Defining parameters
| Level: | \( N \) | = | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Sturm bound: | \(9216\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(168))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3984 | 1574 | 2410 |
| Cusp forms | 3696 | 1534 | 2162 |
| Eisenstein series | 288 | 40 | 248 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(168))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 168.6.a | \(\chi_{168}(1, \cdot)\) | 168.6.a.a | 1 | 1 |
| 168.6.a.b | 1 | |||
| 168.6.a.c | 1 | |||
| 168.6.a.d | 1 | |||
| 168.6.a.e | 1 | |||
| 168.6.a.f | 1 | |||
| 168.6.a.g | 2 | |||
| 168.6.a.h | 2 | |||
| 168.6.a.i | 2 | |||
| 168.6.a.j | 2 | |||
| 168.6.b | \(\chi_{168}(55, \cdot)\) | None | 0 | 1 |
| 168.6.c | \(\chi_{168}(85, \cdot)\) | 168.6.c.a | 28 | 1 |
| 168.6.c.b | 32 | |||
| 168.6.h | \(\chi_{168}(71, \cdot)\) | None | 0 | 1 |
| 168.6.i | \(\chi_{168}(125, \cdot)\) | n/a | 156 | 1 |
| 168.6.j | \(\chi_{168}(155, \cdot)\) | n/a | 120 | 1 |
| 168.6.k | \(\chi_{168}(41, \cdot)\) | 168.6.k.a | 40 | 1 |
| 168.6.p | \(\chi_{168}(139, \cdot)\) | 168.6.p.a | 80 | 1 |
| 168.6.q | \(\chi_{168}(25, \cdot)\) | 168.6.q.a | 8 | 2 |
| 168.6.q.b | 10 | |||
| 168.6.q.c | 10 | |||
| 168.6.q.d | 12 | |||
| 168.6.t | \(\chi_{168}(19, \cdot)\) | n/a | 160 | 2 |
| 168.6.u | \(\chi_{168}(17, \cdot)\) | 168.6.u.a | 80 | 2 |
| 168.6.v | \(\chi_{168}(11, \cdot)\) | n/a | 312 | 2 |
| 168.6.ba | \(\chi_{168}(5, \cdot)\) | n/a | 312 | 2 |
| 168.6.bb | \(\chi_{168}(23, \cdot)\) | None | 0 | 2 |
| 168.6.bc | \(\chi_{168}(37, \cdot)\) | n/a | 160 | 2 |
| 168.6.bd | \(\chi_{168}(31, \cdot)\) | None | 0 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(168))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(168)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)