Properties

Label 1680.2.ch
Level $1680$
Weight $2$
Character orbit 1680.ch
Rep. character $\chi_{1680}(139,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $384$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ch (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 560 \)
Character field: \(\Q(i)\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).

Total New Old
Modular forms 784 384 400
Cusp forms 752 384 368
Eisenstein series 32 0 32

Trace form

\( 384 q + 16 q^{14} + 24 q^{35} + 32 q^{44} + 24 q^{50} - 24 q^{60} + 144 q^{64} - 24 q^{70} - 128 q^{71} - 224 q^{74} - 384 q^{81} + 32 q^{86} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)