Properties

Label 168.6.a.e.1.1
Level $168$
Weight $6$
Character 168.1
Self dual yes
Analytic conductor $26.944$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,6,Mod(1,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,9,0,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9444817286\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 168.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -38.0000 q^{5} -49.0000 q^{7} +81.0000 q^{9} +600.000 q^{11} -674.000 q^{13} -342.000 q^{15} +78.0000 q^{17} -916.000 q^{19} -441.000 q^{21} -4604.00 q^{23} -1681.00 q^{25} +729.000 q^{27} -6810.00 q^{29} +7912.00 q^{31} +5400.00 q^{33} +1862.00 q^{35} -9274.00 q^{37} -6066.00 q^{39} -242.000 q^{41} +1116.00 q^{43} -3078.00 q^{45} -28312.0 q^{47} +2401.00 q^{49} +702.000 q^{51} +10230.0 q^{53} -22800.0 q^{55} -8244.00 q^{57} -4108.00 q^{59} +15878.0 q^{61} -3969.00 q^{63} +25612.0 q^{65} -67668.0 q^{67} -41436.0 q^{69} -67492.0 q^{71} +1106.00 q^{73} -15129.0 q^{75} -29400.0 q^{77} +84152.0 q^{79} +6561.00 q^{81} -2908.00 q^{83} -2964.00 q^{85} -61290.0 q^{87} -8322.00 q^{89} +33026.0 q^{91} +71208.0 q^{93} +34808.0 q^{95} +130810. q^{97} +48600.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −38.0000 −0.679765 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 600.000 1.49510 0.747549 0.664207i \(-0.231231\pi\)
0.747549 + 0.664207i \(0.231231\pi\)
\(12\) 0 0
\(13\) −674.000 −1.10612 −0.553059 0.833142i \(-0.686540\pi\)
−0.553059 + 0.833142i \(0.686540\pi\)
\(14\) 0 0
\(15\) −342.000 −0.392462
\(16\) 0 0
\(17\) 78.0000 0.0654594 0.0327297 0.999464i \(-0.489580\pi\)
0.0327297 + 0.999464i \(0.489580\pi\)
\(18\) 0 0
\(19\) −916.000 −0.582119 −0.291059 0.956705i \(-0.594008\pi\)
−0.291059 + 0.956705i \(0.594008\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 0 0
\(23\) −4604.00 −1.81475 −0.907373 0.420327i \(-0.861915\pi\)
−0.907373 + 0.420327i \(0.861915\pi\)
\(24\) 0 0
\(25\) −1681.00 −0.537920
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −6810.00 −1.50367 −0.751834 0.659352i \(-0.770831\pi\)
−0.751834 + 0.659352i \(0.770831\pi\)
\(30\) 0 0
\(31\) 7912.00 1.47871 0.739353 0.673318i \(-0.235131\pi\)
0.739353 + 0.673318i \(0.235131\pi\)
\(32\) 0 0
\(33\) 5400.00 0.863195
\(34\) 0 0
\(35\) 1862.00 0.256927
\(36\) 0 0
\(37\) −9274.00 −1.11369 −0.556843 0.830618i \(-0.687988\pi\)
−0.556843 + 0.830618i \(0.687988\pi\)
\(38\) 0 0
\(39\) −6066.00 −0.638618
\(40\) 0 0
\(41\) −242.000 −0.0224831 −0.0112415 0.999937i \(-0.503578\pi\)
−0.0112415 + 0.999937i \(0.503578\pi\)
\(42\) 0 0
\(43\) 1116.00 0.0920435 0.0460217 0.998940i \(-0.485346\pi\)
0.0460217 + 0.998940i \(0.485346\pi\)
\(44\) 0 0
\(45\) −3078.00 −0.226588
\(46\) 0 0
\(47\) −28312.0 −1.86950 −0.934751 0.355304i \(-0.884377\pi\)
−0.934751 + 0.355304i \(0.884377\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 702.000 0.0377930
\(52\) 0 0
\(53\) 10230.0 0.500249 0.250124 0.968214i \(-0.419528\pi\)
0.250124 + 0.968214i \(0.419528\pi\)
\(54\) 0 0
\(55\) −22800.0 −1.01631
\(56\) 0 0
\(57\) −8244.00 −0.336086
\(58\) 0 0
\(59\) −4108.00 −0.153639 −0.0768193 0.997045i \(-0.524476\pi\)
−0.0768193 + 0.997045i \(0.524476\pi\)
\(60\) 0 0
\(61\) 15878.0 0.546350 0.273175 0.961964i \(-0.411926\pi\)
0.273175 + 0.961964i \(0.411926\pi\)
\(62\) 0 0
\(63\) −3969.00 −0.125988
\(64\) 0 0
\(65\) 25612.0 0.751900
\(66\) 0 0
\(67\) −67668.0 −1.84160 −0.920802 0.390030i \(-0.872465\pi\)
−0.920802 + 0.390030i \(0.872465\pi\)
\(68\) 0 0
\(69\) −41436.0 −1.04774
\(70\) 0 0
\(71\) −67492.0 −1.58894 −0.794468 0.607306i \(-0.792250\pi\)
−0.794468 + 0.607306i \(0.792250\pi\)
\(72\) 0 0
\(73\) 1106.00 0.0242911 0.0121456 0.999926i \(-0.496134\pi\)
0.0121456 + 0.999926i \(0.496134\pi\)
\(74\) 0 0
\(75\) −15129.0 −0.310568
\(76\) 0 0
\(77\) −29400.0 −0.565094
\(78\) 0 0
\(79\) 84152.0 1.51704 0.758519 0.651650i \(-0.225923\pi\)
0.758519 + 0.651650i \(0.225923\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −2908.00 −0.0463339 −0.0231670 0.999732i \(-0.507375\pi\)
−0.0231670 + 0.999732i \(0.507375\pi\)
\(84\) 0 0
\(85\) −2964.00 −0.0444970
\(86\) 0 0
\(87\) −61290.0 −0.868143
\(88\) 0 0
\(89\) −8322.00 −0.111366 −0.0556830 0.998448i \(-0.517734\pi\)
−0.0556830 + 0.998448i \(0.517734\pi\)
\(90\) 0 0
\(91\) 33026.0 0.418073
\(92\) 0 0
\(93\) 71208.0 0.853732
\(94\) 0 0
\(95\) 34808.0 0.395704
\(96\) 0 0
\(97\) 130810. 1.41160 0.705800 0.708411i \(-0.250588\pi\)
0.705800 + 0.708411i \(0.250588\pi\)
\(98\) 0 0
\(99\) 48600.0 0.498366
\(100\) 0 0
\(101\) 159794. 1.55868 0.779340 0.626601i \(-0.215554\pi\)
0.779340 + 0.626601i \(0.215554\pi\)
\(102\) 0 0
\(103\) −91440.0 −0.849265 −0.424632 0.905366i \(-0.639597\pi\)
−0.424632 + 0.905366i \(0.639597\pi\)
\(104\) 0 0
\(105\) 16758.0 0.148337
\(106\) 0 0
\(107\) −139480. −1.17775 −0.588874 0.808225i \(-0.700429\pi\)
−0.588874 + 0.808225i \(0.700429\pi\)
\(108\) 0 0
\(109\) 141758. 1.14283 0.571415 0.820662i \(-0.306395\pi\)
0.571415 + 0.820662i \(0.306395\pi\)
\(110\) 0 0
\(111\) −83466.0 −0.642987
\(112\) 0 0
\(113\) −81742.0 −0.602212 −0.301106 0.953591i \(-0.597356\pi\)
−0.301106 + 0.953591i \(0.597356\pi\)
\(114\) 0 0
\(115\) 174952. 1.23360
\(116\) 0 0
\(117\) −54594.0 −0.368706
\(118\) 0 0
\(119\) −3822.00 −0.0247413
\(120\) 0 0
\(121\) 198949. 1.23532
\(122\) 0 0
\(123\) −2178.00 −0.0129806
\(124\) 0 0
\(125\) 182628. 1.04542
\(126\) 0 0
\(127\) 90488.0 0.497831 0.248915 0.968525i \(-0.419926\pi\)
0.248915 + 0.968525i \(0.419926\pi\)
\(128\) 0 0
\(129\) 10044.0 0.0531413
\(130\) 0 0
\(131\) 187476. 0.954481 0.477241 0.878773i \(-0.341637\pi\)
0.477241 + 0.878773i \(0.341637\pi\)
\(132\) 0 0
\(133\) 44884.0 0.220020
\(134\) 0 0
\(135\) −27702.0 −0.130821
\(136\) 0 0
\(137\) 168482. 0.766924 0.383462 0.923557i \(-0.374732\pi\)
0.383462 + 0.923557i \(0.374732\pi\)
\(138\) 0 0
\(139\) 668.000 0.00293251 0.00146625 0.999999i \(-0.499533\pi\)
0.00146625 + 0.999999i \(0.499533\pi\)
\(140\) 0 0
\(141\) −254808. −1.07936
\(142\) 0 0
\(143\) −404400. −1.65375
\(144\) 0 0
\(145\) 258780. 1.02214
\(146\) 0 0
\(147\) 21609.0 0.0824786
\(148\) 0 0
\(149\) −300618. −1.10930 −0.554650 0.832084i \(-0.687148\pi\)
−0.554650 + 0.832084i \(0.687148\pi\)
\(150\) 0 0
\(151\) 359032. 1.28142 0.640709 0.767784i \(-0.278641\pi\)
0.640709 + 0.767784i \(0.278641\pi\)
\(152\) 0 0
\(153\) 6318.00 0.0218198
\(154\) 0 0
\(155\) −300656. −1.00517
\(156\) 0 0
\(157\) 110822. 0.358820 0.179410 0.983774i \(-0.442581\pi\)
0.179410 + 0.983774i \(0.442581\pi\)
\(158\) 0 0
\(159\) 92070.0 0.288819
\(160\) 0 0
\(161\) 225596. 0.685909
\(162\) 0 0
\(163\) 372380. 1.09779 0.548893 0.835893i \(-0.315050\pi\)
0.548893 + 0.835893i \(0.315050\pi\)
\(164\) 0 0
\(165\) −205200. −0.586769
\(166\) 0 0
\(167\) −109600. −0.304102 −0.152051 0.988373i \(-0.548588\pi\)
−0.152051 + 0.988373i \(0.548588\pi\)
\(168\) 0 0
\(169\) 82983.0 0.223497
\(170\) 0 0
\(171\) −74196.0 −0.194040
\(172\) 0 0
\(173\) −388598. −0.987155 −0.493577 0.869702i \(-0.664311\pi\)
−0.493577 + 0.869702i \(0.664311\pi\)
\(174\) 0 0
\(175\) 82369.0 0.203315
\(176\) 0 0
\(177\) −36972.0 −0.0887033
\(178\) 0 0
\(179\) −241656. −0.563722 −0.281861 0.959455i \(-0.590952\pi\)
−0.281861 + 0.959455i \(0.590952\pi\)
\(180\) 0 0
\(181\) 190854. 0.433017 0.216508 0.976281i \(-0.430533\pi\)
0.216508 + 0.976281i \(0.430533\pi\)
\(182\) 0 0
\(183\) 142902. 0.315436
\(184\) 0 0
\(185\) 352412. 0.757044
\(186\) 0 0
\(187\) 46800.0 0.0978683
\(188\) 0 0
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 253300. 0.502402 0.251201 0.967935i \(-0.419174\pi\)
0.251201 + 0.967935i \(0.419174\pi\)
\(192\) 0 0
\(193\) −712302. −1.37648 −0.688242 0.725482i \(-0.741617\pi\)
−0.688242 + 0.725482i \(0.741617\pi\)
\(194\) 0 0
\(195\) 230508. 0.434110
\(196\) 0 0
\(197\) −107194. −0.196791 −0.0983954 0.995147i \(-0.531371\pi\)
−0.0983954 + 0.995147i \(0.531371\pi\)
\(198\) 0 0
\(199\) −956952. −1.71300 −0.856500 0.516147i \(-0.827366\pi\)
−0.856500 + 0.516147i \(0.827366\pi\)
\(200\) 0 0
\(201\) −609012. −1.06325
\(202\) 0 0
\(203\) 333690. 0.568333
\(204\) 0 0
\(205\) 9196.00 0.0152832
\(206\) 0 0
\(207\) −372924. −0.604915
\(208\) 0 0
\(209\) −549600. −0.870324
\(210\) 0 0
\(211\) −320700. −0.495899 −0.247949 0.968773i \(-0.579757\pi\)
−0.247949 + 0.968773i \(0.579757\pi\)
\(212\) 0 0
\(213\) −607428. −0.917373
\(214\) 0 0
\(215\) −42408.0 −0.0625679
\(216\) 0 0
\(217\) −387688. −0.558899
\(218\) 0 0
\(219\) 9954.00 0.0140245
\(220\) 0 0
\(221\) −52572.0 −0.0724059
\(222\) 0 0
\(223\) 1.06840e6 1.43870 0.719352 0.694645i \(-0.244439\pi\)
0.719352 + 0.694645i \(0.244439\pi\)
\(224\) 0 0
\(225\) −136161. −0.179307
\(226\) 0 0
\(227\) −806820. −1.03923 −0.519615 0.854400i \(-0.673925\pi\)
−0.519615 + 0.854400i \(0.673925\pi\)
\(228\) 0 0
\(229\) 1.21661e6 1.53308 0.766539 0.642198i \(-0.221977\pi\)
0.766539 + 0.642198i \(0.221977\pi\)
\(230\) 0 0
\(231\) −264600. −0.326257
\(232\) 0 0
\(233\) 214722. 0.259112 0.129556 0.991572i \(-0.458645\pi\)
0.129556 + 0.991572i \(0.458645\pi\)
\(234\) 0 0
\(235\) 1.07586e6 1.27082
\(236\) 0 0
\(237\) 757368. 0.875863
\(238\) 0 0
\(239\) −615780. −0.697318 −0.348659 0.937250i \(-0.613363\pi\)
−0.348659 + 0.937250i \(0.613363\pi\)
\(240\) 0 0
\(241\) −995590. −1.10418 −0.552088 0.833786i \(-0.686169\pi\)
−0.552088 + 0.833786i \(0.686169\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −91238.0 −0.0971092
\(246\) 0 0
\(247\) 617384. 0.643892
\(248\) 0 0
\(249\) −26172.0 −0.0267509
\(250\) 0 0
\(251\) −169340. −0.169658 −0.0848292 0.996396i \(-0.527034\pi\)
−0.0848292 + 0.996396i \(0.527034\pi\)
\(252\) 0 0
\(253\) −2.76240e6 −2.71322
\(254\) 0 0
\(255\) −26676.0 −0.0256904
\(256\) 0 0
\(257\) 1.67825e6 1.58498 0.792488 0.609887i \(-0.208785\pi\)
0.792488 + 0.609887i \(0.208785\pi\)
\(258\) 0 0
\(259\) 454426. 0.420934
\(260\) 0 0
\(261\) −551610. −0.501223
\(262\) 0 0
\(263\) −1.77507e6 −1.58243 −0.791217 0.611535i \(-0.790552\pi\)
−0.791217 + 0.611535i \(0.790552\pi\)
\(264\) 0 0
\(265\) −388740. −0.340051
\(266\) 0 0
\(267\) −74898.0 −0.0642972
\(268\) 0 0
\(269\) −15646.0 −0.0131833 −0.00659163 0.999978i \(-0.502098\pi\)
−0.00659163 + 0.999978i \(0.502098\pi\)
\(270\) 0 0
\(271\) −635672. −0.525787 −0.262894 0.964825i \(-0.584677\pi\)
−0.262894 + 0.964825i \(0.584677\pi\)
\(272\) 0 0
\(273\) 297234. 0.241375
\(274\) 0 0
\(275\) −1.00860e6 −0.804243
\(276\) 0 0
\(277\) −92218.0 −0.0722131 −0.0361066 0.999348i \(-0.511496\pi\)
−0.0361066 + 0.999348i \(0.511496\pi\)
\(278\) 0 0
\(279\) 640872. 0.492902
\(280\) 0 0
\(281\) −1.15678e6 −0.873948 −0.436974 0.899474i \(-0.643950\pi\)
−0.436974 + 0.899474i \(0.643950\pi\)
\(282\) 0 0
\(283\) 1.97380e6 1.46500 0.732498 0.680770i \(-0.238355\pi\)
0.732498 + 0.680770i \(0.238355\pi\)
\(284\) 0 0
\(285\) 313272. 0.228460
\(286\) 0 0
\(287\) 11858.0 0.00849780
\(288\) 0 0
\(289\) −1.41377e6 −0.995715
\(290\) 0 0
\(291\) 1.17729e6 0.814988
\(292\) 0 0
\(293\) −113966. −0.0775544 −0.0387772 0.999248i \(-0.512346\pi\)
−0.0387772 + 0.999248i \(0.512346\pi\)
\(294\) 0 0
\(295\) 156104. 0.104438
\(296\) 0 0
\(297\) 437400. 0.287732
\(298\) 0 0
\(299\) 3.10310e6 2.00732
\(300\) 0 0
\(301\) −54684.0 −0.0347892
\(302\) 0 0
\(303\) 1.43815e6 0.899904
\(304\) 0 0
\(305\) −603364. −0.371390
\(306\) 0 0
\(307\) 2.18500e6 1.32314 0.661571 0.749883i \(-0.269890\pi\)
0.661571 + 0.749883i \(0.269890\pi\)
\(308\) 0 0
\(309\) −822960. −0.490323
\(310\) 0 0
\(311\) −365520. −0.214294 −0.107147 0.994243i \(-0.534172\pi\)
−0.107147 + 0.994243i \(0.534172\pi\)
\(312\) 0 0
\(313\) 1.24550e6 0.718592 0.359296 0.933224i \(-0.383017\pi\)
0.359296 + 0.933224i \(0.383017\pi\)
\(314\) 0 0
\(315\) 150822. 0.0856423
\(316\) 0 0
\(317\) 1.79646e6 1.00408 0.502042 0.864843i \(-0.332582\pi\)
0.502042 + 0.864843i \(0.332582\pi\)
\(318\) 0 0
\(319\) −4.08600e6 −2.24813
\(320\) 0 0
\(321\) −1.25532e6 −0.679973
\(322\) 0 0
\(323\) −71448.0 −0.0381052
\(324\) 0 0
\(325\) 1.13299e6 0.595003
\(326\) 0 0
\(327\) 1.27582e6 0.659813
\(328\) 0 0
\(329\) 1.38729e6 0.706605
\(330\) 0 0
\(331\) 1.55840e6 0.781822 0.390911 0.920428i \(-0.372160\pi\)
0.390911 + 0.920428i \(0.372160\pi\)
\(332\) 0 0
\(333\) −751194. −0.371229
\(334\) 0 0
\(335\) 2.57138e6 1.25186
\(336\) 0 0
\(337\) −1.33472e6 −0.640199 −0.320099 0.947384i \(-0.603716\pi\)
−0.320099 + 0.947384i \(0.603716\pi\)
\(338\) 0 0
\(339\) −735678. −0.347687
\(340\) 0 0
\(341\) 4.74720e6 2.21081
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 1.57457e6 0.712219
\(346\) 0 0
\(347\) 3.56086e6 1.58757 0.793783 0.608201i \(-0.208109\pi\)
0.793783 + 0.608201i \(0.208109\pi\)
\(348\) 0 0
\(349\) −1.60451e6 −0.705144 −0.352572 0.935785i \(-0.614693\pi\)
−0.352572 + 0.935785i \(0.614693\pi\)
\(350\) 0 0
\(351\) −491346. −0.212873
\(352\) 0 0
\(353\) −384290. −0.164143 −0.0820715 0.996626i \(-0.526154\pi\)
−0.0820715 + 0.996626i \(0.526154\pi\)
\(354\) 0 0
\(355\) 2.56470e6 1.08010
\(356\) 0 0
\(357\) −34398.0 −0.0142844
\(358\) 0 0
\(359\) −500532. −0.204973 −0.102486 0.994734i \(-0.532680\pi\)
−0.102486 + 0.994734i \(0.532680\pi\)
\(360\) 0 0
\(361\) −1.63704e6 −0.661138
\(362\) 0 0
\(363\) 1.79054e6 0.713210
\(364\) 0 0
\(365\) −42028.0 −0.0165123
\(366\) 0 0
\(367\) −4.13210e6 −1.60142 −0.800710 0.599052i \(-0.795544\pi\)
−0.800710 + 0.599052i \(0.795544\pi\)
\(368\) 0 0
\(369\) −19602.0 −0.00749436
\(370\) 0 0
\(371\) −501270. −0.189076
\(372\) 0 0
\(373\) 3.41287e6 1.27013 0.635064 0.772459i \(-0.280974\pi\)
0.635064 + 0.772459i \(0.280974\pi\)
\(374\) 0 0
\(375\) 1.64365e6 0.603576
\(376\) 0 0
\(377\) 4.58994e6 1.66324
\(378\) 0 0
\(379\) −3.16959e6 −1.13346 −0.566728 0.823905i \(-0.691791\pi\)
−0.566728 + 0.823905i \(0.691791\pi\)
\(380\) 0 0
\(381\) 814392. 0.287423
\(382\) 0 0
\(383\) −5.07848e6 −1.76904 −0.884518 0.466506i \(-0.845513\pi\)
−0.884518 + 0.466506i \(0.845513\pi\)
\(384\) 0 0
\(385\) 1.11720e6 0.384131
\(386\) 0 0
\(387\) 90396.0 0.0306812
\(388\) 0 0
\(389\) 1.57224e6 0.526798 0.263399 0.964687i \(-0.415156\pi\)
0.263399 + 0.964687i \(0.415156\pi\)
\(390\) 0 0
\(391\) −359112. −0.118792
\(392\) 0 0
\(393\) 1.68728e6 0.551070
\(394\) 0 0
\(395\) −3.19778e6 −1.03123
\(396\) 0 0
\(397\) −3.00804e6 −0.957872 −0.478936 0.877850i \(-0.658977\pi\)
−0.478936 + 0.877850i \(0.658977\pi\)
\(398\) 0 0
\(399\) 403956. 0.127029
\(400\) 0 0
\(401\) −54406.0 −0.0168961 −0.00844804 0.999964i \(-0.502689\pi\)
−0.00844804 + 0.999964i \(0.502689\pi\)
\(402\) 0 0
\(403\) −5.33269e6 −1.63562
\(404\) 0 0
\(405\) −249318. −0.0755294
\(406\) 0 0
\(407\) −5.56440e6 −1.66507
\(408\) 0 0
\(409\) −2.07030e6 −0.611963 −0.305982 0.952037i \(-0.598985\pi\)
−0.305982 + 0.952037i \(0.598985\pi\)
\(410\) 0 0
\(411\) 1.51634e6 0.442784
\(412\) 0 0
\(413\) 201292. 0.0580699
\(414\) 0 0
\(415\) 110504. 0.0314962
\(416\) 0 0
\(417\) 6012.00 0.00169309
\(418\) 0 0
\(419\) 1.48062e6 0.412011 0.206005 0.978551i \(-0.433954\pi\)
0.206005 + 0.978551i \(0.433954\pi\)
\(420\) 0 0
\(421\) −2.22283e6 −0.611224 −0.305612 0.952156i \(-0.598861\pi\)
−0.305612 + 0.952156i \(0.598861\pi\)
\(422\) 0 0
\(423\) −2.29327e6 −0.623167
\(424\) 0 0
\(425\) −131118. −0.0352119
\(426\) 0 0
\(427\) −778022. −0.206501
\(428\) 0 0
\(429\) −3.63960e6 −0.954796
\(430\) 0 0
\(431\) −1.96259e6 −0.508904 −0.254452 0.967085i \(-0.581895\pi\)
−0.254452 + 0.967085i \(0.581895\pi\)
\(432\) 0 0
\(433\) 1.92503e6 0.493420 0.246710 0.969089i \(-0.420650\pi\)
0.246710 + 0.969089i \(0.420650\pi\)
\(434\) 0 0
\(435\) 2.32902e6 0.590133
\(436\) 0 0
\(437\) 4.21726e6 1.05640
\(438\) 0 0
\(439\) 1.68838e6 0.418127 0.209063 0.977902i \(-0.432959\pi\)
0.209063 + 0.977902i \(0.432959\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) 7.37277e6 1.78493 0.892465 0.451116i \(-0.148974\pi\)
0.892465 + 0.451116i \(0.148974\pi\)
\(444\) 0 0
\(445\) 316236. 0.0757027
\(446\) 0 0
\(447\) −2.70556e6 −0.640455
\(448\) 0 0
\(449\) −4.61309e6 −1.07988 −0.539940 0.841703i \(-0.681553\pi\)
−0.539940 + 0.841703i \(0.681553\pi\)
\(450\) 0 0
\(451\) −145200. −0.0336144
\(452\) 0 0
\(453\) 3.23129e6 0.739827
\(454\) 0 0
\(455\) −1.25499e6 −0.284191
\(456\) 0 0
\(457\) −5.75663e6 −1.28937 −0.644685 0.764448i \(-0.723012\pi\)
−0.644685 + 0.764448i \(0.723012\pi\)
\(458\) 0 0
\(459\) 56862.0 0.0125977
\(460\) 0 0
\(461\) 5.67782e6 1.24431 0.622156 0.782893i \(-0.286257\pi\)
0.622156 + 0.782893i \(0.286257\pi\)
\(462\) 0 0
\(463\) −8.06452e6 −1.74834 −0.874170 0.485619i \(-0.838594\pi\)
−0.874170 + 0.485619i \(0.838594\pi\)
\(464\) 0 0
\(465\) −2.70590e6 −0.580337
\(466\) 0 0
\(467\) −6.92248e6 −1.46882 −0.734412 0.678704i \(-0.762542\pi\)
−0.734412 + 0.678704i \(0.762542\pi\)
\(468\) 0 0
\(469\) 3.31573e6 0.696061
\(470\) 0 0
\(471\) 997398. 0.207165
\(472\) 0 0
\(473\) 669600. 0.137614
\(474\) 0 0
\(475\) 1.53980e6 0.313133
\(476\) 0 0
\(477\) 828630. 0.166750
\(478\) 0 0
\(479\) −8.33297e6 −1.65944 −0.829719 0.558182i \(-0.811499\pi\)
−0.829719 + 0.558182i \(0.811499\pi\)
\(480\) 0 0
\(481\) 6.25068e6 1.23187
\(482\) 0 0
\(483\) 2.03036e6 0.396010
\(484\) 0 0
\(485\) −4.97078e6 −0.959556
\(486\) 0 0
\(487\) 496792. 0.0949188 0.0474594 0.998873i \(-0.484888\pi\)
0.0474594 + 0.998873i \(0.484888\pi\)
\(488\) 0 0
\(489\) 3.35142e6 0.633807
\(490\) 0 0
\(491\) −760704. −0.142401 −0.0712003 0.997462i \(-0.522683\pi\)
−0.0712003 + 0.997462i \(0.522683\pi\)
\(492\) 0 0
\(493\) −531180. −0.0984293
\(494\) 0 0
\(495\) −1.84680e6 −0.338772
\(496\) 0 0
\(497\) 3.30711e6 0.600561
\(498\) 0 0
\(499\) 2.19192e6 0.394071 0.197035 0.980396i \(-0.436869\pi\)
0.197035 + 0.980396i \(0.436869\pi\)
\(500\) 0 0
\(501\) −986400. −0.175573
\(502\) 0 0
\(503\) −790680. −0.139342 −0.0696708 0.997570i \(-0.522195\pi\)
−0.0696708 + 0.997570i \(0.522195\pi\)
\(504\) 0 0
\(505\) −6.07217e6 −1.05954
\(506\) 0 0
\(507\) 746847. 0.129036
\(508\) 0 0
\(509\) 2.75272e6 0.470943 0.235471 0.971881i \(-0.424337\pi\)
0.235471 + 0.971881i \(0.424337\pi\)
\(510\) 0 0
\(511\) −54194.0 −0.00918119
\(512\) 0 0
\(513\) −667764. −0.112029
\(514\) 0 0
\(515\) 3.47472e6 0.577300
\(516\) 0 0
\(517\) −1.69872e7 −2.79509
\(518\) 0 0
\(519\) −3.49738e6 −0.569934
\(520\) 0 0
\(521\) −6.27911e6 −1.01345 −0.506727 0.862107i \(-0.669145\pi\)
−0.506727 + 0.862107i \(0.669145\pi\)
\(522\) 0 0
\(523\) −5.60610e6 −0.896203 −0.448102 0.893983i \(-0.647900\pi\)
−0.448102 + 0.893983i \(0.647900\pi\)
\(524\) 0 0
\(525\) 741321. 0.117384
\(526\) 0 0
\(527\) 617136. 0.0967953
\(528\) 0 0
\(529\) 1.47605e7 2.29330
\(530\) 0 0
\(531\) −332748. −0.0512129
\(532\) 0 0
\(533\) 163108. 0.0248689
\(534\) 0 0
\(535\) 5.30024e6 0.800592
\(536\) 0 0
\(537\) −2.17490e6 −0.325465
\(538\) 0 0
\(539\) 1.44060e6 0.213585
\(540\) 0 0
\(541\) 3.31128e6 0.486410 0.243205 0.969975i \(-0.421801\pi\)
0.243205 + 0.969975i \(0.421801\pi\)
\(542\) 0 0
\(543\) 1.71769e6 0.250002
\(544\) 0 0
\(545\) −5.38680e6 −0.776855
\(546\) 0 0
\(547\) 5.66566e6 0.809622 0.404811 0.914400i \(-0.367337\pi\)
0.404811 + 0.914400i \(0.367337\pi\)
\(548\) 0 0
\(549\) 1.28612e6 0.182117
\(550\) 0 0
\(551\) 6.23796e6 0.875313
\(552\) 0 0
\(553\) −4.12345e6 −0.573387
\(554\) 0 0
\(555\) 3.17171e6 0.437080
\(556\) 0 0
\(557\) −6.36880e6 −0.869801 −0.434900 0.900479i \(-0.643216\pi\)
−0.434900 + 0.900479i \(0.643216\pi\)
\(558\) 0 0
\(559\) −752184. −0.101811
\(560\) 0 0
\(561\) 421200. 0.0565043
\(562\) 0 0
\(563\) 181404. 0.0241199 0.0120600 0.999927i \(-0.496161\pi\)
0.0120600 + 0.999927i \(0.496161\pi\)
\(564\) 0 0
\(565\) 3.10620e6 0.409362
\(566\) 0 0
\(567\) −321489. −0.0419961
\(568\) 0 0
\(569\) −5.02851e6 −0.651116 −0.325558 0.945522i \(-0.605552\pi\)
−0.325558 + 0.945522i \(0.605552\pi\)
\(570\) 0 0
\(571\) −7.57430e6 −0.972192 −0.486096 0.873905i \(-0.661580\pi\)
−0.486096 + 0.873905i \(0.661580\pi\)
\(572\) 0 0
\(573\) 2.27970e6 0.290062
\(574\) 0 0
\(575\) 7.73932e6 0.976188
\(576\) 0 0
\(577\) 1.52011e7 1.90080 0.950400 0.311029i \(-0.100674\pi\)
0.950400 + 0.311029i \(0.100674\pi\)
\(578\) 0 0
\(579\) −6.41072e6 −0.794713
\(580\) 0 0
\(581\) 142492. 0.0175126
\(582\) 0 0
\(583\) 6.13800e6 0.747921
\(584\) 0 0
\(585\) 2.07457e6 0.250633
\(586\) 0 0
\(587\) 4.64015e6 0.555823 0.277912 0.960607i \(-0.410358\pi\)
0.277912 + 0.960607i \(0.410358\pi\)
\(588\) 0 0
\(589\) −7.24739e6 −0.860783
\(590\) 0 0
\(591\) −964746. −0.113617
\(592\) 0 0
\(593\) −4.18658e6 −0.488903 −0.244451 0.969662i \(-0.578608\pi\)
−0.244451 + 0.969662i \(0.578608\pi\)
\(594\) 0 0
\(595\) 145236. 0.0168183
\(596\) 0 0
\(597\) −8.61257e6 −0.989001
\(598\) 0 0
\(599\) −1.02901e7 −1.17180 −0.585898 0.810385i \(-0.699258\pi\)
−0.585898 + 0.810385i \(0.699258\pi\)
\(600\) 0 0
\(601\) 1.43512e7 1.62070 0.810349 0.585947i \(-0.199277\pi\)
0.810349 + 0.585947i \(0.199277\pi\)
\(602\) 0 0
\(603\) −5.48111e6 −0.613868
\(604\) 0 0
\(605\) −7.56006e6 −0.839725
\(606\) 0 0
\(607\) 1.09870e7 1.21034 0.605169 0.796097i \(-0.293106\pi\)
0.605169 + 0.796097i \(0.293106\pi\)
\(608\) 0 0
\(609\) 3.00321e6 0.328127
\(610\) 0 0
\(611\) 1.90823e7 2.06789
\(612\) 0 0
\(613\) 3.00637e6 0.323141 0.161570 0.986861i \(-0.448344\pi\)
0.161570 + 0.986861i \(0.448344\pi\)
\(614\) 0 0
\(615\) 82764.0 0.00882376
\(616\) 0 0
\(617\) 1.82040e7 1.92510 0.962550 0.271105i \(-0.0873890\pi\)
0.962550 + 0.271105i \(0.0873890\pi\)
\(618\) 0 0
\(619\) 6.45803e6 0.677444 0.338722 0.940887i \(-0.390005\pi\)
0.338722 + 0.940887i \(0.390005\pi\)
\(620\) 0 0
\(621\) −3.35632e6 −0.349248
\(622\) 0 0
\(623\) 407778. 0.0420924
\(624\) 0 0
\(625\) −1.68674e6 −0.172722
\(626\) 0 0
\(627\) −4.94640e6 −0.502482
\(628\) 0 0
\(629\) −723372. −0.0729013
\(630\) 0 0
\(631\) 3.59598e6 0.359538 0.179769 0.983709i \(-0.442465\pi\)
0.179769 + 0.983709i \(0.442465\pi\)
\(632\) 0 0
\(633\) −2.88630e6 −0.286307
\(634\) 0 0
\(635\) −3.43854e6 −0.338408
\(636\) 0 0
\(637\) −1.61827e6 −0.158017
\(638\) 0 0
\(639\) −5.46685e6 −0.529645
\(640\) 0 0
\(641\) 6.54433e6 0.629101 0.314550 0.949241i \(-0.398146\pi\)
0.314550 + 0.949241i \(0.398146\pi\)
\(642\) 0 0
\(643\) 1.48417e7 1.41565 0.707827 0.706386i \(-0.249676\pi\)
0.707827 + 0.706386i \(0.249676\pi\)
\(644\) 0 0
\(645\) −381672. −0.0361236
\(646\) 0 0
\(647\) 4.34043e6 0.407636 0.203818 0.979009i \(-0.434665\pi\)
0.203818 + 0.979009i \(0.434665\pi\)
\(648\) 0 0
\(649\) −2.46480e6 −0.229705
\(650\) 0 0
\(651\) −3.48919e6 −0.322680
\(652\) 0 0
\(653\) 5.31207e6 0.487507 0.243753 0.969837i \(-0.421621\pi\)
0.243753 + 0.969837i \(0.421621\pi\)
\(654\) 0 0
\(655\) −7.12409e6 −0.648823
\(656\) 0 0
\(657\) 89586.0 0.00809705
\(658\) 0 0
\(659\) −2.78371e6 −0.249696 −0.124848 0.992176i \(-0.539844\pi\)
−0.124848 + 0.992176i \(0.539844\pi\)
\(660\) 0 0
\(661\) 2.01522e7 1.79398 0.896992 0.442047i \(-0.145747\pi\)
0.896992 + 0.442047i \(0.145747\pi\)
\(662\) 0 0
\(663\) −473148. −0.0418036
\(664\) 0 0
\(665\) −1.70559e6 −0.149562
\(666\) 0 0
\(667\) 3.13532e7 2.72878
\(668\) 0 0
\(669\) 9.61560e6 0.830637
\(670\) 0 0
\(671\) 9.52680e6 0.816847
\(672\) 0 0
\(673\) −1.26277e7 −1.07470 −0.537349 0.843360i \(-0.680574\pi\)
−0.537349 + 0.843360i \(0.680574\pi\)
\(674\) 0 0
\(675\) −1.22545e6 −0.103523
\(676\) 0 0
\(677\) −6.94541e6 −0.582406 −0.291203 0.956661i \(-0.594056\pi\)
−0.291203 + 0.956661i \(0.594056\pi\)
\(678\) 0 0
\(679\) −6.40969e6 −0.533535
\(680\) 0 0
\(681\) −7.26138e6 −0.600000
\(682\) 0 0
\(683\) −278144. −0.0228149 −0.0114074 0.999935i \(-0.503631\pi\)
−0.0114074 + 0.999935i \(0.503631\pi\)
\(684\) 0 0
\(685\) −6.40232e6 −0.521328
\(686\) 0 0
\(687\) 1.09495e7 0.885123
\(688\) 0 0
\(689\) −6.89502e6 −0.553334
\(690\) 0 0
\(691\) −6.38656e6 −0.508829 −0.254414 0.967095i \(-0.581883\pi\)
−0.254414 + 0.967095i \(0.581883\pi\)
\(692\) 0 0
\(693\) −2.38140e6 −0.188365
\(694\) 0 0
\(695\) −25384.0 −0.00199342
\(696\) 0 0
\(697\) −18876.0 −0.00147173
\(698\) 0 0
\(699\) 1.93250e6 0.149598
\(700\) 0 0
\(701\) −1.26602e7 −0.973075 −0.486537 0.873660i \(-0.661740\pi\)
−0.486537 + 0.873660i \(0.661740\pi\)
\(702\) 0 0
\(703\) 8.49498e6 0.648297
\(704\) 0 0
\(705\) 9.68270e6 0.733709
\(706\) 0 0
\(707\) −7.82991e6 −0.589126
\(708\) 0 0
\(709\) −1.29990e7 −0.971169 −0.485585 0.874190i \(-0.661393\pi\)
−0.485585 + 0.874190i \(0.661393\pi\)
\(710\) 0 0
\(711\) 6.81631e6 0.505680
\(712\) 0 0
\(713\) −3.64268e7 −2.68348
\(714\) 0 0
\(715\) 1.53672e7 1.12416
\(716\) 0 0
\(717\) −5.54202e6 −0.402597
\(718\) 0 0
\(719\) 1.27912e6 0.0922761 0.0461380 0.998935i \(-0.485309\pi\)
0.0461380 + 0.998935i \(0.485309\pi\)
\(720\) 0 0
\(721\) 4.48056e6 0.320992
\(722\) 0 0
\(723\) −8.96031e6 −0.637496
\(724\) 0 0
\(725\) 1.14476e7 0.808853
\(726\) 0 0
\(727\) −2.01247e7 −1.41219 −0.706097 0.708115i \(-0.749546\pi\)
−0.706097 + 0.708115i \(0.749546\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 87048.0 0.00602512
\(732\) 0 0
\(733\) 2.59171e7 1.78167 0.890835 0.454328i \(-0.150121\pi\)
0.890835 + 0.454328i \(0.150121\pi\)
\(734\) 0 0
\(735\) −821142. −0.0560660
\(736\) 0 0
\(737\) −4.06008e7 −2.75338
\(738\) 0 0
\(739\) 2.57638e6 0.173540 0.0867698 0.996228i \(-0.472346\pi\)
0.0867698 + 0.996228i \(0.472346\pi\)
\(740\) 0 0
\(741\) 5.55646e6 0.371751
\(742\) 0 0
\(743\) 2.36046e7 1.56865 0.784323 0.620353i \(-0.213010\pi\)
0.784323 + 0.620353i \(0.213010\pi\)
\(744\) 0 0
\(745\) 1.14235e7 0.754063
\(746\) 0 0
\(747\) −235548. −0.0154446
\(748\) 0 0
\(749\) 6.83452e6 0.445147
\(750\) 0 0
\(751\) −9.32237e6 −0.603151 −0.301576 0.953442i \(-0.597513\pi\)
−0.301576 + 0.953442i \(0.597513\pi\)
\(752\) 0 0
\(753\) −1.52406e6 −0.0979523
\(754\) 0 0
\(755\) −1.36432e7 −0.871063
\(756\) 0 0
\(757\) 1.90696e7 1.20949 0.604744 0.796420i \(-0.293276\pi\)
0.604744 + 0.796420i \(0.293276\pi\)
\(758\) 0 0
\(759\) −2.48616e7 −1.56648
\(760\) 0 0
\(761\) −6.87530e6 −0.430358 −0.215179 0.976575i \(-0.569033\pi\)
−0.215179 + 0.976575i \(0.569033\pi\)
\(762\) 0 0
\(763\) −6.94614e6 −0.431949
\(764\) 0 0
\(765\) −240084. −0.0148323
\(766\) 0 0
\(767\) 2.76879e6 0.169942
\(768\) 0 0
\(769\) 1.90337e7 1.16067 0.580334 0.814379i \(-0.302922\pi\)
0.580334 + 0.814379i \(0.302922\pi\)
\(770\) 0 0
\(771\) 1.51042e7 0.915087
\(772\) 0 0
\(773\) 1.64278e7 0.988851 0.494426 0.869220i \(-0.335378\pi\)
0.494426 + 0.869220i \(0.335378\pi\)
\(774\) 0 0
\(775\) −1.33001e7 −0.795426
\(776\) 0 0
\(777\) 4.08983e6 0.243026
\(778\) 0 0
\(779\) 221672. 0.0130878
\(780\) 0 0
\(781\) −4.04952e7 −2.37561
\(782\) 0 0
\(783\) −4.96449e6 −0.289381
\(784\) 0 0
\(785\) −4.21124e6 −0.243913
\(786\) 0 0
\(787\) −4.19153e6 −0.241233 −0.120616 0.992699i \(-0.538487\pi\)
−0.120616 + 0.992699i \(0.538487\pi\)
\(788\) 0 0
\(789\) −1.59756e7 −0.913619
\(790\) 0 0
\(791\) 4.00536e6 0.227615
\(792\) 0 0
\(793\) −1.07018e7 −0.604328
\(794\) 0 0
\(795\) −3.49866e6 −0.196329
\(796\) 0 0
\(797\) −1.28046e7 −0.714035 −0.357018 0.934098i \(-0.616206\pi\)
−0.357018 + 0.934098i \(0.616206\pi\)
\(798\) 0 0
\(799\) −2.20834e6 −0.122377
\(800\) 0 0
\(801\) −674082. −0.0371220
\(802\) 0 0
\(803\) 663600. 0.0363176
\(804\) 0 0
\(805\) −8.57265e6 −0.466257
\(806\) 0 0
\(807\) −140814. −0.00761136
\(808\) 0 0
\(809\) −1.33669e7 −0.718057 −0.359029 0.933327i \(-0.616892\pi\)
−0.359029 + 0.933327i \(0.616892\pi\)
\(810\) 0 0
\(811\) −3.51226e7 −1.87514 −0.937571 0.347794i \(-0.886931\pi\)
−0.937571 + 0.347794i \(0.886931\pi\)
\(812\) 0 0
\(813\) −5.72105e6 −0.303563
\(814\) 0 0
\(815\) −1.41504e7 −0.746236
\(816\) 0 0
\(817\) −1.02226e6 −0.0535802
\(818\) 0 0
\(819\) 2.67511e6 0.139358
\(820\) 0 0
\(821\) −2.66290e7 −1.37878 −0.689392 0.724389i \(-0.742122\pi\)
−0.689392 + 0.724389i \(0.742122\pi\)
\(822\) 0 0
\(823\) −1.11835e7 −0.575545 −0.287773 0.957699i \(-0.592915\pi\)
−0.287773 + 0.957699i \(0.592915\pi\)
\(824\) 0 0
\(825\) −9.07740e6 −0.464330
\(826\) 0 0
\(827\) −2.56108e6 −0.130215 −0.0651073 0.997878i \(-0.520739\pi\)
−0.0651073 + 0.997878i \(0.520739\pi\)
\(828\) 0 0
\(829\) 2.27188e7 1.14815 0.574076 0.818802i \(-0.305362\pi\)
0.574076 + 0.818802i \(0.305362\pi\)
\(830\) 0 0
\(831\) −829962. −0.0416923
\(832\) 0 0
\(833\) 187278. 0.00935135
\(834\) 0 0
\(835\) 4.16480e6 0.206718
\(836\) 0 0
\(837\) 5.76785e6 0.284577
\(838\) 0 0
\(839\) 3.94627e7 1.93545 0.967725 0.252007i \(-0.0810907\pi\)
0.967725 + 0.252007i \(0.0810907\pi\)
\(840\) 0 0
\(841\) 2.58650e7 1.26102
\(842\) 0 0
\(843\) −1.04110e7 −0.504574
\(844\) 0 0
\(845\) −3.15335e6 −0.151926
\(846\) 0 0
\(847\) −9.74850e6 −0.466906
\(848\) 0 0
\(849\) 1.77642e7 0.845815
\(850\) 0 0
\(851\) 4.26975e7 2.02106
\(852\) 0 0
\(853\) −2.87657e7 −1.35364 −0.676818 0.736150i \(-0.736642\pi\)
−0.676818 + 0.736150i \(0.736642\pi\)
\(854\) 0 0
\(855\) 2.81945e6 0.131901
\(856\) 0 0
\(857\) −1.40799e7 −0.654860 −0.327430 0.944875i \(-0.606183\pi\)
−0.327430 + 0.944875i \(0.606183\pi\)
\(858\) 0 0
\(859\) −3.10876e7 −1.43749 −0.718744 0.695275i \(-0.755282\pi\)
−0.718744 + 0.695275i \(0.755282\pi\)
\(860\) 0 0
\(861\) 106722. 0.00490621
\(862\) 0 0
\(863\) −9.66226e6 −0.441623 −0.220812 0.975316i \(-0.570871\pi\)
−0.220812 + 0.975316i \(0.570871\pi\)
\(864\) 0 0
\(865\) 1.47667e7 0.671033
\(866\) 0 0
\(867\) −1.27240e7 −0.574876
\(868\) 0 0
\(869\) 5.04912e7 2.26812
\(870\) 0 0
\(871\) 4.56082e7 2.03703
\(872\) 0 0
\(873\) 1.05956e7 0.470533
\(874\) 0 0
\(875\) −8.94877e6 −0.395133
\(876\) 0 0
\(877\) −1.98937e7 −0.873409 −0.436704 0.899605i \(-0.643854\pi\)
−0.436704 + 0.899605i \(0.643854\pi\)
\(878\) 0 0
\(879\) −1.02569e6 −0.0447760
\(880\) 0 0
\(881\) −2.03248e6 −0.0882240 −0.0441120 0.999027i \(-0.514046\pi\)
−0.0441120 + 0.999027i \(0.514046\pi\)
\(882\) 0 0
\(883\) −3.69655e7 −1.59549 −0.797747 0.602993i \(-0.793975\pi\)
−0.797747 + 0.602993i \(0.793975\pi\)
\(884\) 0 0
\(885\) 1.40494e6 0.0602974
\(886\) 0 0
\(887\) −2.75837e7 −1.17718 −0.588591 0.808431i \(-0.700317\pi\)
−0.588591 + 0.808431i \(0.700317\pi\)
\(888\) 0 0
\(889\) −4.43391e6 −0.188162
\(890\) 0 0
\(891\) 3.93660e6 0.166122
\(892\) 0 0
\(893\) 2.59338e7 1.08827
\(894\) 0 0
\(895\) 9.18293e6 0.383198
\(896\) 0 0
\(897\) 2.79279e7 1.15893
\(898\) 0 0
\(899\) −5.38807e7 −2.22348
\(900\) 0 0
\(901\) 797940. 0.0327460
\(902\) 0 0
\(903\) −492156. −0.0200855
\(904\) 0 0
\(905\) −7.25245e6 −0.294350
\(906\) 0 0
\(907\) −1.73426e7 −0.699997 −0.349998 0.936750i \(-0.613818\pi\)
−0.349998 + 0.936750i \(0.613818\pi\)
\(908\) 0 0
\(909\) 1.29433e7 0.519560
\(910\) 0 0
\(911\) 3.98913e7 1.59251 0.796255 0.604961i \(-0.206811\pi\)
0.796255 + 0.604961i \(0.206811\pi\)
\(912\) 0 0
\(913\) −1.74480e6 −0.0692738
\(914\) 0 0
\(915\) −5.43028e6 −0.214422
\(916\) 0 0
\(917\) −9.18632e6 −0.360760
\(918\) 0 0
\(919\) 4.01774e7 1.56925 0.784626 0.619970i \(-0.212855\pi\)
0.784626 + 0.619970i \(0.212855\pi\)
\(920\) 0 0
\(921\) 1.96650e7 0.763916
\(922\) 0 0
\(923\) 4.54896e7 1.75755
\(924\) 0 0
\(925\) 1.55896e7 0.599074
\(926\) 0 0
\(927\) −7.40664e6 −0.283088
\(928\) 0 0
\(929\) 3.03389e7 1.15335 0.576675 0.816974i \(-0.304350\pi\)
0.576675 + 0.816974i \(0.304350\pi\)
\(930\) 0 0
\(931\) −2.19932e6 −0.0831598
\(932\) 0 0
\(933\) −3.28968e6 −0.123723
\(934\) 0 0
\(935\) −1.77840e6 −0.0665274
\(936\) 0 0
\(937\) −4.32143e7 −1.60797 −0.803986 0.594648i \(-0.797291\pi\)
−0.803986 + 0.594648i \(0.797291\pi\)
\(938\) 0 0
\(939\) 1.12095e7 0.414879
\(940\) 0 0
\(941\) 4.39045e7 1.61635 0.808174 0.588944i \(-0.200456\pi\)
0.808174 + 0.588944i \(0.200456\pi\)
\(942\) 0 0
\(943\) 1.11417e6 0.0408011
\(944\) 0 0
\(945\) 1.35740e6 0.0494456
\(946\) 0 0
\(947\) −4.80030e7 −1.73937 −0.869687 0.493603i \(-0.835680\pi\)
−0.869687 + 0.493603i \(0.835680\pi\)
\(948\) 0 0
\(949\) −745444. −0.0268689
\(950\) 0 0
\(951\) 1.61682e7 0.579708
\(952\) 0 0
\(953\) −2.26010e6 −0.0806113 −0.0403056 0.999187i \(-0.512833\pi\)
−0.0403056 + 0.999187i \(0.512833\pi\)
\(954\) 0 0
\(955\) −9.62540e6 −0.341515
\(956\) 0 0
\(957\) −3.67740e7 −1.29796
\(958\) 0 0
\(959\) −8.25562e6 −0.289870
\(960\) 0 0
\(961\) 3.39706e7 1.18657
\(962\) 0 0
\(963\) −1.12979e7 −0.392583
\(964\) 0 0
\(965\) 2.70675e7 0.935685
\(966\) 0 0
\(967\) 2.43715e6 0.0838140 0.0419070 0.999122i \(-0.486657\pi\)
0.0419070 + 0.999122i \(0.486657\pi\)
\(968\) 0 0
\(969\) −643032. −0.0220000
\(970\) 0 0
\(971\) −4.15303e7 −1.41357 −0.706784 0.707429i \(-0.749855\pi\)
−0.706784 + 0.707429i \(0.749855\pi\)
\(972\) 0 0
\(973\) −32732.0 −0.00110838
\(974\) 0 0
\(975\) 1.01969e7 0.343525
\(976\) 0 0
\(977\) 3.59151e6 0.120376 0.0601882 0.998187i \(-0.480830\pi\)
0.0601882 + 0.998187i \(0.480830\pi\)
\(978\) 0 0
\(979\) −4.99320e6 −0.166503
\(980\) 0 0
\(981\) 1.14824e7 0.380943
\(982\) 0 0
\(983\) 3.84268e7 1.26838 0.634191 0.773176i \(-0.281333\pi\)
0.634191 + 0.773176i \(0.281333\pi\)
\(984\) 0 0
\(985\) 4.07337e6 0.133771
\(986\) 0 0
\(987\) 1.24856e7 0.407959
\(988\) 0 0
\(989\) −5.13806e6 −0.167035
\(990\) 0 0
\(991\) 7.96056e6 0.257489 0.128745 0.991678i \(-0.458905\pi\)
0.128745 + 0.991678i \(0.458905\pi\)
\(992\) 0 0
\(993\) 1.40256e7 0.451385
\(994\) 0 0
\(995\) 3.63642e7 1.16444
\(996\) 0 0
\(997\) 2.67858e7 0.853427 0.426713 0.904387i \(-0.359671\pi\)
0.426713 + 0.904387i \(0.359671\pi\)
\(998\) 0 0
\(999\) −6.76075e6 −0.214329
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.6.a.e.1.1 1
3.2 odd 2 504.6.a.g.1.1 1
4.3 odd 2 336.6.a.d.1.1 1
12.11 even 2 1008.6.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.6.a.e.1.1 1 1.1 even 1 trivial
336.6.a.d.1.1 1 4.3 odd 2
504.6.a.g.1.1 1 3.2 odd 2
1008.6.a.v.1.1 1 12.11 even 2