Defining parameters
| Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 168.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(168))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 168 | 14 | 154 |
| Cusp forms | 152 | 14 | 138 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(19\) | \(1\) | \(18\) | \(17\) | \(1\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(22\) | \(2\) | \(20\) | \(20\) | \(2\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(21\) | \(2\) | \(19\) | \(19\) | \(2\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(22\) | \(1\) | \(21\) | \(20\) | \(1\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(23\) | \(2\) | \(21\) | \(21\) | \(2\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(20\) | \(2\) | \(18\) | \(18\) | \(2\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(21\) | \(2\) | \(19\) | \(19\) | \(2\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(20\) | \(2\) | \(18\) | \(18\) | \(2\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(82\) | \(6\) | \(76\) | \(74\) | \(6\) | \(68\) | \(8\) | \(0\) | \(8\) | |||||
| Minus space | \(-\) | \(86\) | \(8\) | \(78\) | \(78\) | \(8\) | \(70\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(168))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(168))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(168)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)