \nu^{10} - 360 \nu^{9} - 36 \nu^{8} + 990 \nu^{7} + 513 \nu^{6} - 1440 \nu^{5} - 1332 \nu^{4} + 2880 \nu^{3} + 3696 \nu^{2} - 3840 \nu - 4544$$$$)/3840$$ $$\beta_{8}$$ $$=$$ $$($$$$-23 \nu^{14} + 48 \nu^{12} - 74 \nu^{10} + 204 \nu^{8} - 327 \nu^{6} + 1188 \nu^{4} - 2064 \nu^{2} + 2496$$$$)/1280$$ $$\beta_{9}$$ $$=$$ $$($$$$-43 \nu^{14} + 108 \nu^{12} - 114 \nu^{10} + 324 \nu^{8} - 747 \nu^{6} + 528 \nu^{4} - 3024 \nu^{2} + 6016$$$$)/1920$$ $$\beta_{10}$$ $$=$$ $$($$$$-149 \nu^{15} + 264 \nu^{13} - 222 \nu^{11} + 1332 \nu^{9} - 2181 \nu^{7} + 1764 \nu^{5} - 8112 \nu^{3} + 14528 \nu$$$$)/7680$$ $$\beta_{11}$$ $$=$$ $$($$$$105 \nu^{15} + 376 \nu^{14} - 360 \nu^{13} - 816 \nu^{12} + 150 \nu^{11} + 528 \nu^{10} - 900 \nu^{9} - 2688 \nu^{8} + 3225 \nu^{7} + 7224 \nu^{6} - 180 \nu^{5} - 6096 \nu^{4} + 8880 \nu^{3} + 19968 \nu^{2} - 24000 \nu - 47872$$$$)/7680$$ $$\beta_{12}$$ $$=$$ $$($$$$263 \nu^{14} - 528 \nu^{12} + 234 \nu^{10} - 2124 \nu^{8} + 4407 \nu^{6} - 2628 \nu^{4} + 17424 \nu^{2} - 34496$$$$)/3840$$ $$\beta_{13}$$ $$=$$ $$($$$$56 \nu^{15} + 213 \nu^{14} - 96 \nu^{13} - 408 \nu^{12} + 48 \nu^{11} + 414 \nu^{10} - 288 \nu^{9} - 2004 \nu^{8} + 504 \nu^{7} + 2757 \nu^{6} + 384 \nu^{5} - 2868 \nu^{4} + 3168 \nu^{3} + 15984 \nu^{2} - 4352 \nu - 25536$$$$)/3840$$ $$\beta_{14}$$ $$=$$ $$($$$$327 \nu^{15} - 34 \nu^{14} - 672 \nu^{13} + 144 \nu^{12} + 426 \nu^{11} - 12 \nu^{10} - 2796 \nu^{9} + 72 \nu^{8} + 4983 \nu^{7} - 1026 \nu^{6} - 3732 \nu^{5} + 2664 \nu^{4} + 25296 \nu^{3} - 7392 \nu^{2} - 41664 \nu + 9088$$$$)/7680$$ $$\beta_{15}$$ $$=$$ $$($$$$-94 \nu^{15} - 213 \nu^{14} + 204 \nu^{13} + 408 \nu^{12} - 132 \nu^{11} - 414 \nu^{10} + 672 \nu^{9} + 2004 \nu^{8} - 1806 \nu^{7} - 2757 \nu^{6} + 1524 \nu^{5} + 2868 \nu^{4} - 6912 \nu^{3} - 15984 \nu^{2} + 15808 \nu + 25536$$$$)/3840$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{15} + \beta_{13} + \beta_{7} - \beta_{3}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{8} + \beta_{6} - \beta_{5} - 2 \beta_{4} - \beta_{1}$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$($$$$\beta_{15} + 2 \beta_{14} + \beta_{13} + 4 \beta_{10} + \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} + 2 \beta_{2} - \beta_{1} - 1$$$$)/2$$ $$\nu^{4}$$ $$=$$ $$($$$$-2 \beta_{9} + 3 \beta_{8} - \beta_{4} + 1$$$$)/2$$ $$\nu^{5}$$ $$=$$ $$($$$$3 \beta_{15} + 3 \beta_{13} - 2 \beta_{12} + 4 \beta_{11} + 2 \beta_{9} + 2 \beta_{8} - \beta_{7} - 2 \beta_{4} + \beta_{3} + 4 \beta_{2} - 2 \beta_{1} - 2$$$$)/2$$ $$\nu^{6}$$ $$=$$ $$($$$$2 \beta_{12} + 2 \beta_{9} + 3 \beta_{8} + 5 \beta_{6} - \beta_{5} - 4 \beta_{4} + 5 \beta_{1} + 10$$$$)/2$$ $$\nu^{7}$$ $$=$$ $$($$$$\beta_{15} - 6 \beta_{14} + 5 \beta_{13} - 6 \beta_{12} + 8 \beta_{11} - 4 \beta_{10} + 6 \beta_{9} + 6 \beta_{8} + 5 \beta_{7} + \beta_{6} - \beta_{5} - 3 \beta_{4} - 9 \beta_{3} + 10 \beta_{2} - 3 \beta_{1} - 3$$$$)/2$$ $$\nu^{8}$$ $$=$$ $$($$$$-6 \beta_{12} - 12 \beta_{9} + 5 \beta_{8} + 4 \beta_{6} - 16 \beta_{5} - 7 \beta_{4} - 6 \beta_{1} - 13$$$$)/2$$ $$\nu^{9}$$ $$=$$ $$($$$$-21 \beta_{15} - 12 \beta_{14} + 27 \beta_{13} - 20 \beta_{12} - 8 \beta_{11} + 20 \beta_{10} + 20 \beta_{9} + 20 \beta_{8} + 11 \beta_{7} + 16 \beta_{6} - 16 \beta_{5} + 12 \beta_{4} - 7 \beta_{3} + 12 \beta_{1} + 12$$$$)/2$$ $$\nu^{10}$$ $$=$$ $$($$$$-12 \beta_{12} - 36 \beta_{9} + \beta_{8} - 3 \beta_{6} + 3 \beta_{5} - 6 \beta_{4} + 15 \beta_{1} + 4$$$$)/2$$ $$\nu^{11}$$ $$=$$ $$($$$$-15 \beta_{15} - 14 \beta_{14} + 25 \beta_{13} - 20 \beta_{12} + 4 \beta_{10} + 20 \beta_{9} + 20 \beta_{8} + 25 \beta_{7} - 15 \beta_{6} + 15 \beta_{5} + 35 \beta_{4} + 31 \beta_{3} + 50 \beta_{2} + 35 \beta_{1} + 35$$$$)/2$$ $$\nu^{12}$$ $$=$$ $$($$$$12 \beta_{12} + 50 \beta_{9} + 7 \beta_{8} + 8 \beta_{6} - 16 \beta_{5} - 45 \beta_{4} + 44 \beta_{1} - 27$$$$)/2$$ $$\nu^{13}$$ $$=$$ $$($$$$-37 \beta_{15} - 24 \beta_{14} + 11 \beta_{13} - 30 \beta_{12} + 12 \beta_{11} - 24 \beta_{10} + 30 \beta_{9} + 30 \beta_{8} - 17 \beta_{7} + 32 \beta_{6} - 32 \beta_{5} - 14 \beta_{4} - 23 \beta_{3} + 156 \beta_{2} - 14 \beta_{1} - 14$$$$)/2$$ $$\nu^{14}$$ $$=$$ $$($$$$-18 \beta_{12} - 18 \beta_{9} - 33 \beta_{8} - 99 \beta_{6} - 81 \beta_{5} + 48 \beta_{4} + 9 \beta_{1} - 58$$$$)/2$$ $$\nu^{15}$$ $$=$$ $$($$$$-167 \beta_{15} - 150 \beta_{14} + 229 \beta_{13} - 138 \beta_{12} - 120 \beta_{11} - 132 \beta_{10} + 138 \beta_{9} + 138 \beta_{8} - 11 \beta_{7} + 153 \beta_{6} - 153 \beta_{5} + 105 \beta_{4} - 49 \beta_{3} - 6 \beta_{2} + 105 \beta_{1} + 105$$$$)/2$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times$$.

 $$n$$ $$241$$ $$337$$ $$421$$ $$1121$$ $$1471$$ $$\chi(n)$$ $$-1$$ $$\beta_{9}$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
97.1
 0.944649 − 1.05244i 1.36166 − 0.381939i 0.517174 + 1.31626i −1.40927 + 0.118126i 1.40927 − 0.118126i −0.517174 − 1.31626i −1.36166 + 0.381939i −0.944649 + 1.05244i 0.944649 + 1.05244i 1.36166 + 0.381939i 0.517174 − 1.31626i −1.40927 − 0.118126i 1.40927 + 0.118126i −0.517174 + 1.31626i −1.36166 − 0.381939i −0.944649 − 1.05244i
0 −0.707107 0.707107i 0 −1.28999 1.82645i 0 1.97552 + 1.75993i 0 1.00000i 0
97.2 0 −0.707107 0.707107i 0 −1.03649 + 1.98133i 0 −2.57351 0.614060i 0 1.00000i 0
97.3 0 −0.707107 0.707107i 0 1.50619 1.65269i 0 −1.46123 + 2.20563i 0 1.00000i 0
97.4 0 −0.707107 0.707107i 0 2.23450 + 0.0836010i 0 2.64501 + 0.0627175i 0 1.00000i 0
97.5 0 0.707107 + 0.707107i 0 −2.23450 0.0836010i 0 0.0627175 + 2.64501i 0 1.00000i 0
97.6 0 0.707107 + 0.707107i 0 −1.50619 + 1.65269i 0 2.20563 1.46123i 0 1.00000i 0
97.7 0 0.707107 + 0.707107i 0 1.03649 1.98133i 0 −0.614060 2.57351i 0 1.00000i 0
97.8 0 0.707107 + 0.707107i 0 1.28999 + 1.82645i 0 1.75993 + 1.97552i 0 1.00000i 0
433.1 0 −0.707107 + 0.707107i 0 −1.28999 + 1.82645i 0 1.97552 1.75993i 0 1.00000i 0
433.2 0 −0.707107 + 0.707107i 0 −1.03649 1.98133i 0 −2.57351 + 0.614060i 0 1.00000i 0
433.3 0 −0.707107 + 0.707107i 0 1.50619 + 1.65269i 0 −1.46123 2.20563i 0 1.00000i 0
433.4 0 −0.707107 + 0.707107i 0 2.23450 0.0836010i 0 2.64501 0.0627175i 0 1.00000i 0
433.5 0 0.707107 0.707107i 0 −2.23450 + 0.0836010i 0 0.0627175 2.64501i 0 1.00000i 0
433.6 0 0.707107 0.707107i 0 −1.50619 1.65269i 0 2.20563 + 1.46123i 0 1.00000i 0
433.7 0 0.707107 0.707107i 0 1.03649 + 1.98133i 0 −0.614060 + 2.57351i 0 1.00000i 0
433.8 0 0.707107 0.707107i 0 1.28999 1.82645i 0 1.75993 1.97552i 0 1.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 433.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.cz.d 16
4.b odd 2 1 105.2.m.a 16
5.c odd 4 1 inner 1680.2.cz.d 16
7.b odd 2 1 inner 1680.2.cz.d 16
12.b even 2 1 315.2.p.e 16
20.d odd 2 1 525.2.m.b 16
20.e even 4 1 105.2.m.a 16
20.e even 4 1 525.2.m.b 16
28.d even 2 1 105.2.m.a 16
28.f even 6 2 735.2.v.a 32
28.g odd 6 2 735.2.v.a 32
35.f even 4 1 inner 1680.2.cz.d 16
60.l odd 4 1 315.2.p.e 16
84.h odd 2 1 315.2.p.e 16
140.c even 2 1 525.2.m.b 16
140.j odd 4 1 105.2.m.a 16
140.j odd 4 1 525.2.m.b 16
140.w even 12 2 735.2.v.a 32
140.x odd 12 2 735.2.v.a 32
420.w even 4 1 315.2.p.e 16

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.m.a 16 4.b odd 2 1
105.2.m.a 16 20.e even 4 1
105.2.m.a 16 28.d even 2 1
105.2.m.a 16 140.j odd 4 1
315.2.p.e 16 12.b even 2 1
315.2.p.e 16 60.l odd 4 1
315.2.p.e 16 84.h odd 2 1
315.2.p.e 16 420.w even 4 1
525.2.m.b 16 20.d odd 2 1
525.2.m.b 16 20.e even 4 1
525.2.m.b 16 140.c even 2 1
525.2.m.b 16 140.j odd 4 1
735.2.v.a 32 28.f even 6 2
735.2.v.a 32 28.g odd 6 2
735.2.v.a 32 140.w even 12 2
735.2.v.a 32 140.x odd 12 2
1680.2.cz.d 16 1.a even 1 1 trivial
1680.2.cz.d 16 5.c odd 4 1 inner
1680.2.cz.d 16 7.b odd 2 1 inner
1680.2.cz.d 16 35.f even 4 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1680, [\chi])$$:

 $$T_{11}^{4} - 4 T_{11}^{3} - 12 T_{11}^{2} + 64 T_{11} - 60$$ $$T_{13}^{16} + 736 T_{13}^{12} + 8576 T_{13}^{8} + 18432 T_{13}^{4} + 4096$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$( 1 + T^{4} )^{4}$$
$5$ $$1 + 28 T^{4} - 256 T^{6} - 26 T^{8} - 6400 T^{10} + 17500 T^{12} + 390625 T^{16}$$
$7$ $$1 - 8 T + 32 T^{2} - 88 T^{3} + 196 T^{4} - 248 T^{5} - 416 T^{6} + 2840 T^{7} - 8634 T^{8} + 19880 T^{9} - 20384 T^{10} - 85064 T^{11} + 470596 T^{12} - 1479016 T^{13} + 3764768 T^{14} - 6588344 T^{15} + 5764801 T^{16}$$
$11$ $$( 1 - 4 T + 32 T^{2} - 68 T^{3} + 402 T^{4} - 748 T^{5} + 3872 T^{6} - 5324 T^{7} + 14641 T^{8} )^{4}$$
$13$ $$1 + 424 T^{4} + 47004 T^{8} - 12160488 T^{12} - 4129271418 T^{16} - 347315697768 T^{20} + 38342606809884 T^{24} + 9878388091931944 T^{28} + 665416609183179841 T^{32}$$
$17$ $$1 + 120 T^{4} + 166556 T^{8} - 9625784 T^{12} + 12237871174 T^{16} - 803955105464 T^{20} + 1161854256343196 T^{24} + 69914668467571320 T^{28} + 48661191875666868481 T^{32}$$
$19$ $$( 1 + 48 T^{2} + 1524 T^{4} + 40016 T^{6} + 818246 T^{8} + 14445776 T^{10} + 198609204 T^{12} + 2258202288 T^{14} + 16983563041 T^{16} )^{2}$$
$23$ $$( 1 - 20 T + 200 T^{2} - 1516 T^{3} + 10388 T^{4} - 65340 T^{5} + 378328 T^{6} - 2076676 T^{7} + 10539814 T^{8} - 47763548 T^{9} + 200135512 T^{10} - 794991780 T^{11} + 2906988308 T^{12} - 9757495988 T^{13} + 29607177800 T^{14} - 68096508940 T^{15} + 78310985281 T^{16} )^{2}$$
$29$ $$( 1 - 184 T^{2} + 15868 T^{4} - 835400 T^{6} + 29324070 T^{8} - 702571400 T^{10} + 11223134908 T^{12} - 109447491064 T^{14} + 500246412961 T^{16} )^{2}$$
$31$ $$( 1 - 128 T^{2} + 9396 T^{4} - 463040 T^{6} + 16703398 T^{8} - 444981440 T^{10} + 8677403316 T^{12} - 113600471168 T^{14} + 852891037441 T^{16} )^{2}$$
$37$ $$( 1 - 16 T + 128 T^{2} - 944 T^{3} + 8860 T^{4} - 73552 T^{5} + 488320 T^{6} - 3175280 T^{7} + 20212134 T^{8} - 117485360 T^{9} + 668510080 T^{10} - 3725629456 T^{11} + 16605066460 T^{12} - 65460695408 T^{13} + 328412980352 T^{14} - 1518910034128 T^{15} + 3512479453921 T^{16} )^{2}$$
$41$ $$( 1 - 144 T^{2} + 12956 T^{4} - 823792 T^{6} + 38320198 T^{8} - 1384794352 T^{10} + 36610559516 T^{12} - 684015010704 T^{14} + 7984925229121 T^{16} )^{2}$$
$43$ $$( 1 - 8 T + 32 T^{2} - 280 T^{3} + 2788 T^{4} - 14232 T^{5} + 63840 T^{6} - 569416 T^{7} + 5017638 T^{8} - 24484888 T^{9} + 118040160 T^{10} - 1131543624 T^{11} + 9531617188 T^{12} - 41162364040 T^{13} + 202283617568 T^{14} - 2174548888856 T^{15} + 11688200277601 T^{16} )^{2}$$
$47$ $$1 + 3784 T^{4} + 1124764 T^{8} + 9138019192 T^{12} + 63538455194182 T^{16} + 44590618628837752 T^{20} + 26782078030828949404 T^{24} +$$$$43\!\cdots\!44$$$$T^{28} +$$$$56\!\cdots\!21$$$$T^{32}$$
$53$ $$( 1 - 12 T + 72 T^{2} - 572 T^{3} + 1780 T^{4} + 1436 T^{5} + 18200 T^{6} - 441076 T^{7} + 6254598 T^{8} - 23377028 T^{9} + 51123800 T^{10} + 213787372 T^{11} + 14045056180 T^{12} - 239207821996 T^{13} + 1595834001288 T^{14} - 14096533678044 T^{15} + 62259690411361 T^{16} )^{2}$$
$59$ $$( 1 + 312 T^{2} + 49660 T^{4} + 5040712 T^{6} + 354176614 T^{8} + 17546718472 T^{10} + 601748147260 T^{12} + 13160326495992 T^{14} + 146830437604321 T^{16} )^{2}$$
$61$ $$( 1 - 200 T^{2} + 17532 T^{4} - 857912 T^{6} + 37932838 T^{8} - 3192290552 T^{10} + 242745284412 T^{12} - 10304074872200 T^{14} + 191707312997281 T^{16} )^{2}$$
$67$ $$( 1 - 16 T + 128 T^{2} - 1424 T^{3} + 22436 T^{4} - 211280 T^{5} + 1522560 T^{6} - 15870032 T^{7} + 163564774 T^{8} - 1063292144 T^{9} + 6834771840 T^{10} - 63545206640 T^{11} + 452110550756 T^{12} - 1922578152368 T^{13} + 11578672917632 T^{14} - 96971385685168 T^{15} + 406067677556641 T^{16} )^{2}$$
$71$ $$( 1 + 16 T + 232 T^{2} + 2376 T^{3} + 21730 T^{4} + 168696 T^{5} + 1169512 T^{6} + 5726576 T^{7} + 25411681 T^{8} )^{4}$$
$73$ $$1 - 15256 T^{4} + 80862300 T^{8} + 94053698264 T^{12} - 2362018367550906 T^{16} + 2670959590242353624 T^{20} +$$$$65\!\cdots\!00$$$$T^{24} -$$$$34\!\cdots\!76$$$$T^{28} +$$$$65\!\cdots\!61$$$$T^{32}$$
$79$ $$( 1 - 312 T^{2} + 58396 T^{4} - 7293320 T^{6} + 672141766 T^{8} - 45517610120 T^{10} + 2274528930076 T^{12} - 75843286122552 T^{14} + 1517108809906561 T^{16} )^{2}$$
$83$ $$1 + 5000 T^{4} + 95818588 T^{8} + 596752860728 T^{12} + 4571727903671302 T^{16} + 28320888822097717688 T^{20} +$$$$21\!\cdots\!08$$$$T^{24} +$$$$53\!\cdots\!00$$$$T^{28} +$$$$50\!\cdots\!81$$$$T^{32}$$
$89$ $$( 1 + 576 T^{2} + 155068 T^{4} + 25338304 T^{6} + 2740378246 T^{8} + 200704705984 T^{10} + 9729313827388 T^{12} + 286261223593536 T^{14} + 3936588805702081 T^{16} )^{2}$$
$97$ $$1 - 55064 T^{4} + 1465436892 T^{8} - 24336256217256 T^{12} + 274732504520067270 T^{16} -$$$$21\!\cdots\!36$$$$T^{20} +$$$$11\!\cdots\!12$$$$T^{24} -$$$$38\!\cdots\!24$$$$T^{28} +$$$$61\!\cdots\!21$$$$T^{32}$$