Properties

Label 168.6.a.d.1.1
Level $168$
Weight $6$
Character 168.1
Self dual yes
Analytic conductor $26.944$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,6,Mod(1,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,9,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9444817286\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 168.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -64.0000 q^{5} +49.0000 q^{7} +81.0000 q^{9} -54.0000 q^{11} +738.000 q^{13} -576.000 q^{15} -848.000 q^{17} -1604.00 q^{19} +441.000 q^{21} -3670.00 q^{23} +971.000 q^{25} +729.000 q^{27} -4330.00 q^{29} -4760.00 q^{31} -486.000 q^{33} -3136.00 q^{35} -2094.00 q^{37} +6642.00 q^{39} -6116.00 q^{41} +7916.00 q^{43} -5184.00 q^{45} +6572.00 q^{47} +2401.00 q^{49} -7632.00 q^{51} -7894.00 q^{53} +3456.00 q^{55} -14436.0 q^{57} -41664.0 q^{59} -26570.0 q^{61} +3969.00 q^{63} -47232.0 q^{65} -41736.0 q^{67} -33030.0 q^{69} +83574.0 q^{71} -42314.0 q^{73} +8739.00 q^{75} -2646.00 q^{77} +508.000 q^{79} +6561.00 q^{81} -8364.00 q^{83} +54272.0 q^{85} -38970.0 q^{87} -49220.0 q^{89} +36162.0 q^{91} -42840.0 q^{93} +102656. q^{95} +159670. q^{97} -4374.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −64.0000 −1.14487 −0.572433 0.819951i \(-0.694000\pi\)
−0.572433 + 0.819951i \(0.694000\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −54.0000 −0.134559 −0.0672794 0.997734i \(-0.521432\pi\)
−0.0672794 + 0.997734i \(0.521432\pi\)
\(12\) 0 0
\(13\) 738.000 1.21115 0.605575 0.795788i \(-0.292943\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(14\) 0 0
\(15\) −576.000 −0.660989
\(16\) 0 0
\(17\) −848.000 −0.711662 −0.355831 0.934550i \(-0.615802\pi\)
−0.355831 + 0.934550i \(0.615802\pi\)
\(18\) 0 0
\(19\) −1604.00 −1.01934 −0.509672 0.860369i \(-0.670233\pi\)
−0.509672 + 0.860369i \(0.670233\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 0 0
\(23\) −3670.00 −1.44659 −0.723297 0.690537i \(-0.757374\pi\)
−0.723297 + 0.690537i \(0.757374\pi\)
\(24\) 0 0
\(25\) 971.000 0.310720
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4330.00 −0.956077 −0.478039 0.878339i \(-0.658652\pi\)
−0.478039 + 0.878339i \(0.658652\pi\)
\(30\) 0 0
\(31\) −4760.00 −0.889616 −0.444808 0.895626i \(-0.646728\pi\)
−0.444808 + 0.895626i \(0.646728\pi\)
\(32\) 0 0
\(33\) −486.000 −0.0776875
\(34\) 0 0
\(35\) −3136.00 −0.432719
\(36\) 0 0
\(37\) −2094.00 −0.251462 −0.125731 0.992064i \(-0.540128\pi\)
−0.125731 + 0.992064i \(0.540128\pi\)
\(38\) 0 0
\(39\) 6642.00 0.699258
\(40\) 0 0
\(41\) −6116.00 −0.568209 −0.284104 0.958793i \(-0.591696\pi\)
−0.284104 + 0.958793i \(0.591696\pi\)
\(42\) 0 0
\(43\) 7916.00 0.652882 0.326441 0.945218i \(-0.394151\pi\)
0.326441 + 0.945218i \(0.394151\pi\)
\(44\) 0 0
\(45\) −5184.00 −0.381622
\(46\) 0 0
\(47\) 6572.00 0.433963 0.216982 0.976176i \(-0.430379\pi\)
0.216982 + 0.976176i \(0.430379\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −7632.00 −0.410878
\(52\) 0 0
\(53\) −7894.00 −0.386018 −0.193009 0.981197i \(-0.561825\pi\)
−0.193009 + 0.981197i \(0.561825\pi\)
\(54\) 0 0
\(55\) 3456.00 0.154052
\(56\) 0 0
\(57\) −14436.0 −0.588518
\(58\) 0 0
\(59\) −41664.0 −1.55823 −0.779114 0.626882i \(-0.784331\pi\)
−0.779114 + 0.626882i \(0.784331\pi\)
\(60\) 0 0
\(61\) −26570.0 −0.914254 −0.457127 0.889401i \(-0.651122\pi\)
−0.457127 + 0.889401i \(0.651122\pi\)
\(62\) 0 0
\(63\) 3969.00 0.125988
\(64\) 0 0
\(65\) −47232.0 −1.38661
\(66\) 0 0
\(67\) −41736.0 −1.13586 −0.567929 0.823078i \(-0.692255\pi\)
−0.567929 + 0.823078i \(0.692255\pi\)
\(68\) 0 0
\(69\) −33030.0 −0.835191
\(70\) 0 0
\(71\) 83574.0 1.96755 0.983774 0.179412i \(-0.0574196\pi\)
0.983774 + 0.179412i \(0.0574196\pi\)
\(72\) 0 0
\(73\) −42314.0 −0.929345 −0.464672 0.885483i \(-0.653828\pi\)
−0.464672 + 0.885483i \(0.653828\pi\)
\(74\) 0 0
\(75\) 8739.00 0.179394
\(76\) 0 0
\(77\) −2646.00 −0.0508584
\(78\) 0 0
\(79\) 508.000 0.00915790 0.00457895 0.999990i \(-0.498542\pi\)
0.00457895 + 0.999990i \(0.498542\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −8364.00 −0.133266 −0.0666329 0.997778i \(-0.521226\pi\)
−0.0666329 + 0.997778i \(0.521226\pi\)
\(84\) 0 0
\(85\) 54272.0 0.814758
\(86\) 0 0
\(87\) −38970.0 −0.551991
\(88\) 0 0
\(89\) −49220.0 −0.658668 −0.329334 0.944213i \(-0.606824\pi\)
−0.329334 + 0.944213i \(0.606824\pi\)
\(90\) 0 0
\(91\) 36162.0 0.457772
\(92\) 0 0
\(93\) −42840.0 −0.513620
\(94\) 0 0
\(95\) 102656. 1.16701
\(96\) 0 0
\(97\) 159670. 1.72303 0.861517 0.507728i \(-0.169515\pi\)
0.861517 + 0.507728i \(0.169515\pi\)
\(98\) 0 0
\(99\) −4374.00 −0.0448529
\(100\) 0 0
\(101\) −67020.0 −0.653734 −0.326867 0.945070i \(-0.605993\pi\)
−0.326867 + 0.945070i \(0.605993\pi\)
\(102\) 0 0
\(103\) 165768. 1.53960 0.769800 0.638286i \(-0.220356\pi\)
0.769800 + 0.638286i \(0.220356\pi\)
\(104\) 0 0
\(105\) −28224.0 −0.249830
\(106\) 0 0
\(107\) 103146. 0.870949 0.435475 0.900201i \(-0.356581\pi\)
0.435475 + 0.900201i \(0.356581\pi\)
\(108\) 0 0
\(109\) 60094.0 0.484468 0.242234 0.970218i \(-0.422120\pi\)
0.242234 + 0.970218i \(0.422120\pi\)
\(110\) 0 0
\(111\) −18846.0 −0.145182
\(112\) 0 0
\(113\) −126246. −0.930083 −0.465041 0.885289i \(-0.653961\pi\)
−0.465041 + 0.885289i \(0.653961\pi\)
\(114\) 0 0
\(115\) 234880. 1.65616
\(116\) 0 0
\(117\) 59778.0 0.403717
\(118\) 0 0
\(119\) −41552.0 −0.268983
\(120\) 0 0
\(121\) −158135. −0.981894
\(122\) 0 0
\(123\) −55044.0 −0.328055
\(124\) 0 0
\(125\) 137856. 0.789134
\(126\) 0 0
\(127\) 308636. 1.69800 0.848999 0.528394i \(-0.177206\pi\)
0.848999 + 0.528394i \(0.177206\pi\)
\(128\) 0 0
\(129\) 71244.0 0.376942
\(130\) 0 0
\(131\) −61012.0 −0.310625 −0.155313 0.987865i \(-0.549639\pi\)
−0.155313 + 0.987865i \(0.549639\pi\)
\(132\) 0 0
\(133\) −78596.0 −0.385275
\(134\) 0 0
\(135\) −46656.0 −0.220330
\(136\) 0 0
\(137\) −317242. −1.44407 −0.722037 0.691855i \(-0.756794\pi\)
−0.722037 + 0.691855i \(0.756794\pi\)
\(138\) 0 0
\(139\) −7236.00 −0.0317659 −0.0158830 0.999874i \(-0.505056\pi\)
−0.0158830 + 0.999874i \(0.505056\pi\)
\(140\) 0 0
\(141\) 59148.0 0.250549
\(142\) 0 0
\(143\) −39852.0 −0.162971
\(144\) 0 0
\(145\) 277120. 1.09458
\(146\) 0 0
\(147\) 21609.0 0.0824786
\(148\) 0 0
\(149\) 126058. 0.465163 0.232581 0.972577i \(-0.425283\pi\)
0.232581 + 0.972577i \(0.425283\pi\)
\(150\) 0 0
\(151\) 200296. 0.714875 0.357437 0.933937i \(-0.383651\pi\)
0.357437 + 0.933937i \(0.383651\pi\)
\(152\) 0 0
\(153\) −68688.0 −0.237221
\(154\) 0 0
\(155\) 304640. 1.01849
\(156\) 0 0
\(157\) 510894. 1.65418 0.827088 0.562073i \(-0.189996\pi\)
0.827088 + 0.562073i \(0.189996\pi\)
\(158\) 0 0
\(159\) −71046.0 −0.222868
\(160\) 0 0
\(161\) −179830. −0.546761
\(162\) 0 0
\(163\) 21184.0 0.0624509 0.0312255 0.999512i \(-0.490059\pi\)
0.0312255 + 0.999512i \(0.490059\pi\)
\(164\) 0 0
\(165\) 31104.0 0.0889419
\(166\) 0 0
\(167\) −267180. −0.741332 −0.370666 0.928766i \(-0.620871\pi\)
−0.370666 + 0.928766i \(0.620871\pi\)
\(168\) 0 0
\(169\) 173351. 0.466885
\(170\) 0 0
\(171\) −129924. −0.339781
\(172\) 0 0
\(173\) −91948.0 −0.233575 −0.116788 0.993157i \(-0.537260\pi\)
−0.116788 + 0.993157i \(0.537260\pi\)
\(174\) 0 0
\(175\) 47579.0 0.117441
\(176\) 0 0
\(177\) −374976. −0.899643
\(178\) 0 0
\(179\) −402826. −0.939691 −0.469845 0.882749i \(-0.655690\pi\)
−0.469845 + 0.882749i \(0.655690\pi\)
\(180\) 0 0
\(181\) −796222. −1.80650 −0.903250 0.429116i \(-0.858825\pi\)
−0.903250 + 0.429116i \(0.858825\pi\)
\(182\) 0 0
\(183\) −239130. −0.527845
\(184\) 0 0
\(185\) 134016. 0.287890
\(186\) 0 0
\(187\) 45792.0 0.0957603
\(188\) 0 0
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) 474934. 0.941998 0.470999 0.882134i \(-0.343894\pi\)
0.470999 + 0.882134i \(0.343894\pi\)
\(192\) 0 0
\(193\) 716022. 1.38367 0.691836 0.722055i \(-0.256802\pi\)
0.691836 + 0.722055i \(0.256802\pi\)
\(194\) 0 0
\(195\) −425088. −0.800557
\(196\) 0 0
\(197\) −221814. −0.407215 −0.203607 0.979053i \(-0.565267\pi\)
−0.203607 + 0.979053i \(0.565267\pi\)
\(198\) 0 0
\(199\) −333616. −0.597192 −0.298596 0.954380i \(-0.596518\pi\)
−0.298596 + 0.954380i \(0.596518\pi\)
\(200\) 0 0
\(201\) −375624. −0.655788
\(202\) 0 0
\(203\) −212170. −0.361363
\(204\) 0 0
\(205\) 391424. 0.650523
\(206\) 0 0
\(207\) −297270. −0.482198
\(208\) 0 0
\(209\) 86616.0 0.137162
\(210\) 0 0
\(211\) −176404. −0.272774 −0.136387 0.990656i \(-0.543549\pi\)
−0.136387 + 0.990656i \(0.543549\pi\)
\(212\) 0 0
\(213\) 752166. 1.13596
\(214\) 0 0
\(215\) −506624. −0.747463
\(216\) 0 0
\(217\) −233240. −0.336243
\(218\) 0 0
\(219\) −380826. −0.536558
\(220\) 0 0
\(221\) −625824. −0.861929
\(222\) 0 0
\(223\) −125016. −0.168346 −0.0841731 0.996451i \(-0.526825\pi\)
−0.0841731 + 0.996451i \(0.526825\pi\)
\(224\) 0 0
\(225\) 78651.0 0.103573
\(226\) 0 0
\(227\) −272104. −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(228\) 0 0
\(229\) −325822. −0.410574 −0.205287 0.978702i \(-0.565813\pi\)
−0.205287 + 0.978702i \(0.565813\pi\)
\(230\) 0 0
\(231\) −23814.0 −0.0293631
\(232\) 0 0
\(233\) −534682. −0.645217 −0.322608 0.946533i \(-0.604560\pi\)
−0.322608 + 0.946533i \(0.604560\pi\)
\(234\) 0 0
\(235\) −420608. −0.496830
\(236\) 0 0
\(237\) 4572.00 0.00528732
\(238\) 0 0
\(239\) 1.48512e6 1.68177 0.840887 0.541211i \(-0.182034\pi\)
0.840887 + 0.541211i \(0.182034\pi\)
\(240\) 0 0
\(241\) 1.17689e6 1.30524 0.652622 0.757684i \(-0.273669\pi\)
0.652622 + 0.757684i \(0.273669\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −153664. −0.163552
\(246\) 0 0
\(247\) −1.18375e6 −1.23458
\(248\) 0 0
\(249\) −75276.0 −0.0769411
\(250\) 0 0
\(251\) 14080.0 0.0141065 0.00705324 0.999975i \(-0.497755\pi\)
0.00705324 + 0.999975i \(0.497755\pi\)
\(252\) 0 0
\(253\) 198180. 0.194652
\(254\) 0 0
\(255\) 488448. 0.470401
\(256\) 0 0
\(257\) −1.86851e6 −1.76466 −0.882332 0.470627i \(-0.844028\pi\)
−0.882332 + 0.470627i \(0.844028\pi\)
\(258\) 0 0
\(259\) −102606. −0.0950437
\(260\) 0 0
\(261\) −350730. −0.318692
\(262\) 0 0
\(263\) 802890. 0.715759 0.357879 0.933768i \(-0.383500\pi\)
0.357879 + 0.933768i \(0.383500\pi\)
\(264\) 0 0
\(265\) 505216. 0.441939
\(266\) 0 0
\(267\) −442980. −0.380282
\(268\) 0 0
\(269\) −197448. −0.166369 −0.0831844 0.996534i \(-0.526509\pi\)
−0.0831844 + 0.996534i \(0.526509\pi\)
\(270\) 0 0
\(271\) −2.01928e6 −1.67022 −0.835109 0.550084i \(-0.814596\pi\)
−0.835109 + 0.550084i \(0.814596\pi\)
\(272\) 0 0
\(273\) 325458. 0.264295
\(274\) 0 0
\(275\) −52434.0 −0.0418101
\(276\) 0 0
\(277\) 1.57993e6 1.23720 0.618598 0.785708i \(-0.287701\pi\)
0.618598 + 0.785708i \(0.287701\pi\)
\(278\) 0 0
\(279\) −385560. −0.296539
\(280\) 0 0
\(281\) 1.44392e6 1.09088 0.545440 0.838150i \(-0.316363\pi\)
0.545440 + 0.838150i \(0.316363\pi\)
\(282\) 0 0
\(283\) −1.68046e6 −1.24727 −0.623637 0.781714i \(-0.714346\pi\)
−0.623637 + 0.781714i \(0.714346\pi\)
\(284\) 0 0
\(285\) 923904. 0.673775
\(286\) 0 0
\(287\) −299684. −0.214763
\(288\) 0 0
\(289\) −700753. −0.493538
\(290\) 0 0
\(291\) 1.43703e6 0.994794
\(292\) 0 0
\(293\) −2.31092e6 −1.57259 −0.786297 0.617849i \(-0.788004\pi\)
−0.786297 + 0.617849i \(0.788004\pi\)
\(294\) 0 0
\(295\) 2.66650e6 1.78396
\(296\) 0 0
\(297\) −39366.0 −0.0258958
\(298\) 0 0
\(299\) −2.70846e6 −1.75204
\(300\) 0 0
\(301\) 387884. 0.246766
\(302\) 0 0
\(303\) −603180. −0.377433
\(304\) 0 0
\(305\) 1.70048e6 1.04670
\(306\) 0 0
\(307\) −793964. −0.480789 −0.240395 0.970675i \(-0.577277\pi\)
−0.240395 + 0.970675i \(0.577277\pi\)
\(308\) 0 0
\(309\) 1.49191e6 0.888888
\(310\) 0 0
\(311\) 1.18376e6 0.694007 0.347004 0.937864i \(-0.387199\pi\)
0.347004 + 0.937864i \(0.387199\pi\)
\(312\) 0 0
\(313\) 994970. 0.574049 0.287025 0.957923i \(-0.407334\pi\)
0.287025 + 0.957923i \(0.407334\pi\)
\(314\) 0 0
\(315\) −254016. −0.144240
\(316\) 0 0
\(317\) 1.84619e6 1.03188 0.515940 0.856625i \(-0.327443\pi\)
0.515940 + 0.856625i \(0.327443\pi\)
\(318\) 0 0
\(319\) 233820. 0.128649
\(320\) 0 0
\(321\) 928314. 0.502843
\(322\) 0 0
\(323\) 1.36019e6 0.725427
\(324\) 0 0
\(325\) 716598. 0.376329
\(326\) 0 0
\(327\) 540846. 0.279708
\(328\) 0 0
\(329\) 322028. 0.164023
\(330\) 0 0
\(331\) −1.55801e6 −0.781629 −0.390815 0.920469i \(-0.627807\pi\)
−0.390815 + 0.920469i \(0.627807\pi\)
\(332\) 0 0
\(333\) −169614. −0.0838207
\(334\) 0 0
\(335\) 2.67110e6 1.30041
\(336\) 0 0
\(337\) 3.28798e6 1.57708 0.788541 0.614982i \(-0.210837\pi\)
0.788541 + 0.614982i \(0.210837\pi\)
\(338\) 0 0
\(339\) −1.13621e6 −0.536983
\(340\) 0 0
\(341\) 257040. 0.119706
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 2.11392e6 0.956183
\(346\) 0 0
\(347\) 3.66137e6 1.63238 0.816188 0.577786i \(-0.196083\pi\)
0.816188 + 0.577786i \(0.196083\pi\)
\(348\) 0 0
\(349\) −3.76811e6 −1.65600 −0.827998 0.560730i \(-0.810520\pi\)
−0.827998 + 0.560730i \(0.810520\pi\)
\(350\) 0 0
\(351\) 538002. 0.233086
\(352\) 0 0
\(353\) 1.97794e6 0.844842 0.422421 0.906400i \(-0.361180\pi\)
0.422421 + 0.906400i \(0.361180\pi\)
\(354\) 0 0
\(355\) −5.34874e6 −2.25258
\(356\) 0 0
\(357\) −373968. −0.155297
\(358\) 0 0
\(359\) 3.17410e6 1.29982 0.649912 0.760009i \(-0.274806\pi\)
0.649912 + 0.760009i \(0.274806\pi\)
\(360\) 0 0
\(361\) 96717.0 0.0390602
\(362\) 0 0
\(363\) −1.42321e6 −0.566897
\(364\) 0 0
\(365\) 2.70810e6 1.06398
\(366\) 0 0
\(367\) 3.62163e6 1.40359 0.701793 0.712381i \(-0.252383\pi\)
0.701793 + 0.712381i \(0.252383\pi\)
\(368\) 0 0
\(369\) −495396. −0.189403
\(370\) 0 0
\(371\) −386806. −0.145901
\(372\) 0 0
\(373\) −3.65737e6 −1.36112 −0.680561 0.732692i \(-0.738264\pi\)
−0.680561 + 0.732692i \(0.738264\pi\)
\(374\) 0 0
\(375\) 1.24070e6 0.455607
\(376\) 0 0
\(377\) −3.19554e6 −1.15795
\(378\) 0 0
\(379\) 1.07802e6 0.385504 0.192752 0.981248i \(-0.438259\pi\)
0.192752 + 0.981248i \(0.438259\pi\)
\(380\) 0 0
\(381\) 2.77772e6 0.980340
\(382\) 0 0
\(383\) 3.86954e6 1.34792 0.673958 0.738770i \(-0.264593\pi\)
0.673958 + 0.738770i \(0.264593\pi\)
\(384\) 0 0
\(385\) 169344. 0.0582261
\(386\) 0 0
\(387\) 641196. 0.217627
\(388\) 0 0
\(389\) −3.75845e6 −1.25932 −0.629658 0.776872i \(-0.716805\pi\)
−0.629658 + 0.776872i \(0.716805\pi\)
\(390\) 0 0
\(391\) 3.11216e6 1.02948
\(392\) 0 0
\(393\) −549108. −0.179340
\(394\) 0 0
\(395\) −32512.0 −0.0104846
\(396\) 0 0
\(397\) −1.47106e6 −0.468440 −0.234220 0.972184i \(-0.575254\pi\)
−0.234220 + 0.972184i \(0.575254\pi\)
\(398\) 0 0
\(399\) −707364. −0.222439
\(400\) 0 0
\(401\) −5.30313e6 −1.64692 −0.823458 0.567378i \(-0.807958\pi\)
−0.823458 + 0.567378i \(0.807958\pi\)
\(402\) 0 0
\(403\) −3.51288e6 −1.07746
\(404\) 0 0
\(405\) −419904. −0.127207
\(406\) 0 0
\(407\) 113076. 0.0338364
\(408\) 0 0
\(409\) −6.46984e6 −1.91243 −0.956215 0.292666i \(-0.905458\pi\)
−0.956215 + 0.292666i \(0.905458\pi\)
\(410\) 0 0
\(411\) −2.85518e6 −0.833736
\(412\) 0 0
\(413\) −2.04154e6 −0.588955
\(414\) 0 0
\(415\) 535296. 0.152572
\(416\) 0 0
\(417\) −65124.0 −0.0183401
\(418\) 0 0
\(419\) 554024. 0.154168 0.0770839 0.997025i \(-0.475439\pi\)
0.0770839 + 0.997025i \(0.475439\pi\)
\(420\) 0 0
\(421\) −3.37900e6 −0.929143 −0.464572 0.885536i \(-0.653792\pi\)
−0.464572 + 0.885536i \(0.653792\pi\)
\(422\) 0 0
\(423\) 532332. 0.144654
\(424\) 0 0
\(425\) −823408. −0.221128
\(426\) 0 0
\(427\) −1.30193e6 −0.345556
\(428\) 0 0
\(429\) −358668. −0.0940913
\(430\) 0 0
\(431\) 2.90338e6 0.752854 0.376427 0.926446i \(-0.377152\pi\)
0.376427 + 0.926446i \(0.377152\pi\)
\(432\) 0 0
\(433\) −5.05684e6 −1.29616 −0.648081 0.761571i \(-0.724428\pi\)
−0.648081 + 0.761571i \(0.724428\pi\)
\(434\) 0 0
\(435\) 2.49408e6 0.631957
\(436\) 0 0
\(437\) 5.88668e6 1.47457
\(438\) 0 0
\(439\) −2.43257e6 −0.602426 −0.301213 0.953557i \(-0.597392\pi\)
−0.301213 + 0.953557i \(0.597392\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) −2.35832e6 −0.570944 −0.285472 0.958387i \(-0.592150\pi\)
−0.285472 + 0.958387i \(0.592150\pi\)
\(444\) 0 0
\(445\) 3.15008e6 0.754087
\(446\) 0 0
\(447\) 1.13452e6 0.268562
\(448\) 0 0
\(449\) 798466. 0.186913 0.0934567 0.995623i \(-0.470208\pi\)
0.0934567 + 0.995623i \(0.470208\pi\)
\(450\) 0 0
\(451\) 330264. 0.0764575
\(452\) 0 0
\(453\) 1.80266e6 0.412733
\(454\) 0 0
\(455\) −2.31437e6 −0.524088
\(456\) 0 0
\(457\) −3.53337e6 −0.791404 −0.395702 0.918379i \(-0.629499\pi\)
−0.395702 + 0.918379i \(0.629499\pi\)
\(458\) 0 0
\(459\) −618192. −0.136959
\(460\) 0 0
\(461\) −1.98709e6 −0.435477 −0.217739 0.976007i \(-0.569868\pi\)
−0.217739 + 0.976007i \(0.569868\pi\)
\(462\) 0 0
\(463\) 6.33175e6 1.37269 0.686343 0.727278i \(-0.259215\pi\)
0.686343 + 0.727278i \(0.259215\pi\)
\(464\) 0 0
\(465\) 2.74176e6 0.588027
\(466\) 0 0
\(467\) 274560. 0.0582566 0.0291283 0.999576i \(-0.490727\pi\)
0.0291283 + 0.999576i \(0.490727\pi\)
\(468\) 0 0
\(469\) −2.04506e6 −0.429314
\(470\) 0 0
\(471\) 4.59805e6 0.955039
\(472\) 0 0
\(473\) −427464. −0.0878510
\(474\) 0 0
\(475\) −1.55748e6 −0.316730
\(476\) 0 0
\(477\) −639414. −0.128673
\(478\) 0 0
\(479\) 933460. 0.185890 0.0929452 0.995671i \(-0.470372\pi\)
0.0929452 + 0.995671i \(0.470372\pi\)
\(480\) 0 0
\(481\) −1.54537e6 −0.304558
\(482\) 0 0
\(483\) −1.61847e6 −0.315673
\(484\) 0 0
\(485\) −1.02189e7 −1.97265
\(486\) 0 0
\(487\) −6.05600e6 −1.15708 −0.578540 0.815654i \(-0.696377\pi\)
−0.578540 + 0.815654i \(0.696377\pi\)
\(488\) 0 0
\(489\) 190656. 0.0360561
\(490\) 0 0
\(491\) 1.65757e6 0.310290 0.155145 0.987892i \(-0.450416\pi\)
0.155145 + 0.987892i \(0.450416\pi\)
\(492\) 0 0
\(493\) 3.67184e6 0.680403
\(494\) 0 0
\(495\) 279936. 0.0513506
\(496\) 0 0
\(497\) 4.09513e6 0.743663
\(498\) 0 0
\(499\) 4.08804e6 0.734961 0.367480 0.930031i \(-0.380220\pi\)
0.367480 + 0.930031i \(0.380220\pi\)
\(500\) 0 0
\(501\) −2.40462e6 −0.428008
\(502\) 0 0
\(503\) −7.43036e6 −1.30945 −0.654726 0.755866i \(-0.727216\pi\)
−0.654726 + 0.755866i \(0.727216\pi\)
\(504\) 0 0
\(505\) 4.28928e6 0.748438
\(506\) 0 0
\(507\) 1.56016e6 0.269556
\(508\) 0 0
\(509\) −3.51290e6 −0.600996 −0.300498 0.953782i \(-0.597153\pi\)
−0.300498 + 0.953782i \(0.597153\pi\)
\(510\) 0 0
\(511\) −2.07339e6 −0.351259
\(512\) 0 0
\(513\) −1.16932e6 −0.196173
\(514\) 0 0
\(515\) −1.06092e7 −1.76264
\(516\) 0 0
\(517\) −354888. −0.0583936
\(518\) 0 0
\(519\) −827532. −0.134855
\(520\) 0 0
\(521\) 4.81406e6 0.776994 0.388497 0.921450i \(-0.372994\pi\)
0.388497 + 0.921450i \(0.372994\pi\)
\(522\) 0 0
\(523\) −2.42660e6 −0.387921 −0.193960 0.981009i \(-0.562133\pi\)
−0.193960 + 0.981009i \(0.562133\pi\)
\(524\) 0 0
\(525\) 428211. 0.0678047
\(526\) 0 0
\(527\) 4.03648e6 0.633106
\(528\) 0 0
\(529\) 7.03256e6 1.09263
\(530\) 0 0
\(531\) −3.37478e6 −0.519409
\(532\) 0 0
\(533\) −4.51361e6 −0.688186
\(534\) 0 0
\(535\) −6.60134e6 −0.997121
\(536\) 0 0
\(537\) −3.62543e6 −0.542531
\(538\) 0 0
\(539\) −129654. −0.0192227
\(540\) 0 0
\(541\) 4.82543e6 0.708831 0.354415 0.935088i \(-0.384680\pi\)
0.354415 + 0.935088i \(0.384680\pi\)
\(542\) 0 0
\(543\) −7.16600e6 −1.04298
\(544\) 0 0
\(545\) −3.84602e6 −0.554651
\(546\) 0 0
\(547\) 1.34543e6 0.192262 0.0961310 0.995369i \(-0.469353\pi\)
0.0961310 + 0.995369i \(0.469353\pi\)
\(548\) 0 0
\(549\) −2.15217e6 −0.304751
\(550\) 0 0
\(551\) 6.94532e6 0.974571
\(552\) 0 0
\(553\) 24892.0 0.00346136
\(554\) 0 0
\(555\) 1.20614e6 0.166214
\(556\) 0 0
\(557\) −938438. −0.128164 −0.0640822 0.997945i \(-0.520412\pi\)
−0.0640822 + 0.997945i \(0.520412\pi\)
\(558\) 0 0
\(559\) 5.84201e6 0.790738
\(560\) 0 0
\(561\) 412128. 0.0552872
\(562\) 0 0
\(563\) 1.16124e7 1.54402 0.772008 0.635613i \(-0.219253\pi\)
0.772008 + 0.635613i \(0.219253\pi\)
\(564\) 0 0
\(565\) 8.07974e6 1.06482
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) −6.94876e6 −0.899760 −0.449880 0.893089i \(-0.648533\pi\)
−0.449880 + 0.893089i \(0.648533\pi\)
\(570\) 0 0
\(571\) 2.59412e6 0.332966 0.166483 0.986044i \(-0.446759\pi\)
0.166483 + 0.986044i \(0.446759\pi\)
\(572\) 0 0
\(573\) 4.27441e6 0.543863
\(574\) 0 0
\(575\) −3.56357e6 −0.449485
\(576\) 0 0
\(577\) −1.51612e7 −1.89581 −0.947906 0.318551i \(-0.896804\pi\)
−0.947906 + 0.318551i \(0.896804\pi\)
\(578\) 0 0
\(579\) 6.44420e6 0.798863
\(580\) 0 0
\(581\) −409836. −0.0503697
\(582\) 0 0
\(583\) 426276. 0.0519421
\(584\) 0 0
\(585\) −3.82579e6 −0.462202
\(586\) 0 0
\(587\) −1.29826e6 −0.155513 −0.0777567 0.996972i \(-0.524776\pi\)
−0.0777567 + 0.996972i \(0.524776\pi\)
\(588\) 0 0
\(589\) 7.63504e6 0.906824
\(590\) 0 0
\(591\) −1.99633e6 −0.235105
\(592\) 0 0
\(593\) 1.15002e7 1.34298 0.671490 0.741014i \(-0.265655\pi\)
0.671490 + 0.741014i \(0.265655\pi\)
\(594\) 0 0
\(595\) 2.65933e6 0.307949
\(596\) 0 0
\(597\) −3.00254e6 −0.344789
\(598\) 0 0
\(599\) 9.99854e6 1.13860 0.569298 0.822131i \(-0.307215\pi\)
0.569298 + 0.822131i \(0.307215\pi\)
\(600\) 0 0
\(601\) 8.05405e6 0.909553 0.454777 0.890606i \(-0.349719\pi\)
0.454777 + 0.890606i \(0.349719\pi\)
\(602\) 0 0
\(603\) −3.38062e6 −0.378619
\(604\) 0 0
\(605\) 1.01206e7 1.12414
\(606\) 0 0
\(607\) 4.03667e6 0.444684 0.222342 0.974969i \(-0.428630\pi\)
0.222342 + 0.974969i \(0.428630\pi\)
\(608\) 0 0
\(609\) −1.90953e6 −0.208633
\(610\) 0 0
\(611\) 4.85014e6 0.525595
\(612\) 0 0
\(613\) 1.60521e7 1.72536 0.862681 0.505748i \(-0.168784\pi\)
0.862681 + 0.505748i \(0.168784\pi\)
\(614\) 0 0
\(615\) 3.52282e6 0.375580
\(616\) 0 0
\(617\) 1.34770e7 1.42522 0.712609 0.701561i \(-0.247513\pi\)
0.712609 + 0.701561i \(0.247513\pi\)
\(618\) 0 0
\(619\) −1.73797e7 −1.82312 −0.911559 0.411170i \(-0.865120\pi\)
−0.911559 + 0.411170i \(0.865120\pi\)
\(620\) 0 0
\(621\) −2.67543e6 −0.278397
\(622\) 0 0
\(623\) −2.41178e6 −0.248953
\(624\) 0 0
\(625\) −1.18572e7 −1.21417
\(626\) 0 0
\(627\) 779544. 0.0791903
\(628\) 0 0
\(629\) 1.77571e6 0.178956
\(630\) 0 0
\(631\) 1.46908e7 1.46883 0.734416 0.678700i \(-0.237456\pi\)
0.734416 + 0.678700i \(0.237456\pi\)
\(632\) 0 0
\(633\) −1.58764e6 −0.157486
\(634\) 0 0
\(635\) −1.97527e7 −1.94398
\(636\) 0 0
\(637\) 1.77194e6 0.173021
\(638\) 0 0
\(639\) 6.76949e6 0.655849
\(640\) 0 0
\(641\) 1.60166e7 1.53966 0.769830 0.638249i \(-0.220341\pi\)
0.769830 + 0.638249i \(0.220341\pi\)
\(642\) 0 0
\(643\) 8.48624e6 0.809446 0.404723 0.914439i \(-0.367368\pi\)
0.404723 + 0.914439i \(0.367368\pi\)
\(644\) 0 0
\(645\) −4.55962e6 −0.431548
\(646\) 0 0
\(647\) −1.85487e7 −1.74202 −0.871008 0.491269i \(-0.836533\pi\)
−0.871008 + 0.491269i \(0.836533\pi\)
\(648\) 0 0
\(649\) 2.24986e6 0.209673
\(650\) 0 0
\(651\) −2.09916e6 −0.194130
\(652\) 0 0
\(653\) −3.01271e6 −0.276486 −0.138243 0.990398i \(-0.544146\pi\)
−0.138243 + 0.990398i \(0.544146\pi\)
\(654\) 0 0
\(655\) 3.90477e6 0.355625
\(656\) 0 0
\(657\) −3.42743e6 −0.309782
\(658\) 0 0
\(659\) −6.06060e6 −0.543628 −0.271814 0.962350i \(-0.587624\pi\)
−0.271814 + 0.962350i \(0.587624\pi\)
\(660\) 0 0
\(661\) 1.42899e7 1.27211 0.636057 0.771642i \(-0.280564\pi\)
0.636057 + 0.771642i \(0.280564\pi\)
\(662\) 0 0
\(663\) −5.63242e6 −0.497635
\(664\) 0 0
\(665\) 5.03014e6 0.441089
\(666\) 0 0
\(667\) 1.58911e7 1.38305
\(668\) 0 0
\(669\) −1.12514e6 −0.0971948
\(670\) 0 0
\(671\) 1.43478e6 0.123021
\(672\) 0 0
\(673\) −5.29680e6 −0.450792 −0.225396 0.974267i \(-0.572368\pi\)
−0.225396 + 0.974267i \(0.572368\pi\)
\(674\) 0 0
\(675\) 707859. 0.0597981
\(676\) 0 0
\(677\) 1.18550e7 0.994096 0.497048 0.867723i \(-0.334417\pi\)
0.497048 + 0.867723i \(0.334417\pi\)
\(678\) 0 0
\(679\) 7.82383e6 0.651246
\(680\) 0 0
\(681\) −2.44894e6 −0.202353
\(682\) 0 0
\(683\) −1.65625e7 −1.35854 −0.679272 0.733886i \(-0.737704\pi\)
−0.679272 + 0.733886i \(0.737704\pi\)
\(684\) 0 0
\(685\) 2.03035e7 1.65327
\(686\) 0 0
\(687\) −2.93240e6 −0.237045
\(688\) 0 0
\(689\) −5.82577e6 −0.467526
\(690\) 0 0
\(691\) −4.69748e6 −0.374257 −0.187128 0.982335i \(-0.559918\pi\)
−0.187128 + 0.982335i \(0.559918\pi\)
\(692\) 0 0
\(693\) −214326. −0.0169528
\(694\) 0 0
\(695\) 463104. 0.0363678
\(696\) 0 0
\(697\) 5.18637e6 0.404372
\(698\) 0 0
\(699\) −4.81214e6 −0.372516
\(700\) 0 0
\(701\) −2.10890e7 −1.62092 −0.810458 0.585797i \(-0.800781\pi\)
−0.810458 + 0.585797i \(0.800781\pi\)
\(702\) 0 0
\(703\) 3.35878e6 0.256326
\(704\) 0 0
\(705\) −3.78547e6 −0.286845
\(706\) 0 0
\(707\) −3.28398e6 −0.247088
\(708\) 0 0
\(709\) −1.68683e7 −1.26025 −0.630123 0.776495i \(-0.716996\pi\)
−0.630123 + 0.776495i \(0.716996\pi\)
\(710\) 0 0
\(711\) 41148.0 0.00305263
\(712\) 0 0
\(713\) 1.74692e7 1.28691
\(714\) 0 0
\(715\) 2.55053e6 0.186580
\(716\) 0 0
\(717\) 1.33661e7 0.970972
\(718\) 0 0
\(719\) −1.19606e7 −0.862844 −0.431422 0.902150i \(-0.641988\pi\)
−0.431422 + 0.902150i \(0.641988\pi\)
\(720\) 0 0
\(721\) 8.12263e6 0.581914
\(722\) 0 0
\(723\) 1.05920e7 0.753583
\(724\) 0 0
\(725\) −4.20443e6 −0.297072
\(726\) 0 0
\(727\) −2.20722e6 −0.154885 −0.0774427 0.996997i \(-0.524675\pi\)
−0.0774427 + 0.996997i \(0.524675\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −6.71277e6 −0.464631
\(732\) 0 0
\(733\) −384494. −0.0264320 −0.0132160 0.999913i \(-0.504207\pi\)
−0.0132160 + 0.999913i \(0.504207\pi\)
\(734\) 0 0
\(735\) −1.38298e6 −0.0944270
\(736\) 0 0
\(737\) 2.25374e6 0.152840
\(738\) 0 0
\(739\) 8.04242e6 0.541721 0.270860 0.962619i \(-0.412692\pi\)
0.270860 + 0.962619i \(0.412692\pi\)
\(740\) 0 0
\(741\) −1.06538e7 −0.712784
\(742\) 0 0
\(743\) −1.85291e6 −0.123135 −0.0615675 0.998103i \(-0.519610\pi\)
−0.0615675 + 0.998103i \(0.519610\pi\)
\(744\) 0 0
\(745\) −8.06771e6 −0.532549
\(746\) 0 0
\(747\) −677484. −0.0444219
\(748\) 0 0
\(749\) 5.05415e6 0.329188
\(750\) 0 0
\(751\) 1.19326e7 0.772034 0.386017 0.922492i \(-0.373851\pi\)
0.386017 + 0.922492i \(0.373851\pi\)
\(752\) 0 0
\(753\) 126720. 0.00814437
\(754\) 0 0
\(755\) −1.28189e7 −0.818436
\(756\) 0 0
\(757\) −5.55886e6 −0.352570 −0.176285 0.984339i \(-0.556408\pi\)
−0.176285 + 0.984339i \(0.556408\pi\)
\(758\) 0 0
\(759\) 1.78362e6 0.112382
\(760\) 0 0
\(761\) 2.71599e7 1.70007 0.850033 0.526730i \(-0.176582\pi\)
0.850033 + 0.526730i \(0.176582\pi\)
\(762\) 0 0
\(763\) 2.94461e6 0.183112
\(764\) 0 0
\(765\) 4.39603e6 0.271586
\(766\) 0 0
\(767\) −3.07480e7 −1.88725
\(768\) 0 0
\(769\) −8.75668e6 −0.533978 −0.266989 0.963700i \(-0.586029\pi\)
−0.266989 + 0.963700i \(0.586029\pi\)
\(770\) 0 0
\(771\) −1.68166e7 −1.01883
\(772\) 0 0
\(773\) −3.96856e6 −0.238883 −0.119441 0.992841i \(-0.538110\pi\)
−0.119441 + 0.992841i \(0.538110\pi\)
\(774\) 0 0
\(775\) −4.62196e6 −0.276422
\(776\) 0 0
\(777\) −923454. −0.0548735
\(778\) 0 0
\(779\) 9.81006e6 0.579200
\(780\) 0 0
\(781\) −4.51300e6 −0.264751
\(782\) 0 0
\(783\) −3.15657e6 −0.183997
\(784\) 0 0
\(785\) −3.26972e7 −1.89381
\(786\) 0 0
\(787\) −2.11112e7 −1.21500 −0.607501 0.794319i \(-0.707828\pi\)
−0.607501 + 0.794319i \(0.707828\pi\)
\(788\) 0 0
\(789\) 7.22601e6 0.413244
\(790\) 0 0
\(791\) −6.18605e6 −0.351538
\(792\) 0 0
\(793\) −1.96087e7 −1.10730
\(794\) 0 0
\(795\) 4.54694e6 0.255154
\(796\) 0 0
\(797\) −2.95085e7 −1.64552 −0.822758 0.568392i \(-0.807566\pi\)
−0.822758 + 0.568392i \(0.807566\pi\)
\(798\) 0 0
\(799\) −5.57306e6 −0.308835
\(800\) 0 0
\(801\) −3.98682e6 −0.219556
\(802\) 0 0
\(803\) 2.28496e6 0.125052
\(804\) 0 0
\(805\) 1.15091e7 0.625968
\(806\) 0 0
\(807\) −1.77703e6 −0.0960531
\(808\) 0 0
\(809\) 13002.0 0.000698456 0 0.000349228 1.00000i \(-0.499889\pi\)
0.000349228 1.00000i \(0.499889\pi\)
\(810\) 0 0
\(811\) 2.61790e7 1.39766 0.698829 0.715289i \(-0.253705\pi\)
0.698829 + 0.715289i \(0.253705\pi\)
\(812\) 0 0
\(813\) −1.81735e7 −0.964301
\(814\) 0 0
\(815\) −1.35578e6 −0.0714980
\(816\) 0 0
\(817\) −1.26973e7 −0.665511
\(818\) 0 0
\(819\) 2.92912e6 0.152591
\(820\) 0 0
\(821\) 3.21209e7 1.66314 0.831572 0.555417i \(-0.187441\pi\)
0.831572 + 0.555417i \(0.187441\pi\)
\(822\) 0 0
\(823\) −2.49758e7 −1.28535 −0.642674 0.766140i \(-0.722175\pi\)
−0.642674 + 0.766140i \(0.722175\pi\)
\(824\) 0 0
\(825\) −471906. −0.0241391
\(826\) 0 0
\(827\) −3.09229e7 −1.57223 −0.786116 0.618079i \(-0.787911\pi\)
−0.786116 + 0.618079i \(0.787911\pi\)
\(828\) 0 0
\(829\) −1.69047e7 −0.854319 −0.427160 0.904176i \(-0.640486\pi\)
−0.427160 + 0.904176i \(0.640486\pi\)
\(830\) 0 0
\(831\) 1.42194e7 0.714295
\(832\) 0 0
\(833\) −2.03605e6 −0.101666
\(834\) 0 0
\(835\) 1.70995e7 0.848726
\(836\) 0 0
\(837\) −3.47004e6 −0.171207
\(838\) 0 0
\(839\) 2.77783e7 1.36239 0.681194 0.732103i \(-0.261461\pi\)
0.681194 + 0.732103i \(0.261461\pi\)
\(840\) 0 0
\(841\) −1.76225e6 −0.0859166
\(842\) 0 0
\(843\) 1.29953e7 0.629820
\(844\) 0 0
\(845\) −1.10945e7 −0.534521
\(846\) 0 0
\(847\) −7.74862e6 −0.371121
\(848\) 0 0
\(849\) −1.51241e7 −0.720114
\(850\) 0 0
\(851\) 7.68498e6 0.363763
\(852\) 0 0
\(853\) −1.77504e7 −0.835289 −0.417645 0.908611i \(-0.637144\pi\)
−0.417645 + 0.908611i \(0.637144\pi\)
\(854\) 0 0
\(855\) 8.31514e6 0.389004
\(856\) 0 0
\(857\) 1.50040e7 0.697838 0.348919 0.937153i \(-0.386549\pi\)
0.348919 + 0.937153i \(0.386549\pi\)
\(858\) 0 0
\(859\) 910972. 0.0421233 0.0210616 0.999778i \(-0.493295\pi\)
0.0210616 + 0.999778i \(0.493295\pi\)
\(860\) 0 0
\(861\) −2.69716e6 −0.123993
\(862\) 0 0
\(863\) 1.48837e7 0.680275 0.340138 0.940376i \(-0.389526\pi\)
0.340138 + 0.940376i \(0.389526\pi\)
\(864\) 0 0
\(865\) 5.88467e6 0.267413
\(866\) 0 0
\(867\) −6.30678e6 −0.284944
\(868\) 0 0
\(869\) −27432.0 −0.00123228
\(870\) 0 0
\(871\) −3.08012e7 −1.37569
\(872\) 0 0
\(873\) 1.29333e7 0.574345
\(874\) 0 0
\(875\) 6.75494e6 0.298265
\(876\) 0 0
\(877\) −2.39951e7 −1.05348 −0.526738 0.850028i \(-0.676585\pi\)
−0.526738 + 0.850028i \(0.676585\pi\)
\(878\) 0 0
\(879\) −2.07983e7 −0.907938
\(880\) 0 0
\(881\) 7.85879e6 0.341127 0.170563 0.985347i \(-0.445441\pi\)
0.170563 + 0.985347i \(0.445441\pi\)
\(882\) 0 0
\(883\) −1.74586e7 −0.753541 −0.376771 0.926307i \(-0.622966\pi\)
−0.376771 + 0.926307i \(0.622966\pi\)
\(884\) 0 0
\(885\) 2.39985e7 1.02997
\(886\) 0 0
\(887\) −700092. −0.0298776 −0.0149388 0.999888i \(-0.504755\pi\)
−0.0149388 + 0.999888i \(0.504755\pi\)
\(888\) 0 0
\(889\) 1.51232e7 0.641783
\(890\) 0 0
\(891\) −354294. −0.0149510
\(892\) 0 0
\(893\) −1.05415e7 −0.442357
\(894\) 0 0
\(895\) 2.57809e7 1.07582
\(896\) 0 0
\(897\) −2.43761e7 −1.01154
\(898\) 0 0
\(899\) 2.06108e7 0.850542
\(900\) 0 0
\(901\) 6.69411e6 0.274714
\(902\) 0 0
\(903\) 3.49096e6 0.142471
\(904\) 0 0
\(905\) 5.09582e7 2.06820
\(906\) 0 0
\(907\) 3.72979e7 1.50545 0.752724 0.658336i \(-0.228739\pi\)
0.752724 + 0.658336i \(0.228739\pi\)
\(908\) 0 0
\(909\) −5.42862e6 −0.217911
\(910\) 0 0
\(911\) −2.99873e7 −1.19713 −0.598564 0.801075i \(-0.704262\pi\)
−0.598564 + 0.801075i \(0.704262\pi\)
\(912\) 0 0
\(913\) 451656. 0.0179321
\(914\) 0 0
\(915\) 1.53043e7 0.604312
\(916\) 0 0
\(917\) −2.98959e6 −0.117405
\(918\) 0 0
\(919\) −2.78316e7 −1.08705 −0.543525 0.839393i \(-0.682911\pi\)
−0.543525 + 0.839393i \(0.682911\pi\)
\(920\) 0 0
\(921\) −7.14568e6 −0.277584
\(922\) 0 0
\(923\) 6.16776e7 2.38300
\(924\) 0 0
\(925\) −2.03327e6 −0.0781343
\(926\) 0 0
\(927\) 1.34272e7 0.513200
\(928\) 0 0
\(929\) 1.88191e7 0.715418 0.357709 0.933833i \(-0.383558\pi\)
0.357709 + 0.933833i \(0.383558\pi\)
\(930\) 0 0
\(931\) −3.85120e6 −0.145620
\(932\) 0 0
\(933\) 1.06539e7 0.400685
\(934\) 0 0
\(935\) −2.93069e6 −0.109633
\(936\) 0 0
\(937\) 5.39613e6 0.200786 0.100393 0.994948i \(-0.467990\pi\)
0.100393 + 0.994948i \(0.467990\pi\)
\(938\) 0 0
\(939\) 8.95473e6 0.331427
\(940\) 0 0
\(941\) 3.99942e7 1.47239 0.736194 0.676770i \(-0.236621\pi\)
0.736194 + 0.676770i \(0.236621\pi\)
\(942\) 0 0
\(943\) 2.24457e7 0.821967
\(944\) 0 0
\(945\) −2.28614e6 −0.0832768
\(946\) 0 0
\(947\) 3.09314e7 1.12079 0.560395 0.828225i \(-0.310649\pi\)
0.560395 + 0.828225i \(0.310649\pi\)
\(948\) 0 0
\(949\) −3.12277e7 −1.12558
\(950\) 0 0
\(951\) 1.66157e7 0.595756
\(952\) 0 0
\(953\) −1.55848e7 −0.555865 −0.277933 0.960601i \(-0.589649\pi\)
−0.277933 + 0.960601i \(0.589649\pi\)
\(954\) 0 0
\(955\) −3.03958e7 −1.07846
\(956\) 0 0
\(957\) 2.10438e6 0.0742753
\(958\) 0 0
\(959\) −1.55449e7 −0.545808
\(960\) 0 0
\(961\) −5.97155e6 −0.208583
\(962\) 0 0
\(963\) 8.35483e6 0.290316
\(964\) 0 0
\(965\) −4.58254e7 −1.58412
\(966\) 0 0
\(967\) −2.60131e7 −0.894593 −0.447297 0.894386i \(-0.647613\pi\)
−0.447297 + 0.894386i \(0.647613\pi\)
\(968\) 0 0
\(969\) 1.22417e7 0.418826
\(970\) 0 0
\(971\) −8.84316e6 −0.300995 −0.150497 0.988610i \(-0.548088\pi\)
−0.150497 + 0.988610i \(0.548088\pi\)
\(972\) 0 0
\(973\) −354564. −0.0120064
\(974\) 0 0
\(975\) 6.44938e6 0.217273
\(976\) 0 0
\(977\) −2.70010e7 −0.904988 −0.452494 0.891768i \(-0.649466\pi\)
−0.452494 + 0.891768i \(0.649466\pi\)
\(978\) 0 0
\(979\) 2.65788e6 0.0886296
\(980\) 0 0
\(981\) 4.86761e6 0.161489
\(982\) 0 0
\(983\) −1.69892e7 −0.560775 −0.280387 0.959887i \(-0.590463\pi\)
−0.280387 + 0.959887i \(0.590463\pi\)
\(984\) 0 0
\(985\) 1.41961e7 0.466207
\(986\) 0 0
\(987\) 2.89825e6 0.0946985
\(988\) 0 0
\(989\) −2.90517e7 −0.944455
\(990\) 0 0
\(991\) 3.77922e7 1.22241 0.611207 0.791470i \(-0.290684\pi\)
0.611207 + 0.791470i \(0.290684\pi\)
\(992\) 0 0
\(993\) −1.40221e7 −0.451274
\(994\) 0 0
\(995\) 2.13514e7 0.683706
\(996\) 0 0
\(997\) −5.16921e7 −1.64697 −0.823487 0.567336i \(-0.807974\pi\)
−0.823487 + 0.567336i \(0.807974\pi\)
\(998\) 0 0
\(999\) −1.52653e6 −0.0483939
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.6.a.d.1.1 1
3.2 odd 2 504.6.a.h.1.1 1
4.3 odd 2 336.6.a.c.1.1 1
12.11 even 2 1008.6.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.6.a.d.1.1 1 1.1 even 1 trivial
336.6.a.c.1.1 1 4.3 odd 2
504.6.a.h.1.1 1 3.2 odd 2
1008.6.a.z.1.1 1 12.11 even 2