Properties

Label 168.6.a
Level $168$
Weight $6$
Character orbit 168.a
Rep. character $\chi_{168}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $10$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(168))\).

Total New Old
Modular forms 168 14 154
Cusp forms 152 14 138
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(19\)\(1\)\(18\)\(17\)\(1\)\(16\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(22\)\(2\)\(20\)\(20\)\(2\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(21\)\(2\)\(19\)\(19\)\(2\)\(17\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(22\)\(1\)\(21\)\(20\)\(1\)\(19\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(23\)\(2\)\(21\)\(21\)\(2\)\(19\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(20\)\(2\)\(18\)\(18\)\(2\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(21\)\(2\)\(19\)\(19\)\(2\)\(17\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(20\)\(2\)\(18\)\(18\)\(2\)\(16\)\(2\)\(0\)\(2\)
Plus space\(+\)\(82\)\(6\)\(76\)\(74\)\(6\)\(68\)\(8\)\(0\)\(8\)
Minus space\(-\)\(86\)\(8\)\(78\)\(78\)\(8\)\(70\)\(8\)\(0\)\(8\)

Trace form

\( 14 q - 196 q^{5} + 1134 q^{9} + 764 q^{13} - 1636 q^{17} - 882 q^{21} - 2152 q^{23} + 3010 q^{25} + 15796 q^{29} + 3888 q^{31} - 5516 q^{37} + 11160 q^{39} + 17484 q^{41} + 16792 q^{43} - 15876 q^{45} - 6432 q^{47}+ \cdots + 96268 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(168))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
168.6.a.a 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.a \(0\) \(-9\) \(-34\) \(49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}-34q^{5}+7^{2}q^{7}+3^{4}q^{9}-756q^{11}+\cdots\)
168.6.a.b 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.b \(0\) \(-9\) \(4\) \(-49\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+4q^{5}-7^{2}q^{7}+3^{4}q^{9}+370q^{11}+\cdots\)
168.6.a.c 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.c \(0\) \(-9\) \(74\) \(49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+74q^{5}+7^{2}q^{7}+3^{4}q^{9}+6^{3}q^{11}+\cdots\)
168.6.a.d 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.d \(0\) \(9\) \(-64\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}-2^{6}q^{5}+7^{2}q^{7}+3^{4}q^{9}-54q^{11}+\cdots\)
168.6.a.e 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.e \(0\) \(9\) \(-38\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-38q^{5}-7^{2}q^{7}+3^{4}q^{9}+600q^{11}+\cdots\)
168.6.a.f 168.a 1.a $1$ $26.944$ \(\Q\) None 168.6.a.f \(0\) \(9\) \(14\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+14q^{5}-7^{2}q^{7}+3^{4}q^{9}-700q^{11}+\cdots\)
168.6.a.g 168.a 1.a $2$ $26.944$ \(\Q(\sqrt{193}) \) None 168.6.a.g \(0\) \(-18\) \(-78\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-39-5\beta )q^{5}-7^{2}q^{7}+3^{4}q^{9}+\cdots\)
168.6.a.h 168.a 1.a $2$ $26.944$ \(\Q(\sqrt{249}) \) None 168.6.a.h \(0\) \(-18\) \(-64\) \(98\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-2^{5}-\beta )q^{5}+7^{2}q^{7}+3^{4}q^{9}+\cdots\)
168.6.a.i 168.a 1.a $2$ $26.944$ \(\Q(\sqrt{4281}) \) None 168.6.a.i \(0\) \(18\) \(-10\) \(98\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+(-5-\beta )q^{5}+7^{2}q^{7}+3^{4}q^{9}+\cdots\)
168.6.a.j 168.a 1.a $2$ $26.944$ \(\Q(\sqrt{1129}) \) None 168.6.a.j \(0\) \(18\) \(0\) \(-98\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-\beta q^{5}-7^{2}q^{7}+3^{4}q^{9}+(50+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(168))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(168)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)