Properties

Label 1680.2.a
Level $1680$
Weight $2$
Character orbit 1680.a
Rep. character $\chi_{1680}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $22$
Sturm bound $768$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(768\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1680))\).

Total New Old
Modular forms 408 24 384
Cusp forms 361 24 337
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(21\)\(1\)\(20\)\(19\)\(1\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(28\)\(2\)\(26\)\(25\)\(2\)\(23\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(28\)\(2\)\(26\)\(25\)\(2\)\(23\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(25\)\(1\)\(24\)\(22\)\(1\)\(21\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(25\)\(2\)\(23\)\(22\)\(2\)\(20\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(24\)\(1\)\(23\)\(21\)\(1\)\(20\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(28\)\(1\)\(27\)\(25\)\(1\)\(24\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(25\)\(2\)\(23\)\(22\)\(2\)\(20\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(30\)\(2\)\(28\)\(27\)\(2\)\(25\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(23\)\(0\)\(23\)\(20\)\(0\)\(20\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(23\)\(2\)\(21\)\(20\)\(2\)\(18\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(26\)\(2\)\(24\)\(23\)\(2\)\(21\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(26\)\(2\)\(24\)\(23\)\(2\)\(21\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(27\)\(2\)\(25\)\(24\)\(2\)\(22\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(23\)\(2\)\(21\)\(20\)\(2\)\(18\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(26\)\(0\)\(26\)\(23\)\(0\)\(23\)\(3\)\(0\)\(3\)
Plus space\(+\)\(196\)\(8\)\(188\)\(173\)\(8\)\(165\)\(23\)\(0\)\(23\)
Minus space\(-\)\(212\)\(16\)\(196\)\(188\)\(16\)\(172\)\(24\)\(0\)\(24\)

Trace form

\( 24 q - 4 q^{7} + 24 q^{9} - 8 q^{11} - 4 q^{15} - 8 q^{19} - 8 q^{23} + 24 q^{25} + 16 q^{29} - 8 q^{31} + 16 q^{37} + 16 q^{43} + 48 q^{47} + 24 q^{49} - 8 q^{51} + 16 q^{53} + 48 q^{59} + 16 q^{61} - 4 q^{63}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1680))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
1680.2.a.a 1680.a 1.a $1$ $13.415$ \(\Q\) None 420.2.a.c \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\)
1680.2.a.b 1680.a 1.a $1$ $13.415$ \(\Q\) None 210.2.a.d \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}+2q^{13}+q^{15}+\cdots\)
1680.2.a.c 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.i \(0\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}+2q^{13}+q^{15}+\cdots\)
1680.2.a.d 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.h \(0\) \(-1\) \(-1\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}+q^{9}+6q^{13}+q^{15}+\cdots\)
1680.2.a.e 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.g \(0\) \(-1\) \(-1\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}+q^{9}+4q^{11}-6q^{13}+\cdots\)
1680.2.a.f 1680.a 1.a $1$ $13.415$ \(\Q\) None 105.2.a.a \(0\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}+q^{9}-6q^{13}-q^{15}+\cdots\)
1680.2.a.g 1680.a 1.a $1$ $13.415$ \(\Q\) None 210.2.a.b \(0\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}+q^{9}+2q^{13}-q^{15}+\cdots\)
1680.2.a.h 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.j \(0\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\)
1680.2.a.i 1680.a 1.a $1$ $13.415$ \(\Q\) None 420.2.a.d \(0\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}-2q^{11}+4q^{13}+\cdots\)
1680.2.a.j 1680.a 1.a $1$ $13.415$ \(\Q\) None 210.2.a.e \(0\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1680.2.a.k 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.c \(0\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}-2q^{13}-q^{15}+\cdots\)
1680.2.a.l 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.b \(0\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
1680.2.a.m 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.a \(0\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\)
1680.2.a.n 1680.a 1.a $1$ $13.415$ \(\Q\) None 420.2.a.a \(0\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}+q^{9}-2q^{11}+4q^{13}+\cdots\)
1680.2.a.o 1680.a 1.a $1$ $13.415$ \(\Q\) None 210.2.a.a \(0\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1680.2.a.p 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.f \(0\) \(1\) \(1\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\)
1680.2.a.q 1680.a 1.a $1$ $13.415$ \(\Q\) None 210.2.a.c \(0\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\)
1680.2.a.r 1680.a 1.a $1$ $13.415$ \(\Q\) None 420.2.a.b \(0\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots\)
1680.2.a.s 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.e \(0\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{7}+q^{9}+2q^{13}+q^{15}+\cdots\)
1680.2.a.t 1680.a 1.a $1$ $13.415$ \(\Q\) None 840.2.a.d \(0\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1680.2.a.u 1680.a 1.a $2$ $13.415$ \(\Q(\sqrt{2}) \) None 840.2.a.k \(0\) \(-2\) \(2\) \(-2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}+q^{9}+\beta q^{11}+2q^{13}+\cdots\)
1680.2.a.v 1680.a 1.a $2$ $13.415$ \(\Q(\sqrt{5}) \) None 105.2.a.b \(0\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}+(-2-\beta )q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1680))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1680)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(840))\)\(^{\oplus 2}\)