# Properties

 Label 1680.2.bg.n Level $1680$ Weight $2$ Character orbit 1680.bg Analytic conductor $13.415$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1680.bg (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$13.4148675396$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} +O(q^{10})$$ $$q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} + ( 3 - 3 \zeta_{6} ) q^{11} + 5 q^{13} + q^{15} + 5 \zeta_{6} q^{19} + ( 1 - 3 \zeta_{6} ) q^{21} -9 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} - q^{27} + ( -10 + 10 \zeta_{6} ) q^{31} -3 \zeta_{6} q^{33} + ( 2 + \zeta_{6} ) q^{35} + \zeta_{6} q^{37} + ( 5 - 5 \zeta_{6} ) q^{39} + 9 q^{41} -8 q^{43} + ( 1 - \zeta_{6} ) q^{45} + 3 \zeta_{6} q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( 3 - 3 \zeta_{6} ) q^{53} + 3 q^{55} + 5 q^{57} + ( 12 - 12 \zeta_{6} ) q^{59} -8 \zeta_{6} q^{61} + ( -2 - \zeta_{6} ) q^{63} + 5 \zeta_{6} q^{65} + ( 8 - 8 \zeta_{6} ) q^{67} -9 q^{69} + 6 q^{71} + ( -2 + 2 \zeta_{6} ) q^{73} + \zeta_{6} q^{75} + ( 3 - 9 \zeta_{6} ) q^{77} + 8 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -6 \zeta_{6} q^{89} + ( 15 - 10 \zeta_{6} ) q^{91} + 10 \zeta_{6} q^{93} + ( -5 + 5 \zeta_{6} ) q^{95} + 8 q^{97} -3 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} + q^{5} + 4q^{7} - q^{9} + O(q^{10})$$ $$2q + q^{3} + q^{5} + 4q^{7} - q^{9} + 3q^{11} + 10q^{13} + 2q^{15} + 5q^{19} - q^{21} - 9q^{23} - q^{25} - 2q^{27} - 10q^{31} - 3q^{33} + 5q^{35} + q^{37} + 5q^{39} + 18q^{41} - 16q^{43} + q^{45} + 3q^{47} + 2q^{49} + 3q^{53} + 6q^{55} + 10q^{57} + 12q^{59} - 8q^{61} - 5q^{63} + 5q^{65} + 8q^{67} - 18q^{69} + 12q^{71} - 2q^{73} + q^{75} - 3q^{77} + 8q^{79} - q^{81} - 6q^{89} + 20q^{91} + 10q^{93} - 5q^{95} + 16q^{97} - 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times$$.

 $$n$$ $$241$$ $$337$$ $$421$$ $$1121$$ $$1471$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
961.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 2.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
1201.1 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 2.00000 1.73205i 0 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.bg.n 2
4.b odd 2 1 210.2.i.c 2
7.c even 3 1 inner 1680.2.bg.n 2
12.b even 2 1 630.2.k.a 2
20.d odd 2 1 1050.2.i.i 2
20.e even 4 2 1050.2.o.c 4
28.d even 2 1 1470.2.i.p 2
28.f even 6 1 1470.2.a.e 1
28.f even 6 1 1470.2.i.p 2
28.g odd 6 1 210.2.i.c 2
28.g odd 6 1 1470.2.a.f 1
84.j odd 6 1 4410.2.a.w 1
84.n even 6 1 630.2.k.a 2
84.n even 6 1 4410.2.a.bh 1
140.p odd 6 1 1050.2.i.i 2
140.p odd 6 1 7350.2.a.cd 1
140.s even 6 1 7350.2.a.cx 1
140.w even 12 2 1050.2.o.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.c 2 4.b odd 2 1
210.2.i.c 2 28.g odd 6 1
630.2.k.a 2 12.b even 2 1
630.2.k.a 2 84.n even 6 1
1050.2.i.i 2 20.d odd 2 1
1050.2.i.i 2 140.p odd 6 1
1050.2.o.c 4 20.e even 4 2
1050.2.o.c 4 140.w even 12 2
1470.2.a.e 1 28.f even 6 1
1470.2.a.f 1 28.g odd 6 1
1470.2.i.p 2 28.d even 2 1
1470.2.i.p 2 28.f even 6 1
1680.2.bg.n 2 1.a even 1 1 trivial
1680.2.bg.n 2 7.c even 3 1 inner
4410.2.a.w 1 84.j odd 6 1
4410.2.a.bh 1 84.n even 6 1
7350.2.a.cd 1 140.p odd 6 1
7350.2.a.cx 1 140.s even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1680, [\chi])$$:

 $$T_{11}^{2} - 3 T_{11} + 9$$ $$T_{13} - 5$$ $$T_{17}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$1 - T + T^{2}$$
$7$ $$7 - 4 T + T^{2}$$
$11$ $$9 - 3 T + T^{2}$$
$13$ $$( -5 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$25 - 5 T + T^{2}$$
$23$ $$81 + 9 T + T^{2}$$
$29$ $$T^{2}$$
$31$ $$100 + 10 T + T^{2}$$
$37$ $$1 - T + T^{2}$$
$41$ $$( -9 + T )^{2}$$
$43$ $$( 8 + T )^{2}$$
$47$ $$9 - 3 T + T^{2}$$
$53$ $$9 - 3 T + T^{2}$$
$59$ $$144 - 12 T + T^{2}$$
$61$ $$64 + 8 T + T^{2}$$
$67$ $$64 - 8 T + T^{2}$$
$71$ $$( -6 + T )^{2}$$
$73$ $$4 + 2 T + T^{2}$$
$79$ $$64 - 8 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$( -8 + T )^{2}$$
show more
show less