Defining parameters
Level: | \( N \) | \(=\) | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1680.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1680))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 24 | 384 |
Cusp forms | 361 | 24 | 337 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(21\) | \(1\) | \(20\) | \(19\) | \(1\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(28\) | \(2\) | \(26\) | \(25\) | \(2\) | \(23\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(28\) | \(2\) | \(26\) | \(25\) | \(2\) | \(23\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(25\) | \(1\) | \(24\) | \(22\) | \(1\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(25\) | \(2\) | \(23\) | \(22\) | \(2\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(24\) | \(1\) | \(23\) | \(21\) | \(1\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(28\) | \(1\) | \(27\) | \(25\) | \(1\) | \(24\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(25\) | \(2\) | \(23\) | \(22\) | \(2\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(30\) | \(2\) | \(28\) | \(27\) | \(2\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(23\) | \(0\) | \(23\) | \(20\) | \(0\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(23\) | \(2\) | \(21\) | \(20\) | \(2\) | \(18\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(26\) | \(2\) | \(24\) | \(23\) | \(2\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(26\) | \(2\) | \(24\) | \(23\) | \(2\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(27\) | \(2\) | \(25\) | \(24\) | \(2\) | \(22\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(23\) | \(2\) | \(21\) | \(20\) | \(2\) | \(18\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(26\) | \(0\) | \(26\) | \(23\) | \(0\) | \(23\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(196\) | \(8\) | \(188\) | \(173\) | \(8\) | \(165\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(212\) | \(16\) | \(196\) | \(188\) | \(16\) | \(172\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1680))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1680))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1680)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(840))\)\(^{\oplus 2}\)