Properties

Label 168.6
Level 168
Weight 6
Dimension 1534
Nonzero newspaces 12
Sturm bound 9216
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(9216\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(168))\).

Total New Old
Modular forms 3984 1574 2410
Cusp forms 3696 1534 2162
Eisenstein series 288 40 248

Trace form

\( 1534 q - 4 q^{2} + 16 q^{3} + 76 q^{4} - 196 q^{5} - 362 q^{6} + 160 q^{7} - 136 q^{8} + 556 q^{9} + 1388 q^{10} + 20 q^{11} + 970 q^{12} + 2232 q^{13} - 3692 q^{14} - 684 q^{15} - 5708 q^{16} - 1912 q^{17}+ \cdots + 195704 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(168))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
168.6.a \(\chi_{168}(1, \cdot)\) 168.6.a.a 1 1
168.6.a.b 1
168.6.a.c 1
168.6.a.d 1
168.6.a.e 1
168.6.a.f 1
168.6.a.g 2
168.6.a.h 2
168.6.a.i 2
168.6.a.j 2
168.6.b \(\chi_{168}(55, \cdot)\) None 0 1
168.6.c \(\chi_{168}(85, \cdot)\) 168.6.c.a 28 1
168.6.c.b 32
168.6.h \(\chi_{168}(71, \cdot)\) None 0 1
168.6.i \(\chi_{168}(125, \cdot)\) n/a 156 1
168.6.j \(\chi_{168}(155, \cdot)\) n/a 120 1
168.6.k \(\chi_{168}(41, \cdot)\) 168.6.k.a 40 1
168.6.p \(\chi_{168}(139, \cdot)\) 168.6.p.a 80 1
168.6.q \(\chi_{168}(25, \cdot)\) 168.6.q.a 8 2
168.6.q.b 10
168.6.q.c 10
168.6.q.d 12
168.6.t \(\chi_{168}(19, \cdot)\) n/a 160 2
168.6.u \(\chi_{168}(17, \cdot)\) 168.6.u.a 80 2
168.6.v \(\chi_{168}(11, \cdot)\) n/a 312 2
168.6.ba \(\chi_{168}(5, \cdot)\) n/a 312 2
168.6.bb \(\chi_{168}(23, \cdot)\) None 0 2
168.6.bc \(\chi_{168}(37, \cdot)\) n/a 160 2
168.6.bd \(\chi_{168}(31, \cdot)\) None 0 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(168))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(168)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)